植物生态学报 ›› 2021, Vol. 45 ›› Issue (9): 972-986.DOI: 10.17521/cjpe.2021.0248
所属专题: 根系生态学
收稿日期:
2021-07-02
接受日期:
2021-07-22
出版日期:
2021-09-20
发布日期:
2021-11-18
通讯作者:
孙文泰
作者简介:
* E-mail: swt830312@126.com基金资助:
Received:
2021-07-02
Accepted:
2021-07-22
Online:
2021-09-20
Published:
2021-11-18
Contact:
SUN Wen-Tai
Supported by:
摘要:
甘肃陇东黄土高原为中国苹果主产区之一, 生产中多采取覆膜方式节水保墒, 但长期覆膜易导致土壤物理性状退化及苹果根系生长障碍。为探明长期覆膜对苹果园表层土壤(0-20 cm)、亚表层土壤(20-40 cm)物理特性、土壤结构稳定性及苹果细根数量、形态、构型、解剖性状的影响, 以18年生苹果树为试验材料, 于苹果树发根高峰(果实采后至落叶期), 以清耕(CK)为对照, 采用土壤剖面法系统调查覆膜2年(2Y)、覆膜4年(4Y)、覆膜6年(6Y)的表层土壤、亚表层土壤物理性状变化趋势, 苹果根系根长、表面积、比根长、导管直径、导管密度等指标的空间分布特征。并借助主成分分析, 抽取覆膜条件下根系与土壤变化主要因子, 分析应对根际土壤物理退化的苹果树细根生长适应策略调整。结果表明: 短期覆膜(2Y)可有效改善亚表层土壤含水量、总孔隙度, 分别比CK提高了18.04%、4.53%, 土壤密度降低了2.36%, 促进细根在亚表层土壤中的生长, 比表面积为CK的151%; 覆膜促使黏粒向亚表层土壤移动, 产生明显的淀积黏化作用。土壤物理性黏粒在亚表层土壤中高于表层土壤, 2Y、4Y和6Y处理亚表层土壤物理性黏粒为表层土壤的115.64%、115.58%和114.21%, 呈现土壤紧实化。土壤质地、团聚体特征、有机质含量为主导亚表层土壤退化进程的主要载荷因子, 使根系数量、构型特征受到抑制, 导致长期(4Y、6Y)覆膜苹果的细根集中分布于表层土壤中。亚表层土壤中细根变粗、抑制延伸生长、增大导管直径, 以弥补细根数量、形态性状弱化带来的吸收功能减弱, 促使根系采取“密集型”根系构建策略。综上所述, 长期覆膜果园亚表层土壤出现物理“隐形”退化, 影响果树根系健康生长和土壤可持续利用。2年为适宜陇东旱塬的连续覆膜年限, 生产中应适时揭膜, 促进根系生长和土壤结构优化。
孙文泰, 马明. 黄土高原长期覆膜苹果园土壤物理退化与细根生长响应. 植物生态学报, 2021, 45(9): 972-986. DOI: 10.17521/cjpe.2021.0248
SUN Wen-Tai, MA Ming. Response of soil physical degradation and fine root growth on long-term film mulching in apple orchards on Loess Plateau. Chinese Journal of Plant Ecology, 2021, 45(9): 972-986. DOI: 10.17521/cjpe.2021.0248
土层深度 Soil depth (cm) | 全氮含量 Total nitrogen (N) content (g·kg-1) | 全磷含量 Total phosphorus (P) content (g·kg-1) | 全钾含量 Total potassium (K) content (g·kg-1) | 有机质含量 Organic matter content (g·kg-1) | 碱解氮含量 Alkaline hydrolysis N content (mg·kg-1) | 速效磷含量 Available P content (mg·kg-1) | 速效钾含量 Available K content (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|---|
20 | 1.27 | 1.12 | 16.86 | 14.69 | 96.25 | 47.3 | 377.04 | 8.35 |
40 | 0.74 | 0.80 | 16.82 | 9.57 | 47.25 | 14.7 | 182.96 | 8.85 |
表1 甘肃陇东苹果园试验区土壤理化性状
Table 1 Soil physico-chemical properties in apple orchard experimental area of Longdong, Gansu
土层深度 Soil depth (cm) | 全氮含量 Total nitrogen (N) content (g·kg-1) | 全磷含量 Total phosphorus (P) content (g·kg-1) | 全钾含量 Total potassium (K) content (g·kg-1) | 有机质含量 Organic matter content (g·kg-1) | 碱解氮含量 Alkaline hydrolysis N content (mg·kg-1) | 速效磷含量 Available P content (mg·kg-1) | 速效钾含量 Available K content (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|---|
20 | 1.27 | 1.12 | 16.86 | 14.69 | 96.25 | 47.3 | 377.04 | 8.35 |
40 | 0.74 | 0.80 | 16.82 | 9.57 | 47.25 | 14.7 | 182.96 | 8.85 |
指标 Indicator | 土层 Soil layer ( cm) | CK | 2Y | 4Y | 6Y |
---|---|---|---|---|---|
有机质含量 Organic matter content (g∙kg-1) | 0-20 | 12.94 ± 0.17a | 12.48 ± 0.12a | 11.70 ± 0.52a | 12.03 ± 0.31a |
20-40 | 8.41 ± 0.25b | 8.00 ± 0.11b | 6.56 ± 0.20b | 6.38 ± 0.09b | |
土壤含水量 Soil moisture (g∙cm-3) | 0-20 | 21.07 ± 1.30b | 23.68 ± 1.39b | 24.23 ± 1.93a | 19.13 ± 1.30a |
20-40 | 23.89 ± 2.00a | 28.20 ± 1.50a | 25.24 ± 1.46a | 19.88 ± 2.28a | |
土壤孔隙度 Soil porosity (%) | 0-20 | 54.48 ± 1.17a | 57.56 ± 1.36a | 51.01 ± 3.54a | 49.87 ± 0.37a |
20-40 | 47.71 ± 1.33b | 49.87 ± 1.37b | 47.26 ± 3.52ab | 44.80 ± 2.00b | |
土壤密度 Soil density (g∙cm-3) | 0-20 | 1.30 ± 0.07ab | 1.18 ± 0.07ab | 1.18 ± 0.04b | 1.24 ± 0.05a |
