植物生态学报 ›› 2021, Vol. 45 ›› Issue (3): 274-285.DOI: 10.17521/cjpe.2020.0344
董琳琳1, 普晓妍2, 张璐璐1,*(), 宋亮2, 鲁志云2,3, 李苏2,*(
)
收稿日期:
2020-10-20
接受日期:
2021-01-02
出版日期:
2021-03-20
发布日期:
2021-05-17
通讯作者:
张璐璐,李苏
作者简介:
Zhang LL: 675359138@qq.com)基金资助:
DONG Lin-Lin1, PU Xiao-Yan2, ZHANG Lu-Lu1,*(), SONG Liang2, LU Zhi-Yun2,3, LI Su2,*(
)
Received:
2020-10-20
Accepted:
2021-01-02
Online:
2021-03-20
Published:
2021-05-17
Contact:
ZHANG Lu-Lu,LI Su
Supported by:
摘要:
附生地衣是森林生态系统中的重要组成部分, 在维护森林物种多样性以及水分和养分循环等方面发挥着重要作用。地衣类群的水势特征以及压力-体积(PV)曲线及相关参数是否适用于探索地衣等变水性生物类群应对水分胁迫机制, 仍有待阐明。该研究以中国西南地区云南哀牢山亚热带山地森林中5个类群15种常见附生地衣为对象, 探讨了其PV曲线及水势参数的功能群和物种水平的变化。结果显示, 蓝藻型地衣的内部含水量(WCinternal)和共质体水含量(Rs)显著高于绿藻型地衣, 是其1倍以上, 但其他参数表现出较高的一致性。功能群水平上, 地衣仅WCinternal、Rs和膨压损失点的相对含水量(RWCTLP)具有显著性差异; 但物种间差异均非常显著。结合主成分分析进一步发现, PV曲线及相关参数在评估地衣整体应对水分胁迫以及揭示生境水分条件选择策略时具有较大的限制性, 受到共生藻和生长型的显著影响; 但内部最大持水力可以解释蓝藻型地衣的生境适应策略, 而部分参数如饱和渗透势(Ψsat)和RWCTLP可以分别用于解释狭叶地衣、阔叶地衣和枝状地衣对生境水分条件的适应。研究表明PV曲线及水势参数不适用于地衣类群整体的抗旱性评价, 和其他生物类群进行抗旱性比较时更要慎用。
董琳琳, 普晓妍, 张璐璐, 宋亮, 鲁志云, 李苏. 亚热带森林附生地衣压力-体积曲线分析及其适用性. 植物生态学报, 2021, 45(3): 274-285. DOI: 10.17521/cjpe.2020.0344
DONG Lin-Lin, PU Xiao-Yan, ZHANG Lu-Lu, SONG Liang, LU Zhi-Yun, LI Su. Pressure-volume curve analysis of epiphytic lichens and its applicability in subtropical forests. Chinese Journal of Plant Ecology, 2021, 45(3): 274-285. DOI: 10.17521/cjpe.2020.0344
物种 Species | 共生藻型 Photobiont type | 生长型 Growth form | 功能群划分 Functional group | 主要生境 Main habitat |
---|---|---|---|---|
网肺衣 Lobaria retigera (Lobret) | 蓝藻 Cyanobacteria | 叶状 Foliose | 蓝藻型地衣 Cyanolichen (CYL) | 阴湿至高光照湿润生境 Shaded to high-light and humid habitat |
猫耳衣 Leptogium menziesii(Lepmen) | 蓝藻 Cyanobacteria | 叶状 Foliose | CYL | 潮湿环境 Humid habitat |
黑芽牛皮叶 Sticta fuliginosa(Stiful) | 蓝藻 Cyanobacteria | 叶状 Foliose | CYL | 潮湿高光照生境 Humid and high-light habitat |
针芽肺衣 Lobaria isidiophora(Lobisi) | 绿藻 Green alga | 阔叶型 Broadly lobed foliose | 阔叶绿藻型地衣 Broadly lobed foliose chlorolichens (BFL) | 中光至高光照生境 Medium to high-light habitat |
