植物生态学报 ›› 2023, Vol. 47 ›› Issue (2): 216-226.DOI: 10.17521/cjpe.2022.0194
收稿日期:
2022-05-16
接受日期:
2022-10-10
出版日期:
2023-02-20
发布日期:
2023-02-28
通讯作者:
*(基金资助:
WANG Wen-Wei, HAN Wei-Peng, LIU Wen-Wen*()
Received:
2022-05-16
Accepted:
2022-10-10
Online:
2023-02-20
Published:
2023-02-28
Contact:
*(Supported by:
摘要:
叶片的性状与植物的光能利用效率和光合作用密切相关, 能够表征植物对环境的适应策略。互花米草(Spartina alterniflora)是中国滨海湿地主要的外来入侵植物, 已对中国滨海湿地生态系统造成严重威胁。潮位是滨海湿地盐沼植物生长和分布的主要限制因素, 但对于互花米草叶片性状沿潮位的变化格局和适应机理的研究还比较缺乏。该研究在福建漳江口建立潮位控制平台, 研究互花米草叶片功能性状(长度、宽度、长宽比、面积、干质量和比叶面积)对潮位(高程)的响应格局及其驱动因素。研究发现: (1)互花米草的叶片长度、宽度、面积和干质量随着高程的增加逐渐减小, 而叶片的长宽比随着高程的增加逐渐增大。(2)互花米草叶片的比叶面积随高程增加呈驼峰形变化。(3)淹水频率、土壤间隙水盐度及含水量对不同叶片性状的影响不同: 叶片长度、宽度、面积及干质量随着淹水频率和土壤含水量的增加而增大, 但随土壤间隙水盐度的升高而减小; 叶片长宽比随着淹水频率和土壤含水量的增加而减小, 但随土壤间隙水盐度的升高而增大; 比叶面积随淹水频率增加呈现先增大后减小的二次方程关系, 并随土壤含水量升高而增大。综上所述, 互花米草叶片性状沿潮位梯度的变化格局及其主要的影响因素不同, 可能是因为不同叶片性状对植物生理过程的影响有差异, 表明互花米草可以通过改变叶片性状及性状间的权衡关系来适应潮位变化带来的不同环境胁迫, 这为认识和预测滨海湿地入侵植物互花米草对海平面上升的生态适应提供了新的角度。
王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应. 植物生态学报, 2023, 47(2): 216-226. DOI: 10.17521/cjpe.2022.0194
WANG Wen-Wei, HAN Wei-Peng, LIU Wen-Wen. Short-term response of leaf functional traits of the invasive plant Spartina alterniflora to a tidal gradient in coastal wetlands. Chinese Journal of Plant Ecology, 2023, 47(2): 216-226. DOI: 10.17521/cjpe.2022.0194
图1 福建漳江口潮位控制平台示意图。0-150 cm为互花米草自然分布的垂直高程范围。
Fig. 1 Schematic diagram of the tidal elevation control platform in Zhangjiang Estuary, Fujian. The vertical elevation range of the natural distribution of Spartina alterniflora at our study site is 0 to 150 cm.
图2 福建漳江口潮位控制平台淹水频率、土壤间隙水盐度、土壤含水量在高程梯度上的变化(平均值±标准误)。
Fig. 2 Changes in inundation frequency, soil porewater salinity and soil water content along the elevation gradient of the tidal elevation control platform in Zhangjiang Estuary, Fujian (mean ± SE).
图4 互花米草叶片功能性状与淹水频率之间的回归关系(n = 155)。
Fig. 4 Regression relationships between leaf functional traits of Spartina alterniflora and inundation frequency (n = 155).
图5 互花米草叶片功能性状与土壤间隙水盐度之间的回归关系(n = 155)。土壤间隙水盐度被分成17.26-19.08 g·kg-1和22.81-155.44 g·kg-1两段范围进行回归分析。**, p < 0.01; ***, p < 0.001; ns, p > 0.05。
Fig. 5 Regression relationships between leaf functional traits of Spartina alterniflora and soil porewater salinity (n = 155). Soil porewater salinity was divided into two ranges (17.26-19.08 g·kg-1 and 22.81-155.44 g·kg-1) for regression analysis. **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
图6 互花米草叶片功能性状与土壤含水量之间的回归关系(n = 155)。
Fig. 6 Regression relationships between leaf functional traits of Spartina alterniflora and soil water content (n = 155).