20-40 | 1.27 ± 0.06b | 1.24 ± 0.02a | 1.26 ± 0.05a | 1.28 ± 0.01a | |
土壤通气度 Soil aeration (%) | 0-20 | 35.34 ± 1.60a | 34.20 ± 1.45a | 26.78 ± 1.80a | 28.80 ± 1.06a |
20-40 | 27.83 ± 1.07b | 21.67 ± 1.07b | 22.02 ± 0.22b | 19.47 ± 1.07b | |
毛管孔隙度 Capillary porosity (%) | 0-20 | 42.65 ± 0.44a | 44.48 ± 0.74a | 42.14 ± 0.79a | 41.46 ± 0.95a |
20-40 | 36.09 ± 1.45b | 34.24 ± 1.06b | 34.96 ± 1.66b | 32.83 ± 0.37b | |
黏粒含量 Clay content (%) | 0-20 | 9.70 ± 0.03a | 9.61 ± 0.04b | 9.77 ± 0.03b | 9.93 ± 0.03a |
20-40 | 9.59 ± 0.06b | 9.83 ± 0.07ab | 9.93 ± 0.09ab | 10.20 ± 0.35a | |
粉粒含量 Silt content (%) | 0-20 | 79.72 ± 0.53b | 77.16 ± 1.32b | 79.20 ± 1.00a | 79.15 ± 1.19b |
20-40 | 82.27 ± 1.76a | 83.42 ± 0.59a | 81.87 ± 1.28a | 83.95 ± 1.69a | |
砂粒含量 Sand content (%) | 0-20 | 10.58 ± 0.14a | 13.23 ± 0.13a | 11.03 ± 0.08a | 10.92 ± 0.12a |
20-40 | 8.14 ± 0.05b | 6.75 ± 0.02b | 8.20 ± 0.10b | 5.85 ± 0.05b | |
物理性黏粒 Physical clay particles (%) | 0-20 | 56.75 ± 0.12a | 52.25 ± 0.24b | 54.49 ± 0.17b | 57.41 ± 0.15b |
20-40 | 57.89 ± 0.37a | 60.42 ± 0.17a | 62.98 ± 1.10a | 65.57 ± 1.15a | |
PD (g∙cm-3) | 0-20 | 2.18 ± 0.08a | 2.05 ± 0.08b | 2.06 ± 0.04b | 2.13 ± 0.03b |
20-40 | 2.14 ± 0.04ab | 2.12 ± 0.02ab | 2.16 ± 0.03ab | 2.20 ± 0.02a | |
CL | 0-20 | 0.24 ± 0.01a | 0.02 ± 0.00b | 0.09 ± 0.01b | 0.31 ± 0.02b |
20-40 | 0.18 ± 0.01b | 0.05 ± 0.00a | 0.44 ± 0.01a | 0.51 ± 0.02a |
表2 甘肃陇东苹果园覆膜后垂直方向土壤物理性状变化(平均值±标准差)
Table 2 Changes of soil physical properties in vertical direction of film mulching apple orchard in Longdong, Gansu (mean ± SD)
指标 Indicator | 土层 Soil layer ( cm) | CK | 2Y | 4Y | 6Y |
---|---|---|---|---|---|
有机质含量 Organic matter content (g∙kg-1) | 0-20 | 12.94 ± 0.17a | 12.48 ± 0.12a | 11.70 ± 0.52a | 12.03 ± 0.31a |
20-40 | 8.41 ± 0.25b | 8.00 ± 0.11b | 6.56 ± 0.20b | 6.38 ± 0.09b | |
土壤含水量 Soil moisture (g∙cm-3) | 0-20 | 21.07 ± 1.30b | 23.68 ± 1.39b | 24.23 ± 1.93a | 19.13 ± 1.30a |
20-40 | 23.89 ± 2.00a | 28.20 ± 1.50a | 25.24 ± 1.46a | 19.88 ± 2.28a | |
土壤孔隙度 Soil porosity (%) | 0-20 | 54.48 ± 1.17a | 57.56 ± 1.36a | 51.01 ± 3.54a | 49.87 ± 0.37a |
20-40 | 47.71 ± 1.33b | 49.87 ± 1.37b | 47.26 ± 3.52ab | 44.80 ± 2.00b | |
土壤密度 Soil density (g∙cm-3) | 0-20 | 1.30 ± 0.07ab | 1.18 ± 0.07ab | 1.18 ± 0.04b | 1.24 ± 0.05a |
20-40 | 1.27 ± 0.06b | 1.24 ± 0.02a | 1.26 ± 0.05a | 1.28 ± 0.01a | |
土壤通气度 Soil aeration (%) | 0-20 | 35.34 ± 1.60a | 34.20 ± 1.45a | 26.78 ± 1.80a | 28.80 ± 1.06a |
20-40 | 27.83 ± 1.07b | 21.67 ± 1.07b | 22.02 ± 0.22b | 19.47 ± 1.07b | |
毛管孔隙度 Capillary porosity (%) | 0-20 | 42.65 ± 0.44a | 44.48 ± 0.74a | 42.14 ± 0.79a | 41.46 ± 0.95a |
20-40 | 36.09 ± 1.45b | 34.24 ± 1.06b | 34.96 ± 1.66b | 32.83 ± 0.37b | |
黏粒含量 Clay content (%) | 0-20 | 9.70 ± 0.03a | 9.61 ± 0.04b | 9.77 ± 0.03b | 9.93 ± 0.03a |
20-40 | 9.59 ± 0.06b | 9.83 ± 0.07ab | 9.93 ± 0.09ab | 10.20 ± 0.35a | |
粉粒含量 Silt content (%) | 0-20 | 79.72 ± 0.53b | 77.16 ± 1.32b | 79.20 ± 1.00a | 79.15 ± 1.19b |
20-40 | 82.27 ± 1.76a | 83.42 ± 0.59a | 81.87 ± 1.28a | 83.95 ± 1.69a | |
砂粒含量 Sand content (%) | 0-20 | 10.58 ± 0.14a | 13.23 ± 0.13a | 11.03 ± 0.08a | 10.92 ± 0.12a |
20-40 | 8.14 ± 0.05b | 6.75 ± 0.02b | 8.20 ± 0.10b | 5.85 ± 0.05b | |
物理性黏粒 Physical clay particles (%) | 0-20 | 56.75 ± 0.12a | 52.25 ± 0.24b | 54.49 ± 0.17b | 57.41 ± 0.15b |