网大叶梅 Parmotrema reticulatum (Parret) | 绿藻 Green alga | 阔叶型 Broadly lobed foliose | BFL | 中光至高光照、潮湿生境 Medium to high-light, and humid habitat |
平滑牛皮叶 Sticta nylanderiana (Stinyl) | 绿藻 Green alga | 阔叶型 Broadly lobed foliose | BFL | 中光至高光照生境 Medium to high-light habitat |
黑腹绵腹衣 Anzia hypomelaena (Anzhyp) | 绿藻 Green alga | 狭叶型 Narrowly lobed foliose | 狭叶绿藻型地衣 Narrowly lobed foliose chlorolichens (NFL) | 高光照生境 High-light habitat |
短根条衣 Everniastrum nepalense (Evenep) | 绿藻 Green alga | 狭叶型 Narrowly lobed foliose | NFL | 高光照生境 High-light habitat |
卷梢哑铃孢 Heterodermia boryi (Hetbor) | 绿藻 Green alga | 狭叶型 Narrowly lobed foliose | NFL | 高光照生境 High-light habitat |
云南袋衣 Hypogymnia yunnanensis (Hypyun) | 绿藻 Green alga | 狭叶型 Narrowly lobed foliose | NFL | 高光照生境 High-light habitat |
裂髓树花 Ramalina conduplicans (Ramcon) | 绿藻 Green alga | 直立枝状 Shrubby fruticose | 直立枝状绿藻型地衣 Shrubby fruticose chlorolichens (SFL) | 高光照生境 High-light habitat |
槽枝衣 Sulcaria sulcata (Sulsul) | 绿藻 Green alga | 直立枝状 Shrubby fruticose | SFL | 高光照生境 High-light habitat |
多花松萝 Usnea florida (Usnflo) | 绿藻 Green alga | 直立枝状 Shrubby fruticose | SFL | 高光照生境 High-light habitat |
巢松萝 Usnea dasopoga (Usndas) | 绿藻 Green alga | 悬垂枝状 Pendent fruticose | 悬垂枝状绿藻型地衣 Pendent fruticose chlorolichens (PFL) | 高光照且干燥生境 High-light and dry habitat |
长松萝 Usnea longissima (Usnlon) | 绿藻 Green alga | 悬垂枝状 Pendent fruticose | PFL | 高光照潮湿生境 High-light and humid habitat |
表1 云南哀牢山亚热带森林目标附生地衣的生长特性
Table 1 Growth characteristics of target epiphytic lichens in subtropical forests in the Ailao Mountains, Yunnan
物种 Species | 共生藻型 Photobiont type | 生长型 Growth form | 功能群划分 Functional group | 主要生境 Main habitat |
---|---|---|---|---|
网肺衣 Lobaria retigera (Lobret) | 蓝藻 Cyanobacteria | 叶状 Foliose | 蓝藻型地衣 Cyanolichen (CYL) | 阴湿至高光照湿润生境 Shaded to high-light and humid habitat |
猫耳衣 Leptogium menziesii(Lepmen) | 蓝藻 Cyanobacteria | 叶状 Foliose | CYL | 潮湿环境 Humid habitat |
黑芽牛皮叶 Sticta fuliginosa(Stiful) | 蓝藻 Cyanobacteria | 叶状 Foliose | CYL | 潮湿高光照生境 Humid and high-light habitat |