图7 环境因子对互花米草叶片功能性状影响的相对重要性。IF, 淹水频率; SPS, 土壤间隙水盐度; SWC, 土壤含水量。
Fig. 7 Relative importance of environmental factors in explaining variation in the leaf functional traits of Spartina alterniflora. IF, inundation frequency; SPS, soil porewater salinity; SWC, soil water content.
指标 Index | 宽度 Width (cm) | 长宽比 Length width ratio | 面积 Area (cm2) | 干质量 Dry mass (g) | 比叶面积 SLA (cm2·g-1) |
---|---|---|---|---|---|
长度 Length (cm) | 0.82*** | 0.30*** | 0.95*** | 0.93*** | -0.33*** |
宽度 Width (cm) | -0.25* | 0.93*** | 0.86*** | -0.13* | |
长宽比 Length width ratio | 0.05 | 0.13 | -0.42*** | ||
面积 Area (cm2) | 0.96*** | -0.25** | |||
干质量 Dry mass (g) | -0.39*** |
表1 互花米草叶片功能性状的相关系数
Table 1 Correlation coefficients among leaf functional traits of Spartina alterniflora
指标 Index | 宽度 Width (cm) | 长宽比 Length width ratio | 面积 Area (cm2) | 干质量 Dry mass (g) | 比叶面积 SLA (cm2·g-1) |
---|---|---|---|---|---|
长度 Length (cm) | 0.82*** | 0.30*** | 0.95*** | 0.93*** | -0.33*** |
宽度 Width (cm) | -0.25* | 0.93*** | 0.86*** | -0.13* | |
长宽比 Length width ratio | 0.05 | 0.13 | -0.42*** | ||
面积 Area (cm2) | 0.96*** | -0.25** | |||
干质量 Dry mass (g) | -0.39*** |
[1] |
Baraloto C, Paine CET, Poorter L, Beauchêne J, Bonal D, Domenach AM, Hérault B, Patiño S, Roggy JC, Chave J (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338-1347.
DOI PMID |
[2] |
Byars SG, Papst W, Hoffmann AA (2007). Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution, 61, 2925-2941.
PMID |
[3] |
Campo J, Gallardo JF, Hernández G (2014). Leaf and litter nitrogen and phosphorus in three forests with low P supply. European Journal of Forest Research, 133, 121-129.
DOI URL |
[4] |
Chen ZB, Guo L, Jin BS, Wu JH, Zheng GH (2009). Effect of the exotic plant Spartina alterniflora on macrobenthos communities in salt marshes of the Yangtze River Estuary, China. Estuarine, Coastal and Shelf Science, 82, 265-272.
DOI URL |
[5] |
Falster DS, Westoby M (2003). Leaf size and angle vary widely across species: What consequences for light interception? New Phytologist, 158, 509-525.
DOI PMID |
[6] |
Fan X, Yan X, Qian C, Bachir DG, Yin X, Sun P, Ma X (2020). Leaf size variations in a dominant desert shrub, Reaumuria soongarica, adapted to heterogeneous environments. Ecology and Evolution, 10, 10076-10094.
DOI URL |
[7] |
Gao S, Du YF, Xie WJ, Gao WH, Wang DD, Wu XD (2014). Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines. Science China Earth Sciences, 57, 2567-2586.
DOI URL |
[8] |
Garnier E, Shipley B, Roumet C, Laurent G (2001). A standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology, 15, 688-695.
DOI URL |
[9] |
Guo ZW, Lin H, Chen SL, Yang QP (2018). Altitudinal patterns of leaf traits and leaf allometry in bamboo Pleioblastus amarus. Frontiers in Plant Science, 9, 1110. DOI: 10.3389/fpls.2018.01110.
DOI |
[10] |
Khaliq I, Irshad A, Ahsan M (2008). Awns and flag leaf contribution towards grain yield in spring wheat (Triticum aestivum L.). Cereal Research Communications, 36, 65-76.
