植物生态学报 ›› 2021, Vol. 45 ›› Issue (10): 1049-1063.DOI: 10.17521/cjpe.2019.0159
所属专题: 生态系统结构与功能
收稿日期:
2019-06-25
接受日期:
2019-10-04
出版日期:
2021-10-20
发布日期:
2020-11-30
通讯作者:
肖治术
作者简介:
(xiaozs@ioz.ac.cn)基金资助:
LI Hai-Dong1,2, WU Xin-Wei3, XIAO Zhi-Shu1,2,*()
Received:
2019-06-25
Accepted:
2019-10-04
Online:
2021-10-20
Published:
2020-11-30
Contact:
XIAO Zhi-Shu
Supported by:
摘要:
生态群落中不同物种间发生多样化的相互作用, 形成了复杂的种间互作网络。复杂生态网络的结构如何影响群落的生态系统功能及稳定性是群落生态学的核心问题之一。种间互作直接影响到物质和能量在生态系统不同组分之间的流动和循环以及群落构建过程, 使得网络结构与生态系统功能和群落稳定性密切相关。在群落及生态系统水平上开展种间互作网络研究将为群落的构建机制、生物多样性维持、生态系统稳定性、物种协同进化和性状分化等领域提供新的视野。当前生物多样性及生态系统功能受到全球变化的极大影响, 研究种间互作网络的拓扑结构、构建机制、稳定性和生态功能也可为生物多样性的保护和管理提供依据。该文从网络结构、构建机制、网络结构和稳定性关系、种间互作对生态系统功能的影响等4个方面综述当前种间网络研究进展, 并提出在今后的研究中利用机器学习和多层网络等来探究环境变化对种间互作网络结构和功能的影响, 并实现理论和实证研究的有效整合。
李海东, 吴新卫, 肖治术. 种间互作网络的结构、生态系统功能及稳定性机制研究. 植物生态学报, 2021, 45(10): 1049-1063. DOI: 10.17521/cjpe.2019.0159
LI Hai-Dong, WU Xin-Wei, XIAO Zhi-Shu. Assembly, ecosystem functions, and stability in species interaction networks. Chinese Journal of Plant Ecology, 2021, 45(10): 1049-1063. DOI: 10.17521/cjpe.2019.0159
水平 Level | 结构指数和解释 Structure indices and explanation | |
---|---|---|
物种水平 Species level | 物种连接数 Species degree | 网络中某物种与其他营养级物种发生联系的数量 The number of interacting partners |
物种强度 Species strength | 指某一个动物或植物物种对植物或动物物种的依赖度或所受作用强度的总和。 The sum of dependences or interaction strengths of the animals on a specific plant species, or the sum of dependences of the plants on a specific animal species. | |
嵌套等级 Nested rank | 指在一个网络嵌套矩阵中所处的等级; 数值越低, 表示该物种更为泛化, 反之亦然。 Which is measured as the position in the nestedness matrix. A generalist will interact with more species and thus have a rank closer to 1, while specialists will have ranks with higher values. | |
特化指数 Specialization index | 用来衡量物种的特化程度的指数(0-1) Assesses the specialization of a species (ranging from 0 to 1) | |
连接多样性 Partner diversity | 某一物种的连接伙伴的Shannon多样性, 用于衡量物种的泛化程度。 Shannon diversity of the interacting partners of each species, which indicating generalization of a species. | |
网络水平 Network level | 连接度 Connectance | 网络中实际连接数与潜在连接数的比值 The proportion of potential links that are actually realized |
物种平均连接数 Links per species | 网络中连接数与物种丰富度的比值 The average links per species | |
嵌套性 Nestedness | 在嵌套的互作网络中, 与特化物种相互作用的物种是与泛化物种相互作用的物种的子集。 A pattern of interaction in which specialists interact with species that form perfect subsets of the species with which generalists interact. | |
模块性 Modularity | 互作网络中一些物种通过连接会构成模块, 模块内部的物种间连接相对紧密, 而与模块外的物种连接较为松散。 A pattern which occurs when the species form cohesive subgroups (modules), such that species within a module interact more among themselves than with those of other modules. | |
互作强度的非对称性 Interaction strength asymmetry | 网络中发生互作关系的物种之间受影响程度的差异性 式中, Explaining dependence asymmetry across both trophic levels. |
表1 二分网络结构指数
Table 1 Explanation of the bipartite network structure indices
水平 Level | 结构指数和解释 Structure indices and explanation | |
---|---|---|
物种水平 Species level | 物种连接数 Species degree | 网络中某物种与其他营养级物种发生联系的数量 The number of interacting partners |
物种强度 Species strength | 指某一个动物或植物物种对植物或动物物种的依赖度或所受作用强度的总和。 The sum of dependences or interaction strengths of the animals on a specific plant species, or the sum of dependences of the plants on a specific animal species. | |
嵌套等级 Nested rank | 指在一个网络嵌套矩阵中所处的等级; 数值越低, 表示该物种更为泛化, 反之亦然。 Which is measured as the position in the nestedness matrix. A generalist will interact with more species and thus have a rank closer to 1, while specialists will have ranks with higher values. | |
特化指数 Specialization index | 用来衡量物种的特化程度的指数(0-1) Assesses the specialization of a species (ranging from 0 to 1) | |
连接多样性 Partner diversity | 某一物种的连接伙伴的Shannon多样性, 用于衡量物种的泛化程度。 Shannon diversity of the interacting partners of each species, which indicating generalization of a species. | |
网络水平 Network level | 连接度 Connectance | 网络中实际连接数与潜在连接数的比值 The proportion of potential links that are actually realized |