针芽肺衣 Lobaria isidiophora(Lobisi) | 绿藻 Green alga | 阔叶型 Broadly lobed foliose | 阔叶绿藻型地衣 Broadly lobed foliose chlorolichens (BFL) | 中光至高光照生境 Medium to high-light habitat |
网大叶梅 Parmotrema reticulatum (Parret) | 绿藻 Green alga | 阔叶型 Broadly lobed foliose | BFL | 中光至高光照、潮湿生境 Medium to high-light, and humid habitat |
平滑牛皮叶 Sticta nylanderiana (Stinyl) | 绿藻 Green alga | 阔叶型 Broadly lobed foliose | BFL | 中光至高光照生境 Medium to high-light habitat |
黑腹绵腹衣 Anzia hypomelaena (Anzhyp) | 绿藻 Green alga | 狭叶型 Narrowly lobed foliose | 狭叶绿藻型地衣 Narrowly lobed foliose chlorolichens (NFL) | 高光照生境 High-light habitat |
短根条衣 Everniastrum nepalense (Evenep) | 绿藻 Green alga | 狭叶型 Narrowly lobed foliose | NFL | 高光照生境 High-light habitat |
卷梢哑铃孢 Heterodermia boryi (Hetbor) | 绿藻 Green alga | 狭叶型 Narrowly lobed foliose | NFL | 高光照生境 High-light habitat |
云南袋衣 Hypogymnia yunnanensis (Hypyun) | 绿藻 Green alga | 狭叶型 Narrowly lobed foliose | NFL | 高光照生境 High-light habitat |
裂髓树花 Ramalina conduplicans (Ramcon) | 绿藻 Green alga | 直立枝状 Shrubby fruticose | 直立枝状绿藻型地衣 Shrubby fruticose chlorolichens (SFL) | 高光照生境 High-light habitat |
槽枝衣 Sulcaria sulcata (Sulsul) | 绿藻 Green alga | 直立枝状 Shrubby fruticose | SFL | 高光照生境 High-light habitat |
多花松萝 Usnea florida (Usnflo) | 绿藻 Green alga | 直立枝状 Shrubby fruticose | SFL | 高光照生境 High-light habitat |
巢松萝 Usnea dasopoga (Usndas) | 绿藻 Green alga | 悬垂枝状 Pendent fruticose | 悬垂枝状绿藻型地衣 Pendent fruticose chlorolichens (PFL) | 高光照且干燥生境 High-light and dry habitat |
长松萝 Usnea longissima (Usnlon) | 绿藻 Green alga | 悬垂枝状 Pendent fruticose | PFL | 高光照潮湿生境 High-light and humid habitat |
图1 云南哀牢山亚热带森林附生地衣功能群的压力-体积曲线。A, 蓝藻型地衣。B, 绿藻型地衣。C, 阔叶地衣。D, 狭叶地衣。E, 直立地衣。F, 悬垂地衣。Ψ, 水势; RWC, 相对含水量。
Fig. 1 Pressure-volume curves of epiphytic lichen functional groups in subtropical forests in the Ailao Mountains, Yunnan. A, Cyanolichens. B, Chlorolichens. C, Broadly lobed foliose chlorolichens. D, Narrowly lobed foliose chlorolichens. E, Shrubby fruticose chlorolichens. F, Pendent fruticose chlorolichens. Ψ, water potential; RWC, relative water content.