DOI URL |
[11] |
Kirwan ML, Guntenspergen GR (2012). Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. Journal of Ecology, 100, 764-770.
DOI URL |
[12] | Leigh A, Sevanto S, Close JD, Nicotra AB (2017). The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions? Plant, Cell & Environment, 40, 237-248. |
[13] |
Li B, Liao CZ, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ, Cheng XL, Jiang LF, Chen JK (2009). Spartina alterniflora invasions in the Yangtze River Estuary, China: an overview of current status and ecosystem effects. Ecological Engineering, 35, 511-520.
DOI URL |
[14] | Li Q, Zhao CZ, Wang JW, Zhao LC, Xu T, Han L (2017). Relationship analysis between specific leaf area and water use efficiency of Phragmites australis in the Zhangye wetland. Acta Ecologica Sinica, 37, 4956-4962. |
[李群, 赵成章, 王继伟, 赵连春, 徐婷, 韩玲 (2017). 张掖湿地芦苇比叶面积和水分利用效率的关系. 生态学报, 37, 4956-4962.] | |
[15] | Li Q, Zhao CZ, Zhao LC, Wang JW, Wen J (2019). The correlation analysis between specific leaf area and photosynthetic efficiency of Phragmites australis in salt marshes of Qinwangchuan. Acta Ecologica Sinica, 39, 7124-7133. |
[李群, 赵成章, 赵连春, 王继伟, 文军 (2019). 秦王川盐沼湿地芦苇叶片比叶面积与光合效率的关联分析. 生态学报, 39, 7124-7133.] | |
[16] |
Li R, Yu Q, Wang Y, Wang Z, Gao S, Flemming B (2018). The relationship between inundation duration and Spartina alterniflora growth along the Jiangsu coast, China. Estuarine, Coastal and Shelf Science, 213, 305-313.
DOI URL |
[17] |
Li YQ, Wang ZH (2021). Leaf morphological traits: ecological function, geographic distribution and drivers. Chinese Journal of Plant Ecology, 45, 1154-1172.
DOI URL |
[李耀琪, 王志恒 (2021). 植物叶片形态的生态功能、地理分布与成因. 植物生态学报, 45, 1154-1172.]
DOI |
|
[18] | Lin P (2001). Comprehensive Scientific Investigation Report of Zhangjiang Estuary Mangrove National Nature Reserve in Fujian Province. 3rd ed. Xiamen University Press, Xiamen. |
[林鹏 (2001). 福建漳江口红树林湿地自然保护区综合科学考察报告. 3版. 厦门大学出版社, 厦门.] | |
[19] |
Lin S, Niklas KJ, Wan Y, Hölscher D, Hui C, Ding Y, Shi P (2020). Leaf shape influences the scaling of leaf dry mass vs. area: a test case using bamboos. Annals of Forest Science, 77, 11. DOI: 10.1007/s13595-019-0911-2.
DOI |
[20] |
Liu WS, Zheng L, Qi DH (2020). Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecology and Evolution, 10, 8166-8175.
DOI PMID |
[21] |
Liu WW, Wang WW, Zhang YH (2022). Differences in leaf traits of Spartina alterniflora between native and invaded habitats: implication for evolution of alien species competitive ability increase. Ecological Indicators, 138, 108799. DOI: 10.1016/j.ecolind.2022.108799.
DOI |
[22] | Liu YZ, Xu X, Liu H, Li B, Nie M (2020). Latitude gradient variations of leaf functional traits of Spartina alterniflora and Phragmites australis along the coastal saltmarshes of China. Journal of Fudan University (Natural Science), 59, 381-389. |
[刘远瞻, 徐晓, 刘浩, 李博, 聂明 (2020). 中国滨海盐沼互花米草和芦苇叶片功能性状的纬度梯度变异. 复旦学报(自然科学版), 59, 381-389.] | |
[23] | Lü JZ, Miao YM, Zhang HF, Bi RC (2010). Comparisons of leaf traits among different functional types of plant from Huoshan Mountain in the Shanxi Province. Journal of Wuhan Botanical Research, 28, 460-465. |
[吕金枝, 苗艳明, 张慧芳, 毕润成 (2010). 山西霍山不同功能型植物叶性特征的比较研究. 武汉植物学研究, 28, 460-465.] | |
[24] | Lu Y (2010). Response mechanism of wetland plants to submerged conditions. Journal of Natural Disasters, 19, 147-151. |
[卢妍 (2010). 湿地植物对淹水条件的响应机制. 自然灾害学报, 19, 147-151.] | |
[25] |
Lusk CH, Grierson ERP, Laughlin DC (2019). Large leaves in warm, moist environments confer an advantage in seedling light interception efficiency. New Phytologist, 223, 1319-1327.
