植物生态学报 ›› 2017, Vol. 41 ›› Issue (4): 450-460.DOI: 10.17521/cjpe.2016.0193
收稿日期:
2016-06-07
接受日期:
2017-01-03
出版日期:
2017-04-10
发布日期:
2017-05-19
通讯作者:
周旭辉
基金资助:
Li-Ling JIANG1, Cong-Sheng ZENG2,3, Jun-Jiong SHAO4, Xu-Hui ZHOU1,*()
Received:
2016-06-07
Accepted:
2017-01-03
Online:
2017-04-10
Published:
2017-05-19
Contact:
Xu-Hui ZHOU
摘要:
化学计量内稳性是维持生态系统结构、功能和稳定性的重要机制。互花米草(Spartina alterniflora)的入侵对闽江河口湿地生态系统的结构和功能产生了威胁。互花米草入侵如何影响植物化学计量内稳性特征的研究有助于深入了解湿地生态系统稳定性, 对拓展生态化学计量学的研究范围有重要意义。该文基于化学计量内稳性理论, 以互花米草单种群落、短叶茳芏(Cyperus malaccensis var. brevifolius)单种群落和互花米草-短叶茳芏混生群落为研究对象, 对土壤和植物的氮(N)、磷(P)元素进行了测定, 并计算了植物的内稳性指数(H)。结果显示: 互花米草入侵对土壤N、P含量无显著影响, 但是显著提高了土壤N:P。对生态系统而言, N的内稳性(HN, 平均值为25.31)显著高于P的内稳性(HP, 平均值为10.33)与N:P值的内稳性(HN:P, 平均值为2.50)。在器官水平上, 根的HN显著高于茎的HN, 鞘的HN:P显著高于根的HN:P, 而不同器官间的HP差异不显著。种间内稳性对比发现, 混生群落中的互花米草根的HN显著高于混生群落中的短叶茳芏根的HN, 单种群落中的互花米草茎的HN:P显著高于单种群落中的短叶茳芏茎的HN:P。此外, 入侵对植物内稳性的影响表现在混生群落中的互花米草根、叶和鞘的HN均显著高于单种群落中的互花米草根、茎和鞘的HN。以上结果表明: 养分元素、器官、植被类型和入侵等均影响植物化学计量内稳性特征, 但无论是在单种群落还是在混生群落中, 互花米草均有内稳性显著高于短叶茳芏内稳性的现象, 没有发现短叶茳芏显著高于互花米草的研究结果。因此, 互花米草较高的内稳性可能是其入侵成功的一个原因。
蒋利玲, 曾从盛, 邵钧炯, 周旭辉. 闽江河口入侵种互花米草和本地种短叶茳芏的养分动态及植物化学计量内稳性特征. 植物生态学报, 2017, 41(4): 450-460. DOI: 10.17521/cjpe.2016.0193
Li-Ling JIANG, Cong-Sheng ZENG, Jun-Jiong SHAO, Xu-Hui ZHOU. Plant nutrient dynamics and stoichiometric homeostasis of invasive species Spartina alterniflora and native Cyperus malaccensis var. brevifolius in the Minjiang River estuarine wetlands. Chinese Journal of Plant Ecology, 2017, 41(4): 450-460. DOI: 10.17521/cjpe.2016.0193
图2 3种群落类型植物器官及土壤的N、P含量和N:P值动态变化(平均值±标准误差, n = 4)。CM, 短叶茳芏单种群落; CMMC, 混生群落中的短叶茳芏; MC, 互花米草-短叶茳芏混生群落; SA, 互花米草单种群落; SAMC, 混生群落中的互花米草。
Fig. 2 Dynamic of N, P and N:P in plant organs and soils across the three community types (mean ± SE, n = 4). CM, Cyperus malaccensis var. brevifolius community; CMMC, C. malaccensis var. brevifolius in mixed community; MC, S. alterniflora-C. malaccensis var. brevifolius mixture community; SA, Spartina alterniflora community; SAMC, S. alterniflora in mixed community.