物种平均连接数 Links per species | 网络中连接数与物种丰富度的比值 The average links per species | |
嵌套性 Nestedness | 在嵌套的互作网络中, 与特化物种相互作用的物种是与泛化物种相互作用的物种的子集。 A pattern of interaction in which specialists interact with species that form perfect subsets of the species with which generalists interact. | |
模块性 Modularity | 互作网络中一些物种通过连接会构成模块, 模块内部的物种间连接相对紧密, 而与模块外的物种连接较为松散。 A pattern which occurs when the species form cohesive subgroups (modules), such that species within a module interact more among themselves than with those of other modules. | |
互作强度的非对称性 Interaction strength asymmetry | 网络中发生互作关系的物种之间受影响程度的差异性 式中, Explaining dependence asymmetry across both trophic levels. |
假说 Hypothesis | 解释 Explanation |
---|---|
中性假说 Neutral hypothesis | 群落中个体之间的互作是随机的, 因此多度越高的物种与其他物种发生互作的概率越高 Which assumes that individuals interact randomly, thus network interaction patterns are mainly dependent on species abundances; that is, abundant species interact more frequently and with more species than rare species |
限制性连接假说 Forbidden links hypothesis | 物种间互作的发生受限于物种间的时空分布, 以及物种特征的耦合度 Pairwise interactions that are impossible to occur owing to temporal-spatial or species traits mismatch |
亲缘关系假说 Phylogenetic-related hypothesis | 亲缘关系近的物种在互作网络中扮演相似的角色 Tendency of phylogenetically similar species to have similar roles in interaction network |
表2 种间互作网络构建的主要假说
Table 2 Main hypotheses for the assembly of species interaction networks
假说 Hypothesis | 解释 Explanation |
---|---|
中性假说 Neutral hypothesis | 群落中个体之间的互作是随机的, 因此多度越高的物种与其他物种发生互作的概率越高 Which assumes that individuals interact randomly, thus network interaction patterns are mainly dependent on species abundances; that is, abundant species interact more frequently and with more species than rare species |
限制性连接假说 Forbidden links hypothesis | 物种间互作的发生受限于物种间的时空分布, 以及物种特征的耦合度 Pairwise interactions that are impossible to occur owing to temporal-spatial or species traits mismatch |
亲缘关系假说 Phylogenetic-related hypothesis | 亲缘关系近的物种在互作网络中扮演相似的角色 Tendency of phylogenetically similar species to have similar roles in interaction network |
概念 Concept | 解释 Explanation |
---|---|
复杂性 Complexity | 用于描述群落和网络的复杂程度, 通常用网络的连接度来表征 Describing the extent of complex a community (network), which measured as connectance |
抵抗力 Residence | 群落和互作网络免受外界干扰而保持原状的能力 The system return to its ecological regime after a perturbation in the state of the system |
恢复力 Resilience | 群落受到外界干扰后回到原来状态的能力 Return time to ecological regime after a perturbation |
持久性 Persistence | 物种在动态网络中持续存在的能力 Proportion of coexisting species at dynamic ecological network |
次生灭绝 Second extinction | 群落中某些物种的灭绝导致其他物种随之灭绝的情形 Loss of additional species after the extinction of one target species |
稳健性 Robustness | 生态群落或种间互作网络对物种的丧失导致次生灭绝的容忍度, 用灭绝曲线下的面积表示 Resistance of a community (network) against additional extinction after species elimination, measured as the area below the extinction curve |
表3 关于群落(生态系统)稳定性的相关概念
Table 3 Main concepts of community (ecosystem) stability
概念 Concept | 解释 Explanation |
---|---|
复杂性 Complexity | 用于描述群落和网络的复杂程度, 通常用网络的连接度来表征 Describing the extent of complex a community (network), which measured as connectance |
抵抗力 Residence | 群落和互作网络免受外界干扰而保持原状的能力 The system return to its ecological regime after a perturbation in the state of the system |
恢复力 Resilience | 群落受到外界干扰后回到原来状态的能力 Return time to ecological regime after a perturbation |
持久性 Persistence | 物种在动态网络中持续存在的能力 Proportion of coexisting species at dynamic ecological network |
次生灭绝 Second extinction | 群落中某些物种的灭绝导致其他物种随之灭绝的情形 Loss of additional species after the extinction of one target species |
稳健性 Robustness | 生态群落或种间互作网络对物种的丧失导致次生灭绝的容忍度, 用灭绝曲线下的面积表示 Resistance of a community (network) against additional extinction after species elimination, measured as the area below the extinction curve |
[1] |
Abrams PA (1992). Predators that benefit prey and prey that harm predators: unusual effects of interacting foraging adaptation. The American Naturalist, 140, 573-600.