20-40 | 57.89 ± 0.37a | 60.42 ± 0.17a | 62.98 ± 1.10a | 65.57 ± 1.15a | |
PD (g∙cm-3) | 0-20 | 2.18 ± 0.08a | 2.05 ± 0.08b | 2.06 ± 0.04b | 2.13 ± 0.03b |
20-40 | 2.14 ± 0.04ab | 2.12 ± 0.02ab | 2.16 ± 0.03ab | 2.20 ± 0.02a | |
CL | 0-20 | 0.24 ± 0.01a | 0.02 ± 0.00b | 0.09 ± 0.01b | 0.31 ± 0.02b |
20-40 | 0.18 ± 0.01b | 0.05 ± 0.00a | 0.44 ± 0.01a | 0.51 ± 0.02a |
图1 甘肃陇东覆膜苹果园亚表层土壤团聚体组成及稳定性(平均值±标准差)。A, 团聚体破坏率(PAD)。B, 水稳系数(WSC)。C, 水稳性团聚体平均质量直径(MWD)。D, 水稳性团聚体平均几何直径(GMD)。E, >0.25 mm机械稳定性团聚体含量(DR0.25)。F, <0.25 mm水稳性团聚体含量(WR0.25)。CK, 对照; 2Y, 覆膜2年; 4Y, 覆膜4年; 6Y, 覆膜6年。不同小写字母表示不同处理间各指标存在显著差异(p < 0.05)。
Fig. 1 Composition and stability of subsurface soil aggregates of film mulching apple orchard in Longdong, Gansu (mean ± SD). A, Agglomerate failure rate (PAD). B, Water stability coefficient (WSC). C, Average mass diameter of water-stable aggregates (MWD). D, Average geometric diameter of water-stable aggregates (GMD). E, >0.25 mm mechanical stability aggregate content (DR0.25). F, <0.25 mm water-stable aggregate content (WR0.25). CK, control treatment; 2Y, mulching for 2 years; 4Y, mulching for 4 years; 6Y, mulching for 6 years. Different lowercase letters indicate that there are significant differences (p < 0.05) in each index among different treatments.
图2 甘肃陇东苹果园不同覆膜年限苹果细根数量性状土层差异(平均值±标准差)。CK, 对照; 2Y, 覆膜2年; 4Y, 覆膜4年; 6Y, 覆膜6年。不同小写字母表示不同处理间各指标存在显著差异(p < 0.05)。
Fig. 2 Soil layer differences in the quantitative characters of fine roots of apple with different years of film mulching apple orchard in Longdong, Gansu (mean ± SD). CK, control treatment; 2Y, mulching for 2 years; 4Y, mulching for 4 years; 6Y, mulching for 6 years. Different lowercase letters indicate that there are significant differences (p < 0.05) in each index among different treatments.
图3 甘肃陇东苹果园不同覆膜年限苹果树细根形态性状土层差异(平均值±标准差)。CK, 对照; 2Y, 覆膜2年; 4Y, 覆膜4年; 6Y, 覆膜6年。不同小写字母表示不同处理间各指标存在显著差异(p < 0.05)。
Fig. 3 Soil layer differences in fine root morphological characters of apple trees with different years of film mulching apple orchard in Longdong, Gansu (mean ± SD). CK, control treatment; 2Y, mulching for 2 years; 4Y, mulching for 4 years; 6Y, mulching for 6 years. Different lowercase letters indicate that there are significant differences (p < 0.05) in each index among different treatments.
图4 甘肃陇东苹果园不同覆膜年限苹果树细根构型性状土层差异(平均值±标准差)。CK, 对照; 2Y, 覆膜2年; 4Y, 覆膜4年; 6Y, 覆膜6年。不同小写字母表示不同处理间各指标存在显著性差异(p < 0.05)。
Fig. 4 Soil layer difference of fine root architecture characters with different years of film mulching apple orchard in Longdong, Gansu (mean ± SD). CK, control treatment; 2Y, mulching for 2 years; 4Y, mulching for 4 years; 6Y, mulching for 6 years. Different lowercase letters indicate that there are significant differences (p < 0.05) in each index among different treatments.
图5 甘肃陇东苹果园不同覆膜年限苹果细根解剖结构土层差异(平均值±标准差)。CK, 对照; 2Y, 覆膜2年; 4Y, 覆膜4年; 6Y, 覆膜6年。不同小写字母表示不同处理间各指标存在显著性差异(p < 0.05)。
Fig. 5 Soil layer difference of fine roots anatomical structure with different years of film mulching apple orchard in Longdong, Gansu (mean ± SD). CK, control treatment; 2Y, mulching for 2 years; 4Y, mulching for 4 years; 6Y, mulching for 6 years. Different lowercase letters indicate that there are significant differences (p < 0.05) in each index among different treatments.