群落类型中的植物 Plant in community type | 土壤N含量 Soil N concentration | 土壤P含量 Soil P concentration | ||||||
---|---|---|---|---|---|---|---|---|
根N Root N | 茎N Stem N | 叶N Leaf N | 鞘N Sheath N | 根P Root P | 茎P Stem P | 叶P Leaf P | 鞘P Sheath P | |
SAMC | -0.177 | 0.503* | 0.023 | 0.297 | -0.099 | 0.443* | 0.087 | 0.156 |
SA | 0.290 | 0.701** | -0.032 | 0.537* | -0.598** | 0.182 | -0.544* | -0.287 |
CMMC | 0.195 | 0.653** | - | - | 0.051 | 0.332 | - | - |
CM | 0.433 | 0.538* | - | - | 0.073 | -0.079 | - | - |
表1 3种群落类型植物器官与土壤氮(N)、磷(P)含量的相关系数
Table 1 The correlation coefficients between soil and plant organs in nitrogen (N) and phosphorus (P) concentration of three community types
群落类型中的植物 Plant in community type | 土壤N含量 Soil N concentration | 土壤P含量 Soil P concentration | ||||||
---|---|---|---|---|---|---|---|---|
根N Root N | 茎N Stem N | 叶N Leaf N | 鞘N Sheath N | 根P Root P | 茎P Stem P | 叶P Leaf P | 鞘P Sheath P | |
SAMC | -0.177 | 0.503* | 0.023 | 0.297 | -0.099 | 0.443* | 0.087 | 0.156 |
SA | 0.290 | 0.701** | -0.032 | 0.537* | -0.598** | 0.182 | -0.544* | -0.287 |
CMMC | 0.195 | 0.653** | - | - | 0.051 | 0.332 | - | - |
CM | 0.433 | 0.538* | - | - | 0.073 | -0.079 | - | - |
图3 不同元素、器官以及植物类型的内稳性指数(H)(平均值±标准误差, n = 4)。不同小写字母表示不同因子之间差异显著。缩写见图2。
Fig. 3 The homeostatic index (H) in different element, organ and plant types (mean ± SE, n = 4). Different lowercase letters denote significant differences among different factors. The abbreviations are the same as in Fig. 2.
图4 3种群落类型植物器官的N、P和N:P值的内稳性指数(H)(平均值±标准误差, n = 4)。不同小写字母表示不同因子之间差异显著。缩写见图2。
Fig. 4 The homeostatic index (H) of N, P and N:P in plant organs across the three community types (mean ± SE, n = 4). Different lowercase letters denote significant differences among different factors. The abbreviations are the same as in Fig. 2.
图5 不同器官和植物类型N、P和N:P值的内稳性指数(H)(平均值±标准误差, n = 4)。不同小写字母表示不同因子之间差异显著。缩写见图2。
Fig. 5 The homeostatic index (H) for different organs and plants in N, P and N:P (mean ± SE, n = 4). Different lowercase letters denote significant differences among different factors. The abbreviations are the same as in Fig. 2.