DOI URL |
[2] |
Aizen MA, Sabatino M, Tylianakis JM (2012). Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science, 335, 1486-1489.
DOI URL |
[3] |
Albrecht J, Classen A, Vollstädt MGR, Mayr A, Mollel NP, Schellenberger Costa D, Dulle HI, Fischer M, Hemp A, Howell KM, Kleyer M, Nauss T, Peters MK, Tschapka M, Steffan-Dewenter I, Böhning-Gaese K, Schleuning M (2018). Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nature Communications, 9, 3177. DOI: 10.1038/s41467-018-05610-w.
DOI PMID |
[4] |
Allesina S, Tang S (2012). Stability criteria for complex ecosystems. Nature, 483, 205-208.
DOI URL |
[5] |
Arditi R, Michalski J, Hirzel AH (2005). Rheagogies: modelling non-trophic effects in food webs. Ecological Complexity, 2, 249-258.
DOI URL |
[6] |
Bascompte J, Jordano P (2007). Plant-animal mutualistic networks: the architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 38, 567-593.
DOI URL |
[7] | Bascompte J, Jordano P (2013). Mutualistic Networks. Princeton University Press, Princeton, USA. |
[8] |
Bascompte J, Jordano P, Melián CJ, Olesen JM (2003). The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100, 9383-9387.
PMID |
[9] |
Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458, 1018-1020.
DOI URL |
[10] |
Bergamini LL, Lewinsohn TM, Jorge LR, Almeida-Neto M (2017). Manifold influences of phylogenetic structure on a plant-herbivore network. Oikos, 126, 703-712.
DOI URL |
[11] |
Blüthgen N, Fründ J, Vázquez DP, Menzel F (2008). What do interaction network metrics tell us about specialization and biological traits. Ecology, 89, 3387-3399.
PMID |
[12] |
Boccaletti S, Bianconi G, Criado R del Genio CI, Gómez- Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z, Zanin M (2014). The structure and dynamics of multilayer networks. Physics Reports, 544, 1-122.
DOI URL |
[13] |
Burkle LA, Marlin JC, Knight TM (2013). Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science, 339, 1611-1615.
DOI PMID |
[14] |
Chase JM (2000). Are there real differences among aquatic and terrestrial food webs? Trends in Ecology & Evolution, 15, 408-412.
DOI URL |
[15] |
Coverdale TC, Kartzinel TR, Grabowski KL, Shriver RK, Hassan AA, Goheen JR, Palmer TM, Pringle RM (2016). Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores. Ecology, 97, 3219-3230.
DOI PMID |
[16] |
Cutler DR, Edwards Jr TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007). Random Forests for classification in ecology. Ecology, 88, 2783-2792.
DOI URL |
[17] |
Dalsgaard B, Trøjelsgaard K, Martín González AM, Nogués- Bravo D, Ollerton J, Petanidou T, Sandel B, Schleuning M, Wang Z, Rahbek C, Sutherland WJ, Svenning JC, Olesen JM (2013). Historical climate-change influences modularity and nestedness of pollination networks. Ecography, 36, 1331-1340.
DOI URL |
[18] | Dehling DM (2018). The structure of ecological networks// Dáttilo W, Rico-Gray V. Ecological Networks in the Tropics. Springer, Cham, Switzerland. 29-42. |
[19] | Derocles SAP, Bohan DA, Dumbrell AJ, Kitson JJN, Massol F, Pauvert C, Plantegenest M, Vacher C, Evans DM (2018). Biomonitoring for the 21st Century: integrating next- generation sequencing into ecological network analysis. Advances in Ecological Research, 58, 1-62. |
[20] |
Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014). Defaunation in the Anthropocene. Science, 345, 401-406.