指标 Indicator | 有机质含量 Organic matter content (g∙kg-1) | 土壤含水量 Soil moisture (g∙cm-3) | 土壤密度 Soil density (g∙cm-3) | 黏粒含量 Clay content (%) | 物理性 黏粒含量 Physical clay particles content (%) | 土壤压实度Packing density of soil (g·cm-3) | 团聚体破坏率 Aggregates processing damage rate (%) | 水稳性团聚体平均质量直径 Mean weight diameter of water-stable aggregates (mm) | 水稳性团聚体平均几何直径 Geometric mean diameter of water-stable aggregates (mm) |
---|---|---|---|---|---|---|---|---|---|
有机质含量 Organic matter content (g∙kg-1) | 1 | 0.784** | 0.068 | 0.097 | -0.696** | -0.260 | -0.605** | 0.438 | 0.678** |
土壤含水量 Soil moisture (g∙cm-3) | 1 | -0.132 | -0.244 | -0.737** | -0.411 | -0.745** | 0.746** | 0.730** | |
土壤密度 Soil density (g∙cm-3) | 1 | 0.655** | 0.673** | 0.628** | 0.694** | -0.678** | -0.697** | ||
黏粒含量 Clay content (%) | 1 | 0.203 | 0.684** | 0.597* | -0.567* | -0.280 | |||
物理性黏粒含量 Physical clay particles content (%) | 1 | 0.646** | 0.914** | -0.663** | -0.984** | ||||
土壤压实度 Packing density of soil (g·cm-3) | 1 | 0.719** | -0.528* | -0.619** | |||||
团聚体破坏率 Aggregates processing damage rate (%) | 1 | -0.839** | -0.923** | ||||||
水稳性团聚体平均 质量直径 Mean weight diameter of water-stable aggregates (mm) | 1 | 0.645** | |||||||
水稳性团聚体平均 几何直径 Geometric mean diameter of water- stable aggregates (mm) | 1 |
表3 甘肃陇东苹果园覆膜后亚表层土壤物理性状相关性
Table 3 Correlation of soil physical properties of subsurface soil after film mulching in apple orchard of Longdong, Gansu
指标 Indicator | 有机质含量 Organic matter content (g∙kg-1) | 土壤含水量 Soil moisture (g∙cm-3) | 土壤密度 Soil density (g∙cm-3) | 黏粒含量 Clay content (%) | 物理性 黏粒含量 Physical clay particles content (%) | 土壤压实度Packing density of soil (g·cm-3) | 团聚体破坏率 Aggregates processing damage rate (%) | 水稳性团聚体平均质量直径 Mean weight diameter of water-stable aggregates (mm) | 水稳性团聚体平均几何直径 Geometric mean diameter of water-stable aggregates (mm) |
---|---|---|---|---|---|---|---|---|---|
有机质含量 Organic matter content (g∙kg-1) | 1 | 0.784** | 0.068 | 0.097 | -0.696** | -0.260 | -0.605** | 0.438 | 0.678** |
土壤含水量 Soil moisture (g∙cm-3) | 1 | -0.132 | -0.244 | -0.737** | -0.411 | -0.745** | 0.746** | 0.730** | |
土壤密度 Soil density (g∙cm-3) | 1 | 0.655** | 0.673** | 0.628** | 0.694** | -0.678** | -0.697** | ||
黏粒含量 Clay content (%) | 1 | 0.203 | 0.684** | 0.597* | -0.567* | -0.280 | |||
物理性黏粒含量 Physical clay particles content (%) | 1 | 0.646** | 0.914** | -0.663** | -0.984** | ||||
土壤压实度 Packing density of soil (g·cm-3) | 1 | 0.719** | -0.528* | -0.619** | |||||
团聚体破坏率 Aggregates processing damage rate (%) | 1 | -0.839** | -0.923** | ||||||
水稳性团聚体平均 质量直径 Mean weight diameter of water-stable aggregates (mm) | 1 | 0.645** | |||||||
水稳性团聚体平均 几何直径 Geometric mean diameter of water- stable aggregates (mm) | 1 |
指标 Indicator | 根长 Root length (cm) | 根表面积 Root surface area (cm2) | 平均根径 Average root diameter (mm) | 比根长 Specific root length (cm·g-1) | 分支数 Branch number (NO.∙cm-1) | 导管直径 Vessel diameter (μm) | 导管密度 Catheter density (NO.·mm-2) |
---|---|---|---|---|---|---|---|
有机质含量 Organic matter content (g∙kg-1) | 0.312 | 0.552* | -0.567* | 0.656** | -0.687** | 0.400 | -0.665** |
土壤含水量 Soil moisture (g∙cm-3) | 0.033 | 0.339 | -0.400 | 0.465 | -0.821** | 0.379 | -0.687** |
土壤孔隙度 Soil porosity (%) | 0.617** | 0.791** | -0.690** | 0.479 | -0.508* | 0.429 | -0.541* |
土壤密度 Soil density (g∙cm-3) | -0.611** | -0.147 | -0.230 | 0.319 | 0.622** | -0.677** | 0.751** |
土壤通气度 Soil aeration (%) | 0.723** | 0.709** | -0.736** | 0.645** | 0.088 | -0.152 | -0.561* |
毛管孔隙度 Capillary porosity (%) | 0.747** | 0.773** | -0.589** | 0.543* | -0.527* | 0.603** | -0.579* |
黏粒含量 Clay content (%) | -0.568** | -0.553** | 0.636** | -0.595* | 0.607** | -0.289 | 0.710** |
物理性黏粒含量 Physical clay particles content (%) | -0.964** | -0.954** | 0.906** | -0.817** | 0.612** | -0.835** | 0.774** |
土壤压实度 Packing density of soil (g·cm-3) | -0.557* | -0.697** | 0.717** | -0.811** | 0.607** | -0.623** | 0.719** |
土壤板结系数 Limit of soil compaction | -0.858** | -0.932** | 0.900** | -0.797** | 0.622** | -0.218 | -0.397 |
团聚体破坏率 Aggregates processing damage rate (%) | -0.621** | -0.651** | 0.046 | -0.321 | 0.966** | -0.790** | 0.734** |
水稳系数 Water stability coefficient (%) | 0.459 | 0.586* | 0.172 | 0.333 | -0.956** | 0.834** | -0.818** |
水稳性团聚体平均质量直径 Mean weight diameter of water-stable aggregates (mm) | 0.231 | 0.798** | -0.127 | -0.268 | -0.853** | 0.430 | -0.537* |