[1] | Andersen T, Hessen DO (1991). Carbon, nitrogen, and phosphorus content of freshwater zooplankton.Limnology and Oceanography, 36, 807-814. |
[2] | Bagwell CE, Lovell CR (2000). Microdiversity of culturable diazotrophs from the rhizoplanes of the salt marsh grasses Spartina alterniflora and Juncus roemerianus. Microbial Ecology, 39, 128-136. |
[3] | Bao SD (2005). Agricultural Soil Analysis. 3rd edn. China Agricultural Press, Beijing. 141-149. (in Chinese)[鲍士旦 (2005). 土壤农化分析. 第三版. 中国农业出版社, 北京. 141-149.] |
[4] | Bott T, Meyer GA, Young EB (2008). Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments. New Phytologist, 180, 631-641. |
[5] | Cernusak LA, Winter K, Turner BL (2009). Leaf nitrogen to phosphorus ratios of tropical trees: Experimental assessment of physiological and environmental controls.New Phytologist, 185, 770-779. |
[6] | Davis MA (2003). Biotic globalization: Does competition from introduced species threaten biodiversity?Bioscience, 53, 481-489. |
[7] | Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change.New Phytologist, 186, 593-608. |
[8] | Fan XY (2012). Spatial Variation in Nutrient of Dominant Plant and Ecological Stoichiometry from Laohu Gou of Qilian Mountain. Master degree dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract)[樊晓勇 (2012). 祁连山老虎沟优势植物的养分空间变化与生态化学计量学研究. 硕士学位论文, 兰州大学, 兰州.] |
[9] | Frid CLJ, Chandrasekara WU, Davey P (1999). The restoration of mud flats invaded by common cord-grass (Spartina anglica, CE Hubbard) using mechanical disturbance and its effects on the macrobenthic fauna. Aquatic Conservation Marine & Freshwater Ecosystems, 9, 47-61. |
[10] | Garnier E (1998). Interspecific Variation in Plasticity of Grasses in Response to Nitrogen Supply. Cambridge University Press, Cambridge, UK. 155-181. |
[11] | Goldman JC, Caron DA, Dennett MR (1987). Regulations of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio.Limnology and Oceanography, 32, 1239-1252. |
[12] | Grevstad FS, Strong DR, Garcia-Rossi D, Switzer RW, Wecker MS (2003). Biological control of Spartina alterniflora in Willapa Bay, Washington using the planthopper Prokelisia marginata: Agent specificity and early results. Biological Control, 27, 32-42. |
[13] | Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266. |
[14] | Güsewell S, Jewell PL, Edwards PJ (2005). Effects of heterogeneous habitat use by cattle on nutrient availability and litter decomposition in soils of an Alpine pasture.Plant and Soil, 268, 135-149. |
[15] | Güsewell S, Koerselman W (2002). Variation in nitrogen and phosphorus concentrations of wetland plants.Perspectives in Plant Ecology Evolution and Systematics, 5, 37-61. |
[16] | Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge.Ecological Monographs, 75, 3-35. |
[17] | Hu WF, Zhang WL, Zhang LH, Chen XY, Lin W, Zeng CS, Tong C (2014). Stoichiometric characteristics of nitrogen and phosphorus in major wetland vegetation of China. Chinese Journal of Plant Ecology, 38, 1041-1052. (in Chinese with English abstract)[胡伟芳, 章文龙, 张林海, 陈晓艳, 林伟, 曾从盛, 仝川 (2014). 中国主要湿地植被氮和磷生态化学计量学特征. 植物生态学报, 38, 1041-1052.] |
[18] | Jiang LL, He S, Wu LF, Yan YF, Weng SF, Liu J, Wang WQ, Zeng CS (2014). Characteristics of stoichiometric homeostasis of three plant species in wetlands in Minjiang estuary.Wetland Science, 3, 293-298. (in Chinese with English abstract)[蒋利玲, 何诗, 吴丽凤, 颜远烽, 翁少峰, 刘静, 王维奇, 曾从盛 (2014). 闽江河口湿地3种植物化学计量内稳性特征. 湿地科学, 3, 293-298.] |