DOI URL |
[21] |
Donatti CI, Guimarães PR, Galetti M, Pizo MA, Marquitti FMD, Dirzo R (2011). Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecology Letters, 14, 773-781.
DOI PMID |
[22] |
Dormann CF, Fründ J, Schaefer HM (2017). Identifying causes of patterns in ecological networks: opportunities and limitations. Annual Review of Ecology, Evolution, and Systematics, 48, 559-584.
DOI URL |
[23] | Dormann CF, Gruber B, Fründ J (2008). Introducing the bipartite package: analysing ecological networks. R News, 8, 8-11. |
[24] |
Dupont YL, Olesen JM (2009). Ecological modules and roles of species in heathland plant-insect flower visitor networks. Journal of Animal Ecology, 78, 346-353.
DOI PMID |
[25] |
Dyer LA, Walla TR, Greeney HF, Stireman III JO, Hazen RF (2010). Diversity of interactions: a metric for studies of biodiversity. Biotropica, 42, 281-289.
DOI URL |
[26] |
Eisenhauer N (2010). The action of an animal ecosystem engineer: identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia, 53, 343-352.
DOI URL |
[27] |
Eklöf A, Jacob U, Kopp J, Bosch J, Castro-Urgal R, Chacoff NP, Dalsgaard B de Sassi C, Galetti M, Guimarães PR, Lomáscolo SB, Martín González AM, Pizo MA, Rader R, Rodrigo A, et al. (2013). The dimensionality of ecological networks. Ecology Letters, 16, 577-583.
DOI PMID |
[28] | Elton CS (1958). The Ecology of Invasions by Animals and Plants. Springer, Boston, USA. |
[29] |
Fang Q, Huang SQ (2012). Relative stability of core groups in pollination networks in a biodiversity hotspot over four years. PLOS ONE, 7, e32663. DOI: 10.1371/journal.pone.0032663.
DOI URL |
[30] |
Farwig N, Berens DG (2012). Imagine a world without seed dispersers: a review of threats, consequences and future directions. Basic and Applied Ecology, 13, 109-115.
DOI URL |
[31] |
Fontaine C (2013). Abundant equals nested. Nature, 500, 411-412.
DOI URL |
[32] |
Fornoff F, Klein AM, Blüthgen N, Staab M (2019). Tree diversity increases robustness of multi-trophic interactions. Proceedings of the Royal Society of London B: Biological Sciences, 286, 20182399. DOI: 10.1098/rspb.2018.2399.
DOI |
[33] |
Fort H, Vázquez DP, Lan BL (2016). Abundance and generalisation in mutualistic networks: solving the chicken-and- egg dilemma. Ecology Letters, 19, 4-11.
DOI URL |
[34] |
Fründ J, Dormann CF, Holzschuh A, Tscharntke T (2013). Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology, 94, 2042-2054.
DOI URL |
[35] |
Fründ J, McCann KS, Williams NM (2016). Sampling bias is a challenge for quantifying specialization and network structure: lessons from a quantitative niche model. Oikos, 125, 502-513.
DOI URL |
[36] |
García D, Donoso I, Rodríguez-Pérez J (2018). Frugivore biodiversity and complementarity in interaction networks enhance landscape-scale seed dispersal function. Functional Ecology, 32, 2742-2752.
DOI URL |
[37] |
Goudard A, Loreau M (2008). Nontrophic interactions, biodiversity, and ecosystem functioning: an interaction web model. The American Naturalist, 171, 91-106.
DOI URL |
[38] |
Gracia-Lázaro C, Hernández L, Borge-Holthoefer J, Moreno Y (2018). The joint influence of competition and mutualism on the biodiversity of mutualistic ecosystems. Scientific Reports, 8, 9253. DOI: 10.1038/s41598-018-27498-8.
DOI PMID |
[39] |
Grass I, Jauker B, Steffan-Dewenter I, Tscharntke T, Jauker F (2018). Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nature Ecology & Evolution, 2, 1408. DOI: 10.1038/s41559-018-0631-2.
DOI |
[40] |
Gravel D, Poisot T, Albouy C, Velez L, Mouillot D (2013). Inferring food web structure from predator-prey body size relationships. Methods in Ecology and Evolution, 4, 1083-1090.