水稳性团聚体平均几何直径 Geometric mean diameter of water-stable aggregates (mm) | 0.701** | 0.393 | -0.233 | 0.417 | -0.928** | 0.845** | -0.634** |
表4 甘肃陇东苹果园覆膜后亚表层土壤物理性状与细根生长相关性
Table 4 Correlation between physical properties of subsurface soil and fine root growth after film mulching in apple orchard of Longdong, Gansu
指标 Indicator | 根长 Root length (cm) | 根表面积 Root surface area (cm2) | 平均根径 Average root diameter (mm) | 比根长 Specific root length (cm·g-1) | 分支数 Branch number (NO.∙cm-1) | 导管直径 Vessel diameter (μm) | 导管密度 Catheter density (NO.·mm-2) |
---|---|---|---|---|---|---|---|
有机质含量 Organic matter content (g∙kg-1) | 0.312 | 0.552* | -0.567* | 0.656** | -0.687** | 0.400 | -0.665** |
土壤含水量 Soil moisture (g∙cm-3) | 0.033 | 0.339 | -0.400 | 0.465 | -0.821** | 0.379 | -0.687** |
土壤孔隙度 Soil porosity (%) | 0.617** | 0.791** | -0.690** | 0.479 | -0.508* | 0.429 | -0.541* |
土壤密度 Soil density (g∙cm-3) | -0.611** | -0.147 | -0.230 | 0.319 | 0.622** | -0.677** | 0.751** |
土壤通气度 Soil aeration (%) | 0.723** | 0.709** | -0.736** | 0.645** | 0.088 | -0.152 | -0.561* |
毛管孔隙度 Capillary porosity (%) | 0.747** | 0.773** | -0.589** | 0.543* | -0.527* | 0.603** | -0.579* |
黏粒含量 Clay content (%) | -0.568** | -0.553** | 0.636** | -0.595* | 0.607** | -0.289 | 0.710** |
物理性黏粒含量 Physical clay particles content (%) | -0.964** | -0.954** | 0.906** | -0.817** | 0.612** | -0.835** | 0.774** |
土壤压实度 Packing density of soil (g·cm-3) | -0.557* | -0.697** | 0.717** | -0.811** | 0.607** | -0.623** | 0.719** |
土壤板结系数 Limit of soil compaction | -0.858** | -0.932** | 0.900** | -0.797** | 0.622** | -0.218 | -0.397 |
团聚体破坏率 Aggregates processing damage rate (%) | -0.621** | -0.651** | 0.046 | -0.321 | 0.966** | -0.790** | 0.734** |
水稳系数 Water stability coefficient (%) | 0.459 | 0.586* | 0.172 | 0.333 | -0.956** | 0.834** | -0.818** |
水稳性团聚体平均质量直径 Mean weight diameter of water-stable aggregates (mm) | 0.231 | 0.798** | -0.127 | -0.268 | -0.853** | 0.430 | -0.537* |
水稳性团聚体平均几何直径 Geometric mean diameter of water-stable aggregates (mm) | 0.701** | 0.393 | -0.233 | 0.417 | -0.928** | 0.845** | -0.634** |
指标 Indicator | 主成分 Principal component | 方差贡献率 Variance contribution rate (%) | 累计贡献率 Cumulative contribution rate (%) | 载荷矩阵 Load matrix | 综合得分 Composite scores | 综合排名 Comprehensive ranking | |
---|---|---|---|---|---|---|---|
根系 Root | 1 | 63.66 | 63.66 | 根长、分支数 Root length, Branch number | CK | 0.98 | 1 |
2Y | 0.24 | 2 | |||||
2 | 25.49 | 89.15 | 导管直径、导管密度 Vessel diameter, Catheter density | 4Y | -0.50 | 3 | |
6Y | -0.72 | 4 | |||||
土壤 Soil | 1 | 59.98 | 59.98 | 物理性黏粒含量、水稳性团聚体平均几何直径、有机质含量、水稳系数、团聚体破坏率 Physical clay particles content, Geometric mean diameter of water-stable aggregates, Organic matter content, Water stability coefficient, Aggregates processing damage rate | CK | 0.10 | 2 |
2Y | 0.93 | 1 | |||||
2 | 26.37 | 86.34 | 土壤密度、土壤压实度 Soil density, Packing density of soil | 4Y | -0.12 | 3 | |
6Y | -0.91 | 4 |
表5 甘肃陇东苹果园覆膜后亚表层根系与土壤各性状主成分分析
Table 5 Principal component analysis of subsurface root and soil characters after film mulching in apple orchard of Longdong, Gansu
指标 Indicator | 主成分 Principal component | 方差贡献率 Variance contribution rate (%) | 累计贡献率 Cumulative contribution rate (%) | 载荷矩阵 Load matrix | 综合得分 Composite scores | 综合排名 Comprehensive ranking | |
---|---|---|---|---|---|---|---|
根系 Root | 1 | 63.66 | 63.66 | 根长、分支数 Root length, Branch number | CK | 0.98 | 1 |
2Y | 0.24 | 2 | |||||
2 | 25.49 | 89.15 | 导管直径、导管密度 Vessel diameter, Catheter density | 4Y | -0.50 | 3 | |
6Y | -0.72 | 4 | |||||
土壤 Soil | 1 | 59.98 | 59.98 | 物理性黏粒含量、水稳性团聚体平均几何直径、有机质含量、水稳系数、团聚体破坏率 Physical clay particles content, Geometric mean diameter of water-stable aggregates, Organic matter content, Water stability coefficient, Aggregates processing damage rate | CK | 0.10 | 2 |
2Y | 0.93 | 1 | |||||
2 | 26.37 | 86.34 | 土壤密度、土壤压实度 Soil density, Packing density of soil | 4Y | -0.12 | 3 | |
6Y | -0.91 | 4 |
[1] | Bu YS, Miao GY, Zhou NY, Shao HL, Wang JC (2006). Analysis and comparison of the effects of plastic film mulching and straw mulching on soil fertility. Scientia Agricultura Sinica, 39, 1069-1075. |
[ 卜玉山, 苗果园, 周乃健, 邵海林, 王建程 (2006). 地膜和秸秆覆盖土壤肥力效应分析与比较. 中国农业科学, 39, 1069-1075.] | |
[2] |
Bu YS, Shao HL, Wang JC, Miao GY (2010). Dynamics of soil carbon and nitrogen in plowed layer of spring corn and spring wheat fields mulched with straw and plastic film. Chinese Journal of Eco-Agriculture, 18, 322-326.