共生藻型 Photobi-ont type | 生长型 Growth form | 物种 Species | 内部含水量 WCinternal (%, Dry mass) | 共质体水 Rs (%, Dry mass) | 质外体水 Ra (%, Dry mass) | 膨压损失点的 相对含水量 RWCTLP(%) | 膨压损失点的 渗透势ΨTLP (MPa) | 饱和渗透势 Ψsat (MPa) |
---|---|---|---|---|---|---|---|---|
蓝藻 Cyanob-acteria | 328.66 ± 36.84 Ac | 322.08 ± 36.79 Ac | 6.58 ± 1.19 Aab | 40.96 ± 3.97 Abc | -3.44 ± 0.33 Aa | -1.29 ± 0.13 Aab | ||
叶状 Foliose | 网肺衣 Lobaria retigera | 214.86 ± 11.54 | 208.02 ± 11.14 | 6.85 ± 2.64 | 55.34 ± 2.95 | -2.84 ± 0.35 | -1.55 ± 0.24 | |
猫耳衣 Leptogium menziesii | 497.80 ± 43.93 | 492.40 ± 43.56 | 5.40 ± 1.44 | 22.68 ± 1.49 | -3.86 ± 0.53 | -0.85 ± 0.14 | ||
黑芽牛皮叶 Sticta fuliginosa | 273.31 ± 32.08 | 265.81 ± 29.86 | 7.49 ± 2.30 | 44.86 ± 3.91 | -3.63 ± 0.77 | -1.46 ± 0.20 | ||
绿藻 Green alga | 155.28 ± 8.95 B | 149.71 ± 8.73 B | 5.57 ± 0.45 A | 46.93 ± 1.54 A | -3.80 ± 0.22 A | -1.71 ± 0.11 A | ||
阔叶型 Broadly lobed foliose | 137.05 ± 7.67 ab | 130.05 ± 7.18 ab | 7.00 ± 0.80 a | 56.89 ± 2.73 a | -3.45 ± 0.30 a | -1.89 ± 0.18 c | ||
针芽肺衣 Lobaria isidiophora | 133.11 ± 10.40 | 128.03 ± 9.95 | 5.08 ± 1.20 | 65.68 ± 3.14 | -3.85 ± 0.37 | -2.47 ± 0.24 | ||
网大叶梅 Parmotrema reticulatum | 119.18 ± 12.49 | 112.58 ± 11.77 | 6.60 ± 0.79 | 45.66 ± 3.44 | -3.41 ± 0.78 | -1.44 ± 0.32 | ||
平滑牛皮叶 Sticta nylanderiana | 158.87 ± 12.26 | 149.55 ± 11.44 | 9.32 ± 1.57 | 59.34 ± 2.00 | -3.08 ± 0.34 | -1.75 ± 0.18 | ||
狭叶型 Narrowly lobed foliose | 185.42 ± 23.36 ab | 179.71 ± 22.70 ab | 5.71 ± 0.93 ab | 45.75 ± 2.23 bc | -3.74 ± 0.43 ab | -1.72 ± 0.23 abc | ||
黑腹绵腹衣 Anzia hypomelaena | 349.87 ± 25.89 | 339.44 ± 25.63 | 10.43 ± 1.08 | 33.88 ± 1.99 | -1.58 ± 0.19 | -0.50 ± 0.07 | ||
短根条衣 Everniastrum nepalense | 115.29 ± 6.35 | 111.44 ± 6.40 | 3.86 ± 0.40 | 48.52 ± 2.02 | -4.74 ± 0.75 | -2.28 ± 0.44 | ||
卷梢哑铃孢 Heterodermia boryi | 109.69 ± 9.46 | 107.74 ± 9.72 | 1.95 ± 0.46 | 51.66 ± 1.29 | -4.98 ± 0.81 | -2.52 ± 0.42 | ||
云南袋衣 Hypogymnia yunnanensis | 166.81 ± 7.57 | 160.20 ± 7.77 | 6.61 ± 2.20 | 48.94 ± 6.04 | -3.64 ± 0.72 | -1.56 ± 0.25 | ||