DOI URL |
[41] |
Gray C, Figueroa DH, Hudson LN, Ma A, Perkins D, Woodward G (2015). Joining the dots: an automated method for constructing food webs from compendia of published interactions. Food Webs, 5, 11-20.
DOI URL |
[42] |
Guimarães Jr PR, Pires MM, Jordano P, Bascompte J, Thompson JN (2017). Indirect effects drive coevolution in mutualistic networks. Nature, 550, 511-514.
DOI URL |
[43] | Guo YL, Meng QF, Gao WT (2012). Visulization and pattern analysis of plant-insect pollinator interaction networks in subalpine meadow in Changbai Mountain. Scientia Silvae Sinicae, 48(12), 141-147. |
[ 郭彦林, 孟庆繁, 高文韬 (2012). 长白山高山草甸植物-传粉昆虫相互作用网络可视化及格局分析. 林业科学, 48(12), 141-147.] | |
[44] |
Hackett TD, Sauve AMC, Davies N, Montoya D, Tylianakis JM, Memmott J (2019). Reshaping our understanding of species’ roles in landscape-scale networks. Ecology Letters, 22, 1367-1377.
DOI PMID |
[45] |
Hairston NG, Smith FE, Slobodkin LB (1960). Community structure, population control, and competition. The American Naturalist, 94, 421-425.
DOI URL |
[46] |
Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3-35.
DOI URL |
[47] | Hutchinson MC, Bramon Mora B, Pilosof S, Barner AK, Kéfi S, Thébault E, Jordano P, Stouffer DB (2018). Seeing the forest for the trees: putting multilayer networks to work for community ecology. Functional Ecology, 33, 206-217. |
[48] |
Ives AR, Carpenter SR (2007). Stability and diversity of ecosystems. Science, 317, 58-62.
DOI URL |
[49] |
Jordano P (2016). Sampling networks of ecological interactions. Functional Ecology, 30, 1883-1893.
DOI URL |
[50] |
Jordano P, Bascompte J, Olesen JM (2003). Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters, 6, 69-81.
DOI URL |
[51] | Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB, Caflisch A (2010). The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecology Letters, 13, 442-452. |
[52] |
Kéfi S, Berlow EL, Wieters EA, Navarrete SA, Petchey OL, Wood SA, Boit A, Joppa LN, Lafferty KD, Williams RJ, Martinez ND, Menge BA, Blanchette CA, Iles AC, Brose U (2012). More than a meal… integrating non-feeding interactions into food webs. Ecology Letters, 15, 291-300.
DOI URL |
[53] |
Kondoh M (2003). Foraging adaptation and the relationship between food-web complexity and stability. Science, 299, 1388-1391.
DOI URL |
[54] |
Kondoh M, Kato S, Sakato Y (2010). Food webs are built up with nested subwebs. Ecology, 91, 3123-3130.
DOI URL |
[55] |
Liao JB, Bearup D, Blasius B (2017). Diverse responses of species to landscape fragmentation in a simple food chain. Journal of Animal Ecology, 86, 1169-1178.
DOI URL |
[56] |
Liao JB, Chen JH, Ying ZX, Hiebeler DE, Nijs I (2016). An extended patch-dynamic framework for food chains in fragmented landscapes. Scientific Reports, 6, 33100. DOI: 10.1038/srep33100.
DOI URL |
[57] |
MacArthur R (1955). Fluctuations of animal populations and a measure of community stability. Ecology, 36, 533-536.
DOI URL |
[58] |
Maglianesi MA, Blüthgen N, Böhning-Gaese K, Schleuning M (2014). Morphological traits determine specialization and resource use in plant-hummingbird networks in the neotropics. Ecology, 95, 3325-3334.
DOI URL |
[59] |
Majdi N, Boiché A, Traunspurger W, Lecerf A (2014). Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions. Journal of Animal Ecology, 83, 953-962.
DOI URL |
[60] |
Maunsell SC, Kitching RL, Burwell CJ, Morris RJ (2015). Changes in host-parasitoid food web structure with elevation. Journal of Animal Ecology, 84, 353-363.
DOI PMID |
[61] |
May RM (1972). Will a large complex system be stable? Nature, 238, 413-414.
DOI URL |
[62] | May RM (1973). Stability and Complexity in Model Ecosystems. Monographs in Population Biology, No. 6. Princeton University Press, Princeton, USA. |
[63] |
McCann KS (2000). The diversity-stability debate. Nature, 405, 228-233.
DOI URL |
[64] |
McCann KS, Hastings A, Huxel GR (1998). Weak trophic interactions and the balance of nature. Nature, 395, 794-798.