DOI PMID |
[26] |
Ma X, Yan JG, Wang FF, Qiu DD, Jiang XP, Liu ZZ, Sui HC, Bai JH, Cui BS (2019). Trait and density responses of Spartina alterniflora to inundation in the Yellow River Delta, China. Marine Pollution Bulletin, 146, 857-864.
DOI URL |
[27] |
Milla R, Reich PB (2007). The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 274, 2109-2114.
PMID |
[28] |
Mommer L, Lenssen JPM, Huber H, Visser EJWde Kroon H (2006). Ecophysiological determinants of plant performance under flooding: a comparative study of seven plant families. Journal of Ecology, 94, 1117-1129.
DOI URL |
[29] |
Morris JT (2007). Ecological engineering in intertidial saltmarshes. Hydrobiologia, 577, 161-168.
DOI URL |
[30] |
Morris JT, Sundberg K, Hopkinson CS (2013). Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography, 26, 78-84.
DOI URL |
[31] |
Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013). A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28, 167-177.
DOI URL |
[32] |
Niinemets Ü, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171, 91-104.
PMID |
[33] |
Okajima Y, Taneda H, Noguchi K, Terashima I (2012). Optimum leaf size predicted by a novel leaf energy balance model incorporating dependencies of photosynthesis on light and temperature. Ecological Research, 27, 333-346.
DOI URL |
[34] | Pan L, Xue Y, Xue L (2011). Advance in response of morphology of plant waterlogging stress. Chinese Agricultural Science Bulletin, 27(7), 11-15. |
[潘澜, 薛晔, 薛立 (2011). 植物淹水胁迫形态学研究进展. 中国农学通报, 27(7), 11-15.] | |
[35] |
Peng D, Chen L, Pennings SC, Zhang Y (2018). Using a marsh organ to predict future plant communities in a Chinese estuary invaded by an exotic grass and mangrove. Limnology and Oceanography, 63, 2595-2605.
DOI URL |
[36] | Pennings SC, Bertness MD (2001). Salt Marsh Communities. Sinauer, Sunderland, USA. |
[37] |
Pennings SC, Richards CL (1998). Effects of wrack burial in salt-stressed habitats: Batis maritima in a southwest Atlantic salt marsh. Ecography, 21, 630-638.
DOI URL |
[38] |
Peppe DJ, Lemons CR, Royer DL, Wing SL, Wright IJ, Lusk CH, Rhoden CH (2014). Biomechanical and leaf-climate relationships: a comparison of ferns and seed plants. American Journal of Botany, 101, 338-347.
DOI PMID |
[39] |
Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, et al. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190, 724-739.
DOI PMID |
[40] |
Qin JH, Bian CS, Liu JG, Zhang JJ, Jin LP (2019). An efficient greenhouse method to screen potato genotypes for drought tolerance. Scientia Horticulturae, 253, 61-69.
DOI URL |
[41] |
Reents S, Mueller P, Tang H, Jensen K, Nolte S (2021). Plant genotype determines biomass response to flooding frequency in tidal wetlands. Biogeosciences, 18, 403-411.
DOI URL |
[42] |
Sarlikioti V, Buck-Sorlin GH, Marcelis LFM (2011). How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model. Annals of Botany, 108, 1065-1073.
DOI PMID |
[43] |
Shang L, Qiu SY, Huang JX, Li B (2015). Invasion of Spartina alterniflora in China is greatly facilitated by increased growth and clonality: a comparative study of native and introduced populations. Biological Invasions, 17, 1327-1339.