直立枝状 Shrubby fruticose | 153.06 ± 10.08 a | 149.03 ± 9.88 a | 4.03 ± 0.77 b | 39.15 ± 2.46 c | -4.82 ± 0.45 b | -1.85 ± 0.23 bc | ||
裂髓树花 Ramalina conduplicans | 148.43 ± 14.35 | 142.97 ± 13.80 | 5.46 ± 1.10 | 48.02 ± 2.01 | -5.82 ± 0.89 | -2.70 ± 0.42 | ||
槽枝衣 Sulcaria sulcata | 128.74 ± 8.78 | 125.69 ± 8.03 | 3.05 ± 1.80 | 40.92 ± 2.38 | -3.97 ± 0.54 | -1.56 ± 0.16 | ||
多花松萝 Usnea florida | 182.00 ± 20.55 | 178.44 ± 20.20 | 3.57 ± 0.96 | 28.52 ± 2.35 | -4.68 ± 0.79 | -1.29 ± 0.26 | ||
悬垂枝状 Pendent fruticose | 125.67 ± 10.85 b | 120.23 ± 10.56 b | 5.44 ± 0.78 ab | 46.03 ± 3.63 b | -2.92 ± 0.28 a | -1.19 ± 0.06 a | ||
巢松萝 Usnea dasopoga | 153.47 ± 10.12 | 148.05 ± 9.08 | 5.43 ± 1.20 | 40.86 ± 3.71 | -3.05 ± 0.33 | -1.14 ± 0.10 | ||
长松萝 Usnea longissima | 97.86 ± 6.33 | 92.41 ± 5.72 | 5.45 ± 1.15 | 51.20 ± 5.65 | -2.79 ± 0.48 | -1.24 ± 0.08 |
表2 云南哀牢山亚热带森林附生地衣的水势参数(平均值±标准误)
Table 2 Water potential parameters (mean ± SE) of epiphytic lichens in subtropical forests in the Ailao Mountains, Yunnan
共生藻型 Photobi-ont type | 生长型 Growth form | 物种 Species | 内部含水量 WCinternal (%, Dry mass) | 共质体水 Rs (%, Dry mass) | 质外体水 Ra (%, Dry mass) | 膨压损失点的 相对含水量 RWCTLP(%) | 膨压损失点的 渗透势ΨTLP (MPa) | 饱和渗透势 Ψsat (MPa) |
---|---|---|---|---|---|---|---|---|
蓝藻 Cyanob-acteria | 328.66 ± 36.84 Ac | 322.08 ± 36.79 Ac | 6.58 ± 1.19 Aab | 40.96 ± 3.97 Abc | -3.44 ± 0.33 Aa | -1.29 ± 0.13 Aab | ||
叶状 Foliose | 网肺衣 Lobaria retigera | 214.86 ± 11.54 | 208.02 ± 11.14 | 6.85 ± 2.64 | 55.34 ± 2.95 | -2.84 ± 0.35 | -1.55 ± 0.24 | |
猫耳衣 Leptogium menziesii | 497.80 ± 43.93 | 492.40 ± 43.56 | 5.40 ± 1.44 | 22.68 ± 1.49 | -3.86 ± 0.53 | -0.85 ± 0.14 | ||
黑芽牛皮叶 Sticta fuliginosa | 273.31 ± 32.08 | 265.81 ± 29.86 | 7.49 ± 2.30 | 44.86 ± 3.91 | -3.63 ± 0.77 | -1.46 ± 0.20 | ||
绿藻 Green alga | 155.28 ± 8.95 B | 149.71 ± 8.73 B | 5.57 ± 0.45 A | 46.93 ± 1.54 A | -3.80 ± 0.22 A | -1.71 ± 0.11 A | ||
阔叶型 Broadly lobed foliose | 137.05 ± 7.67 ab | 130.05 ± 7.18 ab | 7.00 ± 0.80 a | 56.89 ± 2.73 a | -3.45 ± 0.30 a | -1.89 ± 0.18 c | ||
针芽肺衣 Lobaria isidiophora | 133.11 ± 10.40 | 128.03 ± 9.95 | 5.08 ± 1.20 | 65.68 ± 3.14 | -3.85 ± 0.37 | -2.47 ± 0.24 | ||