DOI URL |
[65] |
Mello MAR, Marquitti FMD, Guimarães PR, Kalko EKV, Jordano P, de Aguiar MAM (2011). The missing part of seed dispersal networks: Structure and robustness of bat-fruit interactions. PLOS ONE, 6, e17395. DOI: 10.1371/journal. pone.0017395.
DOI URL |
[66] | Memmott J, Waser NM, Price MV (2004). Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society of London Series B: Biological Sciences, 271, 2605-2611. |
[67] |
Morante-Filho JC, Arroyo-Rodríguez V, Lohbeck M, Tscharntke T, Faria D (2016). Tropical forest loss and its multitrophic effects on insect herbivory. Ecology, 97, 3315-3325.
DOI PMID |
[68] |
Morris RJ (2010). Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3709-3718.
DOI URL |
[69] |
Neutel AM, Heesterbeek JAP, de Ruiter PC (2002). Stability in real food webs: weak links in long loops. Science, 296, 1120-1123.
DOI URL |
[70] | Odum EP (1953). Fundamental of Ecology. Saunders College Publishing, Philadelphia. |
[71] |
Oksanen L, Fretwell SD, Arruda J, Niemela P (1981). Exploitation ecosystems in gradients of primary productivity. The American Naturalist, 118, 240-261.
DOI URL |
[72] |
Okuyama T, Holland JN (2008). Network structural properties mediate the stability of mutualistic communities. Ecology Letters, 11, 208-216.
DOI URL |
[73] |
Olesen JM, Bascompte J, Dupont YL, Elberling H, Rasmussen C, Jordano P (2011). Missing and forbidden links in mutualistic networks. Proceedings of the Royal Society B: Biological Sciences, 278, 725-732.
DOI URL |
[74] |
Olesen JM, Bascompte J, Dupont YL, Jordano P (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America, 104, 19891-19896.
PMID |
[75] |
Paine RT (1966). Food web complexity and species diversity. The American Naturalist, 100, 65-75.
DOI URL |
[76] |
Pearse IS, Altermatt F (2013). Predicting novel trophic interactions in a non-native world. Ecology Letters, 16, 1088-1094.
DOI PMID |
[77] |
Peralta G (2016). Merging evolutionary history into species interaction networks. Functional Ecology, 30, 1917-1925.
DOI URL |
[78] |
Peters MK, Hemp A, Appelhans T, Becker JN, Behler C, Classen A, Detsch F, Ensslin A, Ferger SW, Frederiksen SB, Gebert F, Gerschlauer F, Gütlein A, Helbig-Bonitz M, Hemp C, et al. (2019). Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568, 88-92.
DOI URL |
[79] |
Pilosof S, Morand S, Krasnov BR, Nunn CL (2015). Potential parasite transmission in multi-host networks based on parasite sharing. PLOS ONE, 10, e0117909. DOI: 10.1371/journal.pone.0117909.
DOI URL |
[80] |
Pilosof S, Porter MA, Pascual M, Kéfi S (2017). The multilayer nature of ecological networks. Nature Ecology & Evolution, 1, 101. DOI: 10.1038/s41559-017-0101.
DOI |
[81] |
Pimm SL, Pimm JW (1982). Resource use, competition, and resource availability in Hawaiian honeycreepers. Ecology, 63, 1468-1480.
DOI URL |
[82] |
Pocock MJO, Evans DM, Memmott J (2012). The robustness and restoration of a network of ecological networks. Science, 335, 973-977.
DOI URL |
[83] |
Pomeranz JPF, Thompson RM, Poisot T, Harding JS (2019). Inferring predator-prey interactions in food webs. Methods in Ecology and Evolution, 10, 356-367.
DOI |
[84] |
Poulin R, Krasnov BR, Pilosof S, Thieltges DW (2013). Phylogeny determines the role of helminth parasites in intertidal food webs. Journal of Animal Ecology, 82, 1265-1275.
DOI URL |
[85] |
Rezende EL, Albert EM, Fortuna MA, Bascompte J (2009). Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecology Letters, 12, 779-788.
DOI PMID |
[86] |
Rezende EL, Jordano P, Bascompte J (2007). Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos, 116, 1919-1929.
DOI URL |
[87] |
Saavedra S, Reed-Tsochas F, Uzzi B (2008). Asymmetric disassembly and robustness in declining networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 16466-16471.
DOI PMID |
[88] |
Sanders D, Jones CG, Thébault E, Bouma TJ, van der Heide T, van Belzen J, Barot S (2014). Integrating ecosystem engineering and food webs. Oikos, 123, 513-524.