DOI URL |
[44] | Sharma SN, Sain RS, Sharma RK (2003). The genetic control of flag leaf length in normal and late sown durum wheat. Journal of Agricultural Science, 141, 323-331. |
[45] | Shi FC, Bao F (2007). Effects of salt and temperature stress on ecophysiological characteristics of exotic cordgrass, Spartina alterniflora. Acta Ecologica Sinica, 27, 2733-2741. |
[石福臣, 鲍芳 (2007). 盐和温度胁迫对外来种互花米草(Spartina alterniflora)生理生态特性的影响. 生态学报, 27, 2733-2741.] | |
[46] |
Strong DR, Ayres DR (2013). Ecological and evolutionary misadventures of Spartina. Annual Review of Ecology, Evolution, and Systematics, 44, 389-410.
DOI URL |
[47] | Teng K, Tang HG, Zhan LC, Ge ZM, Xin P (2021). Laboratory simulation of the effects of tidal flat elevation on the growth of Spartina alterniflora in coastal salt marsh. Ecological Science, 40(3), 1-7. |
[滕康, 唐洪根, 詹泸成, 葛振鸣, 辛沛 (2021). 实验室模拟滨海盐沼潮滩高程对互花米草生长的影响. 生态科学, 40(3), 1-7.] | |
[48] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[49] |
Voss CM, Christian RR, Morris JT (2013). Marsh macrophyte responses to inundation anticipate impacts of sea-level rise and indicate ongoing drowning of North Carolina marshes. Marine Biology, 160, 181-194.
DOI PMID |
[50] |
Wang CG, He JM, Zhao TH, Cao Y, Wang GJ, Sun B, Yan XF, Guo W, Li MH (2019). The smaller the leaf is, the faster the leaf water loses in a temperate forest. Frontiers in Plant Science, 10, 58. DOI: 10.3389/fpls.2019.00058.
DOI |
[51] | Wang CY, Liu J, Xiao HG, Du DL (2016). Response of leaf functional traits of Cerasus yedoensis (Mats.) Yü Li to serious insect attack. Polish Journal of Environmental Sciences Studies, 25, 333-339. |
[52] |
Wang Q, An SQ, Ma ZJ, Zhao B, Chen JK, Li B (2006). Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxonomica Sinica, 44, 559-588.
DOI URL |
[王卿, 安树青, 马志军, 赵斌, 陈家宽, 李博 (2006). 入侵植物互花米草——生物学、生态学及管理. 植物分类学报, 44, 559-588.] | |
[53] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[54] |
Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162.
DOI URL |
[55] |
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, et al. (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
DOI PMID |
[56] |
Wright IJ, Groom PK, Lamont BB, Poot P, Prior LD, Reich PB, Schulze E, Veneklaas EJ, Westoby M (2004). Short communication: leaf trait relationships in Australian plant species. Functional Plant Biology, 31, 551-558.
DOI PMID |
[57] |
Xue L, Li XZ, Zhang Q, Yan ZZ, Ding WH, Huang X, Ge ZM, Tian B, Yin QX (2018). Elevated salinity and inundation will facilitate the spread of invasive Spartina alterniflora in the Yangtze River Estuary, China. Journal of Experimental Marine Biology and Ecology, 506, 144-154.
DOI URL |
[58] | Yang FJ, Li TL, Zang ZJ, Wu X (2017). Effects of isotonic NaCl and drought stress on photosynthetic characteristics and chloroplast ultrastructure of tomato seedlings. Chinese Journal of Applied Ecology, 28, 2588-2596. |
[杨凤军, 李天来, 臧忠婧, 吴瑕 (2017). 等渗NaCl、干旱胁迫对番茄幼苗光合特性及叶绿体超微结构的影响. 应用生态学报, 28, 2588-2596.]
DOI |
|
[59] |
Yang Y, Wang H, Harrison SP, Prentice IC, Wright IJ, Peng C, Lin G (2019). Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytologist, 221, 155-168.
DOI PMID |
[60] | Yu H, Zhong QL, Huang YB, Cheng DL, Pei P, Zhang ZR, Xu CB, Zheng WT (2018). Relationships between leaf functional traits of Machilus pauhoi understory seedlings from different provenances and geographical environmental factors. Chinese Journal of Applied Ecology, 29, 449-458. |
[余华, 钟全林, 黄云波, 程栋梁, 裴盼, 张中瑞, 徐朝斌, 郑文婷 (2018). 不同种源刨花楠林下幼苗叶功能性状与地理环境的关系. 应用生态学报, 29, 449-458.]