DOI URL |
[ 卜玉山, 邵海林, 王建程, 苗果园 (2010). 秸秆与地膜覆盖春玉米和春小麦耕层土壤碳氮动态. 中国生态农业学报, 18, 322-326.] | |
[3] |
Chen ZX, Wang WL, Guo MM, Wang TC, Guo WZ, Wang WX, Kang HL, Yang B, Zhao M (2020). Effects of vegetation restoration on soil erodibility on different geomorphological locations in the loess-tableland and gully region of the Loess Plateau. Journal of Natural Resources, 35, 387-398.
DOI URL |
[ 陈卓鑫, 王文龙, 郭明明, 王天超, 郭文召, 王文鑫, 康宏亮, 杨波, 赵满 (2020). 黄土高塬沟壑区植被恢复对不同地貌部位土壤可蚀性的影响. 自然资源学报, 35, 387-398.] | |
[4] |
Colombi T, Kirchgessner N, Walter A, Keller T (2017). Root tip shape governs root elongation rate under increased soil strength. Plant Physiology, 174, 2289-2301.
DOI PMID |
[5] | Dong YY (2020). Effects of Plastic Film and Straw Mulching on Soil Physical Properties and Crop Yield of Dry Cropland in Hilly and Gully Region of the Loess Plateau. PhD dissertation, Northwest A&F University, Yangling, Shaanxi. |
[ 董云云 (2020). 地膜和秸秆覆盖对黄土高原丘陵沟壑区旱作农田土壤物理特性及作物产量的影响. 博士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[6] |
Elliott ET (1986). Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soil. Soil Science Society of America Journal, 50, 627-633.
DOI URL |
[7] | Feng LQ, Wang WL, Guo MM, Shi QH, Chen TD, Kang HL (2020). Effects of root density on gully headcut erosion and morphological evolution process in gully regions of Loess Plateau. Transactions of the Chinese Society of Agricultural Engineering, 36, 88-96. |
[ 冯兰茜, 王文龙, 郭明明, 史倩华, 陈同德, 康宏亮 (2020). 根系密度对黄土塬沟头溯源侵蚀产沙和形态演化过程的影响. 农业工程学报, 36, 88-96.] | |
[8] | Gao YH, Yao YF, Guo YF, Zhao WH, Wen J, Yang Y, Qi W (2017). Response of Caragana microphylla fine root surface area density to spatial distribution of soil moisture. Transactions of the Chinese Society of Agricultural Engineering, 33, 136-142. |
[ 高玉寒, 姚云峰, 郭月峰, 赵文昊, 温健, 杨阳, 祁伟 (2017). 柠条锦鸡儿细根表面积密度对土壤水分空间分布的响应. 农业工程学报, 33, 136-142.] | |
[9] | Gong XP, Tang CS, Shi B, Wang HS, Leng T, Tan YZ, Deng YF (2019). Evolution of soil microstructure during drying and wetting. Journal of Engineering Geology, 27, 775-793. |
[ 巩学鹏, 唐朝生, 施斌, 王宏胜, 冷挺, 谈云志, 邓永锋 (2019). 黏性土干/湿过程中土结构演化特征研究进展. 工程地质学报, 27, 775-793.] | |
[10] |
Guo JH, Zeng FJ, Li CJ, Zhang B (2014). Root architecture and ecological adaptation strategies in three shelterbelt plant species in the southern Taklimakan Desert. Chinese Journal of Plant Ecology, 38, 36-44.
DOI URL |
[ 郭京衡, 曾凡江, 李尝君, 张波 (2014). 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略. 植物生态学报, 38, 36-44.]
DOI |
|
[11] |
Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeorp G (2017). The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48, 419-445.
DOI URL |
[12] |
Kong XP, Zhang ML de Smet I, Ding ZJ (2014). Designer crops: optimal root system architecture for nutrient acquisition. Trends in Biotechnology, 32, 597-598.
DOI URL |
[13] | Li XP, Zhao CZ, Ren Y, Zhang J, Lei L (2019). Relationship between root forks and link number, branch angle of Pedicularis kansuensis under different density conditions in Gahai Wetland. Acta Ecologica Sinica, 39, 3670-3676. |
[ 李雪萍, 赵成章, 任悦, 张晶, 雷蕾 (2019). 尕海湿地不同密度下甘肃马先蒿根系分叉数与连接数、分支角度的关系. 生态学报, 39, 3670-3676.] | |
[14] | Li YN, Wang ZY, Wang B, Zhang BQ, Zhang NN (2019). Differences in soil physical properties of typical vegetation in loess hilly region and effects on water conductivity. Journal of Soil and Water Conservation, 33, 176-181. |
[ 李永宁, 王忠禹, 王兵, 张宝琦, 张娜娜 (2019). 黄土丘陵区典型植被土壤物理性质差异及其对导水特性影响. 水土保持学报, 33, 176-181.] | |
[15] | Liu JY, Zhou ZC, Su XM (2020). Review of the mechanism of root system on the formation of soil aggregates. Journal of Soil and Water Conservation, 34, 267-273. |
[ 刘均阳, 周正朝, 苏雪萌 (2020). 植物根系对土壤团聚体形成作用机制研究回顾. 水土保持学报, 34, 267-273.] | |
[16] | Lü D, Yang YH, Zhao WH, Lei SY, Zhang XP (2018). Fine root biomass distribution and coupling to soil physicochemical properties under different restored vegetation types. Acta Ecologica Sinica, 38, 3979-3987. |
[ 吕渡, 杨亚辉, 赵文慧, 雷斯越, 张晓萍 (2018). 不同恢复类型植被细根分布及与土壤理化性质的耦合关系. 生态学报, 38, 3979-3987.] | |
[17] | Lü JT (2017). Effects of Straw Incorporation and Plastic Film Mulch on Soil Physicochemical Properties. PhD dissertation, Lanzhou University, Lanzhou. |
[ 吕洁婷 (2017). 秸秆还田与地膜覆盖对土壤理化性状影响. 博士学位论文, 兰州大学, 兰州.] | |
[18] |
Martre P, Durand JL, Cochard H (2000). Changes in axial hydraulic conductivity along elongating leaf blades in relation to xylem maturation in tall fescue. New Phytologist, 146, 235-247.