DOI URL |
[89] |
Sanitjan S, Chen J (2009). Habitat and fig characteristics influence the bird assemblage and network properties of fig trees from Xishuangbanna, South-West China. Journal of Tropical Ecology, 25, 161-170.
DOI URL |
[90] |
Sazatornil FD, Moré M, Benitez-Vieyra S, Cocucci AA, Kitching IJ, Schlumpberger BO, Oliveira PE, Sazima M, Amorim FW (2016). Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth-plant networks. Journal of Animal Ecology, 85, 1586-1594.
DOI PMID |
[91] |
Schleuning M, Blüthgen N, Flörchinger M, Braun J, Schaefer HM, Böhning-Gaese K (2011). Specialization and interaction strength in a tropical plant-frugivore network differ among forest strata. Ecology, 92, 26-36.
PMID |
[92] |
Schleuning M, Fründ J, García D (2015). Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant-animal interactions. Ecography, 38, 380-392.
DOI URL |
[93] |
Schleuning M, Ingmann L, Strauß R, Fritz SA, Dalsgaard B, Matthias Dehling D, Plein M, Saavedra F, Sandel B, Svenning JC, Böhning-Gaese K, Dormann CF (2014). Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecology Letters, 17, 454-463.
DOI PMID |
[94] |
Schuldt A, Fornoff F, Bruelheide H, Klein AM, Staab M (2017). Tree species richness attenuates the positive relationship between mutualistic ant-hemipteran interactions and leaf chewer herbivory. Proceedings of the Royal Society of London B: Biological Sciences, 284, 20171489. DOI: 10.1098/rspb.2017.1489.
DOI |
[95] |
Staab M, Blüthgen N, Klein AM (2015). Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. Oikos, 124, 827-834.
DOI URL |
[96] |
Staab M, Bruelheide H, Durka W, Michalski S, Purschke O, Zhu CD, Klein AM (2016). Tree phylogenetic diversity promotes host-parasitoid interactions. Proceedings of the Royal Society of London B: Biological Sciences, 283, 20160275. DOI: 10.1098/rspb.2016.0275.
DOI |
[97] |
Stang M, Klinkhamer PGL, Waser NM, Stang I, van der Meijden E (2009). Size-specific interaction patterns and size matching in a plant-pollinator interaction web. Annuals of Botany, 103, 1459-1469.
DOI URL |
[98] |
Staniczenko PPA, Lewis OT, Jones NS, Reed-Tsochas F (2010). Structural dynamics and robustness of food webs. Ecology Letters, 13, 891-899.
DOI PMID |
[99] | Stouffer DB, Bascompte J (2011). Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences of the United States of America, 108, 3648-3652. |
[100] |
Thébault E, Fontaine C (2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329, 853-856.
DOI PMID |
[101] | Thompson JN (2005). The Geographic Mosaic of Coevolution. University of Chicago Press, Chicago, USA. |
[102] | Thompson RM, Brose U, Dunne JA, Hall Jr RO, Hladyz S, Kitching RL, Martinez ND, Rantala H, Romanuk TN, Stouffer DB, Tylianakis JM (2012). Food webs: reconciling the structure and function of biodiversity. Trends in Ecology & Evolution, 27, 689-697. |
[103] |
Tilman D, Isbell F, Cowles JM (2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493.
DOI URL |
[104] |
Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C.(2001). Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845.
PMID |
[105] |
Timóteo S, Correia M, Rodríguez-Echeverría S, Freitas H, Heleno R (2018). Multilayer networks reveal the spatial structure of seed-dispersal interactions across the Great Rift landscapes. Nature Communications, 9, 140. DOI: 10.1038/s41467-017-02658-y.
DOI PMID |
[106] |
Tylianakis JM, Laliberté E, Nielsen A, Bascompte J (2010). Conservation of species interaction networks. Biological Conservation, 143, 2270-2279.
DOI URL |
[107] |
Tylianakis JM, Morris RJ (2017). Ecological networks across environmental gradients. Annual Review of Ecology, Evolution, and Systematics, 48, 25-48.
DOI URL |
[108] |
Valdovinos FS, Brosi BJ, Briggs HM, Moisset de Espanés P, Ramos-Jiliberto R, Martinez ND (2016). Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecology Letters, 19, 1277-1286.
DOI PMID |
[109] |
Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009a). Uniting pattern and process in plant-animal mutualistic networks: a review. Annals of Botany, 103, 1445-1457.
DOI URL |
[110] |
Vázquez DP, Chacoff NP, Cagnolo L (2009b). Evaluating multiple determinants of the structure of plant-animal mutualistic networks. Ecology, 90, 2039-2046.