[19] | Jiang W, Li XQ, Jiang Q, Huang DK, Cheng HG (2006). Kjeldahl method and the elemental analyzer method in measurement of total nitrogen in sediments: Comparison and its significance.Geochimica, 35, 221-226. (in Chinese with English abstract)[江伟, 李心清, 蒋倩, 黄代宽, 程红光 (2006). 凯氏蒸馏法和元素分析仪法测定沉积物中全氮含量的异同及其意义. 地球化学, 35, 221-226.] |
[20] | Jonas P, Patrick F, Akira G, James MH, Jayne J, Satoshi K (2010). To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs.Oikos, 119, 741-751. |
[21] | Koerselman W, Meuleman AMF (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450. |
[22] | Kooijman SALM (1995). The stoichiometry of animal energetics.Journal of Theoretical Biology, 177, 139-149. |
[23] | Levi MP, Cowling EB (1969). Role of nitrogen in wood deterioration. VII. Physiological adaptation of wood-destroying and other fungi to substrates deficient in nitrogen.Phytopathology, 59, 460-468. |
[24] | Li HP, Zhang LQ (2007). Experimental study on physical controls of an exotic plant Spartina alterniflora in Shanghai. Journal of East China Normal University (Natural Science), 6, 44-55. (in Chinese with English abstract)[李贺鹏, 张利权 (2007). 外来植物互花米草的物理控制实验研究. 华东师范大学学报(自然科学版), 6, 44-55.] |
[25] | Li YY, Sun JH, Yu CB, Cheng X, Zhang FS, Li L (2009). Effects of nitrogen fertilization application and faba bean/maize intercropping on the spatial and temporal distribution of soil inorganic nitrogen.Plant Nutrition and Fertilizer Science, 15, 815-823. (in Chinese with English abstract)[李玉英, 孙建好, 余常兵, 程序, 张福锁, 李隆 (2009). 施氮量和蚕豆/玉米间作对土壤无机氮时空分布的影响. 植物营养与肥料学报, 15, 815-823.] |
[26] | Liu JQ, Zeng CS, Chen N (2006). Study on the Wetlands of Minjiang River Estuary. Science Press, Beijing. 21-47. (in Chinese)[刘剑秋, 曾从盛, 陈宁 (2006). 闽江河口湿地研究. 科学出版社, 北京. 21-47.] |
[27] | Matzek V, Vitousek PM (2009). N:P stoichiometry and protein: RNA ratios in vascular plants: An evaluation of the growth-rate hypothesis.Ecology Letters, 12, 765-771. |
[28] | Moisander PH, Piehler MF, Paerl HW (2005). Diversity and activity of epiphytic nitrogen fixers on standing dead stems of the salt marsh grass Spartina alterniflora. Aquatic Microbial Ecology, 39, 271-279. |
[29] | Patten K (2002). Smooth cordgrass (Spartina alterniflora) control with Imazapyr. Weed Technology, 16, 826-832. |
[30] | Rhee GY (1978). Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake.Limnology and Oceanography, 23, 10-25. |
[31] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, New Jersey. 226-226. |
[32] | Su Q (2012). The framework of stoichiometry homeostasis in zooplankton elemental composition.Acta Ecologica Sinica, 32, 7213-7219. (in Chinese with English abstract)[苏强 (2012). 浮游动物化学计量学稳态性特征研究进展. 生态学报, 32, 7213-7219.] |
[33] | Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation.Journal of Applied Ecology, 40, 523-534. |
[34] | Tilman D, Reich PB, Knops JMH (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment.Nature, 441, 629-632. |
[35] | Wang H, Li HY, Zhang ZJ, Muehlbauer JD, He Q, Xu XH, Yue CL, Jiang DQ (2014). Linking stoichiometric homeostasis of microorganisms with soil phosphorus dynamics in wetlands subjected to microcosm warming.PLOS ONE, 9, e85575-e85575. doi: 10.1371/journal.pone.0085575. |
[36] | Wu MY, Hacker S, Ayres D, Strong DR (1999). Potential of Prokelisia spp. as biological control agents of english cordgrass, Spartina anglica. Biological Control, 16, 267-273. |