DOI URL |
[19] |
Mooney KA, Halitschke R, Kessler A, Agrawal AA (2010). Evolutionary trade-offs in plants mediate the strength of trophic cascades. Science, 327, 1642-1644.
DOI URL |
[20] | Potocka I, Szymanowska-Pulka J (2018). Morphological responses of plant roots to mechanical stress. Annals of Botany, 122, 711-723. |
[21] |
Shan LS, Su M, Zhang ZZ, Wang Y, Wang S, Li Y (2018). Vertical distribution pattern of mixed root systems of desert plants-Reaumuria soongarica and Salsola passerina under different environmental gradients. Chinese Journal of Plant Ecology, 42, 475-486.
DOI |
[ 单立山, 苏铭, 张正中, 王洋, 王珊, 李毅 (2018). 不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律. 植物生态学报, 42, 475-486.]
DOI |
|
[22] | Shi ZL, Wang JX, Liang HX, Shi HP, Wei BM, Wang YQ (2017). Status and evolution of soil aggregates in apple orchards different in age in Weibei. Acta Pedologica Sinica, 54, 387-399. |
[ 石宗琳, 王加旭, 梁化学, 史红平, 魏彬萌, 王益权 (2017). 渭北不同园龄苹果园土壤团聚体状况及演变趋势研究. 土壤学报, 54, 387-399.] | |
[23] | Shi ZL, Wu DY, Wang YQ, Gao XK, Mu JD (2019). Effects of different planting years on soil physical and chemical properties in orchards in Weibei areas. Journal of Henan Agricultural University, 53, 799-805. |
[ 石宗琳, 武大勇, 王益权, 高小宽, 慕建东 (2019). 不同种植年限对渭北地区果园土壤理化性质的影响. 河南农业大学学报, 53, 799-805.] | |
[24] |
Song QH, Zhao CZ, Shi YC, Du J, Wang JW, Chen J (2015). Trade-off between root forks and link length of Melica przewalskyi on different aspects of slopes. Chinese Journal of Plant Ecology, 39, 577-585.
DOI URL |
[ 宋清华, 赵成章, 史元春, 杜晶, 王继伟, 陈静 (2015). 不同坡向甘肃臭草根系分叉数和连接长度的权衡关系. 植物生态学报, 39, 577-585.]
DOI |
|
[25] |
Sun L, Wang YQ, Zhang YL, Li JB, Hu HY (2011). Dual effect of fruit tree cultivation on soil physical characteristics. Chinese Journal of Eco-Agriculture, 19, 19-23.
DOI URL |
[ 孙蕾, 王益权, 张育林, 李建波, 胡海燕 (2011). 种植果树对土壤物理性状的双重效应. 中国生态农业学报, 19, 19-23.] | |
[26] |
Sun M, Huang YX, Sun N, Xu MG, Wang BR, Zhang XB (2015). Advance in soil pore and its influencing factors. Chinese Journal of Soil Science, 46, 233-238.
DOI URL |
[ 孙梅, 黄运湘, 孙楠, 徐明岗, 王伯仁, 张旭博 (2015). 农田土壤孔隙及其影响因素研究进展. 土壤通报, 46, 233-238.] | |
[27] | Sun WT, Liu XL, Dong T, Yin XN, Niu JQ, Ma M (2015). Root distribution, soil characteristics, root distribution and fruit quality affected by different mulching measures in apple orchard in the dry area of eastern Gansu. Journal of Fruit Science, 32, 841-851. |
[ 孙文泰, 刘兴禄, 董铁, 尹晓宁, 牛军强, 马明 (2015). 陇东旱塬苹果园不同覆盖措施对土壤性状、根系分布和果实品质的影响. 果树学报, 32, 841-851.] | |
[28] | Sun WT, Ma M, Dong T, Liu XL, Zhao MX, Yin XN, Niu JQ (2016). Response of distribution pattern and physiological characteristics of apple roots grown in the dry area of eastern Gansu to ground mulching. Chinese Journal of Applied Ecology, 27, 3153-3163. |
[ 孙文泰, 马明, 董铁, 刘兴禄, 赵明新, 尹晓宁, 牛军强 (2016). 陇东旱塬苹果根系分布规律及生理特性对地表覆盖的响应. 应用生态学报, 27, 3153-3163.] | |
[29] | Wang JX, Wang YQ, Li X, Liang HX, Shi HP, Shi ZL (2017). Evaluation of soil physical state in Guanzhong farmland. Agricultural Research in the Arid Areas, 35, 245-252. |
[ 王加旭, 王益权, 李欣, 梁化学, 史红平, 石宗琳 (2017). 关中农田土壤物理状态与分析. 干旱地区农业研究, 35, 245-252.] | |
[30] | Wang YQ, Shi ZL, Jiao CQ, Li P, Wei Y, Zhang L, Wang YJ, Qu Z (2016). Analysis of the harmfulness of soil fatigue under intensive agriculture. Land Development Engineering Research, 1, 57-64. |
[ 王益权, 石宗琳, 焦采强, 李鹏, 魏样, 张露, 王永建, 曲植 (2016). 密集型农业生产条件下土壤疲劳及其危害性浅析. 土地开发工程研究, 1, 57-64.] | |
[31] | Wang SY, Li XH, Cheng N, Fu SF, Li SY, Sun LJ, An TT, Wang JK (2021). Effects of plastic film mulching and fertilization on the sequestration of carbon and nitrogen from straw in soil. Scientia Agricultura Sinica, 54, 345-356. |
[ 王淑颖, 李小红, 程娜, 付时丰, 李双异, 孙良杰, 安婷婷, 汪景宽 (2021). 地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响. 中国农业科学, 54, 345-356.] | |
[32] | Wei BM, Li ZH, Wang YQ (2021). Status and causes of soil compaction at apple orchards in the Weibei dry highland, Northwest China. Chinese Journal of Applied Ecology, 32, 976-982. |
[ 魏彬萌, 李忠徽, 王益权 (2021). 渭北旱塬苹果园土壤紧实化现状及成因. 应用生态学报, 32, 976- 982.] | |