DOI URL |
[111] |
Vizentin-Bugoni J, Maruyama PK, Sazima M (2014). Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird-plant network. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20132397. DOI: 10.1098/rspb. 2013.2397.
DOI |
[112] |
Volf M, Pyszko P, Abe T, Libra M, Kotásková N, Šigut M, Kumar R, Kaman O, Butterill PT, Šipoš J, Abe H, Fukushima H, Drozd P, Kamata N, Murakami M, Novotny V (2017). Phylogenetic composition of host plant communities drives plant-herbivore food web structure. Journal of Animal Ecology, 86, 556-565.
DOI URL |
[113] |
Wang SP, Brose U (2018). Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecology Letters, 21, 9-20.
DOI URL |
[114] |
Wang X, Zhang FL, Zhang J (2017). Biodiversity information resources. I. Species distribution, catalogue, phylogeny, and life history traits. Biodiversity Science, 25, 1223-1238.
DOI |
[ 王昕, 张凤麟, 张健 (2017). 生物多样性信息资源. I. 物种分布、编目、系统发育与生活史性状. 生物多样性, 25, 1223-1238.] | |
[115] |
Werner EE, Peacor SD (2003). A review of trait-mediated indirect interactions in ecological communities. Ecology, 84, 1083-1100.
DOI URL |
[116] |
Wu XW, Duffy JE, Reich PB, Sun SC (2011). A brown-world cascade in the dung decomposer food web of an alpine meadow: effects of predator interactions and warming. Ecological Monographs, 81, 313-328.
DOI URL |
[117] | Yang XF, Yan C, Zhao QJ, Holyoak M, Fortuna MA, Bascompte J, Jansen PA, Zhang ZB (2018). Ecological succession drives the structural change of seed-rodent interaction networks in fragmented forests. Forest Ecology and Management, 419- 420, 42-50. |
[118] |
Zhang J (2017). Biodiversity science and macroecology in the era of big data. Biodiversity Science, 25, 355-363.
DOI |
[ 张健 (2017). 大数据时代的生物多样性科学与宏生态学. 生物多样性, 25, 355-363.]
DOI |
|
[119] |
Zhang MH, He FL (2017). Plant sex affects the structure of plant-pollinator networks in a subtropical forest. Oecologia, 185, 269-279.
DOI URL |
[120] |
Zhao C, Griffin JN, Wu XW, Sun SC (2013). Predatory beetles facilitate plant growth by driving earthworms to lower-soil layers. Journal of Animal Ecology, 82, 749-758.
DOI URL |
[121] |
Zhao YH, Lázaro A, Ren ZX, Zhou W, Li HD, Tao ZB, Xu K, Wu ZK, Wolfe LM, Li DZ, Wang H (2019). The topological differences between visitation and pollen transport networks: a comparison in species rich communities of the Himalaya-Hengduan Mountains. Oikos, 128, 551-562.
DOI URL |
[122] |
Zhao YH, Ren ZX, Lázaro A, Wang H, Bernhardt P, Li HD, Li DZ (2016). Floral traits influence pollen vectors’ choices in higher elevation communities in the Himalaya-Hengduan Mountains. BMC Ecology, 16, 26. DOI: 10.1186/s12898-016-0080-1.
DOI URL |
[1] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[2] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[3] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[4] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[5] | 于水今, 王娟, 张春雨, 赵秀海. 温带针阔混交林生物量稳定性影响机制[J]. 植物生态学报, 2022, 46(6): 632-641. |
[6] | 韩广轩, 王法明, 马俊, 肖雷雷, 初小静, 赵明亮. 滨海盐沼湿地蓝色碳汇功能、形成机制及其增汇潜力[J]. 植物生态学报, 2022, 46(4): 373-382. |
[7] | 孙文泰, 马明. 黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J]. 植物生态学报, 2021, 45(9): 972-986. |
[8] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[9] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[10] | 李周园, 叶小洲, 王少鹏. 生态系统稳定性及其与生物多样性的关系[J]. 植物生态学报, 2021, 45(10): 1127-1139. |
[11] | 潘权, 郑华, 王志恒, 文志, 杨延征. 植物功能性状对生态系统服务影响研究进展[J]. 植物生态学报, 2021, 45(10): 1140-1153. |
[12] | 井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 1094-1111. |
[13] | 王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展[J]. 植物生态学报, 2021, 45(10): 1064-1074. |
[14] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[15] | 冯晓娟, 王依云, 刘婷, 贾娟, 戴国华, 马田, 刘宗广. 生物标志物及其在生态系统研究中的应用[J]. 植物生态学报, 2020, 44(4): 384-394. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19