[37] | Xiong HF, Wang YH (2005). Advances in researches on biogeochemical circulation of C, N and P in wetlands.Chinese Journal of Soil Science, 36, 240-243. (in Chinese with English abstract)[熊汉锋, 王运华 (2005). 湿地碳氮磷的生物地球化学循环研究进展. 土壤通报, 36, 240-243.] |
[38] | Yan ZB, Kim NY, Han TS, Fang JY, Han WX (2013). Effects of nitrogen and phosphorus fertilization on leaf carbon, nitrogen and phosphorus stoichiometry of Arabidopsis thaliana. Chinese Journal of Plant Ecology, 37, 551-557. (in Chinese with English abstract)[严正兵, 金南瑛, 韩廷申, 方精云, 韩文轩 (2013). 氮磷施肥对拟南芥叶片碳氮磷化学计量特征的影响. 植物生态学报, 37, 551-557.] |
[39] | Yu Q (2009). Ecological Stoichiometric Study on Vascular Plants in the Inner Mongolia Steppe. PhD dissertation, Institute of Botany,Chinese Academy of Science, Beijing. 56-67. (in Chinese with English abstract)[庾强 (2009). 内蒙古草原植物化学计量生态学研究. 博士学位论文, 中国科学院植物研究所, 北京. 56-67.] |
[40] | Yu Q, Chen QS, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG (2010). Linking stoichiometric homeostasis with ecosystem structure, functioning, and stability.Ecology Letters, 13, 1390-1399. |
[41] | Yu Q, Wilcox K, Pierre KL, Knapp AK, Han XG, Smith MD (2015). Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change.Ecology, 96, 2328-2335. |
[42] | Zeng Y, Tian GH, Chen LY, Li J, An D, Lei ZS, Tang H, Peng SL (2011). Influence ofSpartina alterniflora invasion on soil ecosystem: A review. Chinese Journal of Ecology, 30, 2080-2087. (in Chinese with English abstract)[曾艳, 田广红, 陈蕾伊, 李静, 安东, 雷振胜, 唐虹, 彭少麟 (2011). 互花米草入侵对土壤生态系统的影响. 生态学杂志, 30, 2080-2087.] |
[43] | Zhang LX, Bai YF, Han XG (2004). Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica, 46, 259-270. |
[44] | Zhang RY, Shi XM, Li WJ, Guo R, Wang G (2015). Response of species homeostasis and biomass on a sub-alpine grassland.Pratacultural Science, 32, 1539-1547. (in Chinese with English abstract)[张仁懿, 史小明, 李文金, 郭睿, 王刚 (2015). 亚高寒草甸物种内稳性与生物量变化模式. 草业科学, 32, 1539-1547.] |
[45] | Zheng CH, Zeng CS, Chen ZQ, Lin MC (2006). A study on the changes of landscape pattern of estuary wetlands of the Minjiang River.Wetland Science, 4, 29-35. (in Chinese with English abstract)[郑彩红, 曾从盛, 陈志强, 林茂昌 (2006). 闽江河口区湿地景观格局演变研究. 湿地科学, 4, 29-35.] |
[1] | 席念勋 张原野 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 王文伟 韩伟鹏 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位梯度的短期响应[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[3] | 王晓悦 许艺馨 李春环 余海龙 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性及其影响因素研究[J]. 植物生态学报, 2023, 47(1): 0-0. |
[4] | 秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望[J]. 植物生态学报, 2021, 45(6): 573-582. |
[5] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[6] | 李海东, 吴新卫, 肖治术. 种间互作网络的结构、生态系统功能及稳定性机制研究[J]. 植物生态学报, 2021, 45(10): 1049-1063. |
[7] | 井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 1094-1111. |
[8] | 潘权, 郑华, 王志恒, 文志, 杨延征. 植物功能性状对生态系统服务影响研究进展[J]. 植物生态学报, 2021, 45(10): 1140-1153. |
[9] | 王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展[J]. 植物生态学报, 2021, 45(10): 1064-1074. |
[10] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[11] | 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响[J]. 植物生态学报, 2020, 44(1): 33-43. |
[12] | 许光耀, 李洪远, 莫训强, 孟伟庆. 中国归化植物组成特征及其时空分布格局分析[J]. 植物生态学报, 2019, 43(7): 601-610. |
[13] | 汤永康, 武艳涛, 武魁, 郭之伟, 梁存柱, 王敏杰, 常佩静. 放牧对草地生态系统服务和功能权衡关系的影响[J]. 植物生态学报, 2019, 43(5): 408-417. |
[14] | 陈宝明, 韦慧杰, 陈伟彬, 朱政财, 原亚茹, 张永隆, 蓝志刚. 外来入侵植物对土壤氮转化主要过程及相关微生物的影响[J]. 植物生态学报, 2018, 42(11): 1071-1081. |
[15] | 张俪文, 韩广轩. 植物遗传多样性与生态系统功能关系的研究进展[J]. 植物生态学报, 2018, 42(10): 977-989. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19