[33] | Wei BM, Wang YQ, Li ZH (2018). Effects of planting apple trees on distribution of soil cementing materials in Weibei apple orchards. Chinese Journal of Eco-Agriculture, 26, 1692-1700. |
[ 魏彬萌, 王益权, 李忠徽 (2018). 种植苹果树对渭北果园土壤胶结物质分布的影响. 中国生态农业学报, 26, 1692-1700.] | |
[34] | Wei BM, Wang YQ, Shi ZL, Li P, Shi HP, Liang HX, Wang JX (2015). Calcium degradation status of orchard soil in Weibei region, Shaanxi Province, China. Scientia Agricultura Sinica, 48, 2199-2207. |
[ 魏彬萌, 王益权, 石宗琳, 李鹏, 史红平, 梁化学, 王加旭 (2015). 渭北苹果园土壤钙素退化状态. 中国农业科学, 48, 2199-2207.] | |
[35] | Xu GR, Ma WW, Song LC, Tang YM, Zhou XL, Shang YX, Yang X (2020). Characteristics of soil nitrogen content and enzyme activity in Gahai wetland under different vegetation degradation conditions. Acta Ecologica Sinica, 40, 8917-8927. |
[ 徐国荣, 马维伟, 宋良翠, 唐艳梅, 周晓雷, 尚友贤, 杨玺 (2020). 植被不同退化状态下尕海湿地土壤氮含量及酶活性特征. 生态学报, 40, 8917-8927.] | |
[36] | Xu JX, Feng YT, Ye YL, Zhang RZ, Hu CL, Lei T, Zhang SL (2020). Effects of plastic film mulching on yield and water use of maize in the Loess Plateau. Scientia Agricultura Sinica, 53, 2349-2359. |
[ 徐佳星, 封涌涛, 叶玉莲, 张润泽, 胡昌录, 雷同, 张树兰 (2020). 地膜覆盖条件下黄土高原玉米产量及水分利用效应分析. 中国农业科学, 53, 2349-2359.] | |
[37] |
Xu LQ, Cui DH, Wang QC, Zhang Y, Ma SJ, Zhu KY, Hu JW, Li HL (2020). Root architecture and fine root characteristics of Juglans mandshurica saplings in different habitats in the secondary forest on the west slope of Zhangguangcailing, China. Chinese Journal of Applied Ecology, 31, 373-380.
DOI PMID |
[ 徐立清, 崔东海, 王庆成, 张勇, 马双娇, 朱凯月, 胡建文, 李红丽 (2020). 张广才岭西坡次生林不同生境胡桃楸幼树根系构型及细根特征. 应用生态学报, 31, 373-380.]
PMID |
|
[38] | Xu SR, Zhang EH, Ma RL, Wang Q, Liu QL, Wang HL (2018). Effects of mulching patterns on root growth and soil environment of Lycium barbarum. Chinese Journal of Eco-Agriculture, 26, 1802-1810. |
[ 胥生荣, 张恩和, 马瑞丽, 王琦, 刘青林, 王鹤龄 (2018). 不同覆盖措施对枸杞根系生长和土壤环境的影响. 中国生态农业学报, 26, 1802-1810.] | |
[39] | Zhang DQ, Liao YC, Jia ZK (2005). Research advances and prospects of film mulching in arid and semi-arid areas. Agricultural Research in the Arid Areas, 23, 208-213. |
[ 张德奇, 廖允成, 贾志宽 (2005). 旱区地膜覆盖技术的研究进展及发展前景. 干旱地区农业研究, 23, 208-213.] | |
[40] |
Zheng HL, Zhao CZ, Xu T, Duan BB, Han L, Feng W (2015). Trade-off relationship between root forks and branch angle of Reaumuria songarica on different aspects of slopes. Chinese Journal of Plant Ecology, 39, 1062-1070.
DOI URL |
[ 郑慧玲, 赵成章, 徐婷, 段贝贝, 韩玲, 冯威 (2015). 红砂根系分叉数和分支角度权衡关系的坡向差异. 植物生态学报, 39, 1062-1070.]
DOI |
|
[41] | Zhang K, Lyu YH, Fu BJ, Yin LC, Yu DD (2020). The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau. Acta Geographica Sinica, 75, 949-960. |
[ 张琨, 吕一河, 傅伯杰, 尹礼唱, 于丹丹 (2020). 黄土高原植被覆盖变化对生态系统服务影响及其阈值. 地理学报, 75, 949-960.]
DOI |
|
[42] | Zheng BZ (2012). Technical Guide for Soil Analysis. 3rd ed. China Agriculture Press, Beijing. 28. |
[ 郑必昭 (2012). 土壤分析技术指南. 3版. 中国农业出版社, 北京. 28.] | |
[43] | Zhu FH, Wang YQ, Shi ZL, Zhang RX, Ran YL, Wang YC (2015). Effects of rotational tillage on soil physical properties and winter wheat root growth on annual double cropping area. Acta Ecologica Sinica, 35, 7454-7463. |
[ 祝飞华, 王益权, 石宗琳, 张润霞, 冉艳玲, 王亚城 (2015). 轮耕对关中一年两熟区土壤物理性状和冬小麦根系生长的影响. 生态学报, 35, 7454-7463.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[4] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[5] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[6] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[7] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[8] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[9] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[10] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[11] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[12] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[13] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[14] | 董琳琳, 普晓妍, 张璐璐, 宋亮, 鲁志云, 李苏. 亚热带森林附生地衣压力-体积曲线分析及其适用性[J]. 植物生态学报, 2021, 45(3): 274-285. |
[15] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19