DOI |
|
[61] |
Zhang DH, Hu YM, Liu M, Chang Y, Yan XL, Bu RC, Zhao DD, Li ZM (2017). Introduction and spread of an exotic plant, Spartina alterniflora, along coastal marshes of China. Wetlands, 37, 1181-1193.
DOI URL |
[62] |
Zhang YH, Huang GM, Wang WQ, Chen LZ, Lin GH (2012). Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology, 93, 588-597.
DOI URL |
[63] |
Zhang Y, Pennings SC, Li B, Wu J (2019). Biotic homogenization of wetland nematode communities by exotic Spartina alterniflora in China. Ecology, 100, e02596. DOI: 10.1002/ecy.2596.
DOI |
[64] |
Zhou HL, Zhou GS, He QJ, Zhou L, Ji YL, Zhou MZ (2020). Environmental explanation of maize specific leaf area under varying water stress regimes. Environmental and Experimental Botany, 171, 103932. DOI: 10.1016/j.envexpbot.2019.103932.
DOI |
[65] |
Zhu X, Meng L, Zhang Y, Weng Q, Morris J (2019). Tidal and meteorological influences on the growth of invasive Spartina alterniflora: evidence from UAV remote sensing. Remote Sensing, 11, 1208. DOI: 10.3390/rs11101208.
DOI |
[1] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[2] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[3] | 秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望[J]. 植物生态学报, 2021, 45(6): 573-582. |
[4] | 王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展[J]. 植物生态学报, 2021, 45(10): 1064-1074. |
[5] | 陈禹含, 罗亦夫, 孙鑫晟, 魏冠文, 黄文军, 罗芳丽, 于飞海. 根部水淹和土壤养分提升对三峡库区消落带水蓼生长和繁殖特性的影响[J]. 植物生态学报, 2020, 44(11): 1184-1194. |
[6] | 许光耀, 李洪远, 莫训强, 孟伟庆. 中国归化植物组成特征及其时空分布格局分析[J]. 植物生态学报, 2019, 43(7): 601-610. |
[7] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[8] | 陈宝明, 韦慧杰, 陈伟彬, 朱政财, 原亚茹, 张永隆, 蓝志刚. 外来入侵植物对土壤氮转化主要过程及相关微生物的影响[J]. 植物生态学报, 2018, 42(11): 1071-1081. |
[9] | 蒋利玲, 曾从盛, 邵钧炯, 周旭辉. 闽江河口入侵种互花米草和本地种短叶茳芏的养分动态及植物化学计量内稳性特征[J]. 植物生态学报, 2017, 41(4): 450-460. |
[10] | 肖迪, 王晓洁, 张凯, 何念鹏, 侯继华. 氮添加对山西太岳山天然油松林主要植物叶片性状的影响[J]. 植物生态学报, 2016, 40(7): 686-701. |
[11] | 孙宝玉, 韩广轩, 陈亮, 初小静, 邢庆会, 吴立新, 朱书玉. 模拟增温对黄河三角洲滨海湿地非生长季土壤呼吸的影响[J]. 植物生态学报, 2016, 40(11): 1111-1123. |
[12] | 丁文慧, 姜俊彦, 李秀珍, 黄星, 李希之, 周云轩, 汤臣栋. 崇明东滩南部盐沼植被空间分布及影响因素分析[J]. 植物生态学报, 2015, 39(7): 704-716. |
[13] | 陈权, 马克明. 红树林生物入侵研究概况与趋势[J]. 植物生态学报, 2015, 39(3): 283-299. |
[14] | 胡楚琦, 刘金珂, 王天弘, 王文琳, 卢山, 周长芳. 三种盐胁迫对互花米草和芦苇光合作用的影响[J]. 植物生态学报, 2015, 39(1): 92-103. |
[15] | 于鸿莹, 陈莹婷, 许振柱, 周广胜. 内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析[J]. 植物生态学报, 2014, 38(10): 1029-1040. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19