网大叶梅 Parmotrema reticulatum | 119.18 ± 12.49 | 112.58 ± 11.77 | 6.60 ± 0.79 | 45.66 ± 3.44 | -3.41 ± 0.78 | -1.44 ± 0.32 | ||
平滑牛皮叶 Sticta nylanderiana | 158.87 ± 12.26 | 149.55 ± 11.44 | 9.32 ± 1.57 | 59.34 ± 2.00 | -3.08 ± 0.34 | -1.75 ± 0.18 | ||
狭叶型 Narrowly lobed foliose | 185.42 ± 23.36 ab | 179.71 ± 22.70 ab | 5.71 ± 0.93 ab | 45.75 ± 2.23 bc | -3.74 ± 0.43 ab | -1.72 ± 0.23 abc | ||
黑腹绵腹衣 Anzia hypomelaena | 349.87 ± 25.89 | 339.44 ± 25.63 | 10.43 ± 1.08 | 33.88 ± 1.99 | -1.58 ± 0.19 | -0.50 ± 0.07 | ||
短根条衣 Everniastrum nepalense | 115.29 ± 6.35 | 111.44 ± 6.40 | 3.86 ± 0.40 | 48.52 ± 2.02 | -4.74 ± 0.75 | -2.28 ± 0.44 | ||
卷梢哑铃孢 Heterodermia boryi | 109.69 ± 9.46 | 107.74 ± 9.72 | 1.95 ± 0.46 | 51.66 ± 1.29 | -4.98 ± 0.81 | -2.52 ± 0.42 | ||
云南袋衣 Hypogymnia yunnanensis | 166.81 ± 7.57 | 160.20 ± 7.77 | 6.61 ± 2.20 | 48.94 ± 6.04 | -3.64 ± 0.72 | -1.56 ± 0.25 | ||
直立枝状 Shrubby fruticose | 153.06 ± 10.08 a | 149.03 ± 9.88 a | 4.03 ± 0.77 b | 39.15 ± 2.46 c | -4.82 ± 0.45 b | -1.85 ± 0.23 bc | ||
裂髓树花 Ramalina conduplicans | 148.43 ± 14.35 | 142.97 ± 13.80 | 5.46 ± 1.10 | 48.02 ± 2.01 | -5.82 ± 0.89 | -2.70 ± 0.42 | ||
槽枝衣 Sulcaria sulcata | 128.74 ± 8.78 | 125.69 ± 8.03 | 3.05 ± 1.80 | 40.92 ± 2.38 | -3.97 ± 0.54 | -1.56 ± 0.16 | ||
多花松萝 Usnea florida | 182.00 ± 20.55 | 178.44 ± 20.20 | 3.57 ± 0.96 | 28.52 ± 2.35 | -4.68 ± 0.79 | -1.29 ± 0.26 | ||
悬垂枝状 Pendent fruticose | 125.67 ± 10.85 b | 120.23 ± 10.56 b | 5.44 ± 0.78 ab | 46.03 ± 3.63 b | -2.92 ± 0.28 a | -1.19 ± 0.06 a | ||
巢松萝 Usnea dasopoga | 153.47 ± 10.12 | 148.05 ± 9.08 | 5.43 ± 1.20 | 40.86 ± 3.71 | -3.05 ± 0.33 | -1.14 ± 0.10 | ||
长松萝 Usnea longissima | 97.86 ± 6.33 | 92.41 ± 5.72 | 5.45 ± 1.15 | 51.20 ± 5.65 | -2.79 ± 0.48 | -1.24 ± 0.08 |
图2 云南哀牢山亚热带森林15种附生地衣的压力-体积曲线。A, 黑腹绵腹衣。B, 短根条衣。C, 卷梢哑铃孢。D, 云南袋衣。E, 猫耳衣。F, 针芽肺衣。G, 网肺衣。H, 网大叶梅。I, 裂髓树花。J, 黑芽牛皮叶。K, 平滑牛皮叶。L, 槽枝衣。M, 巢松萝。N, 多花松萝。O, 长松萝。Ψ, 水势; RWC, 相对含水量。不同形状符号表示不同样品(n = 5)。
Fig. 2 Pressure-volume curves of 15 epiphytic lichens in subtropical forests in the Ailao Mountains, Yunnan. A, Anzia hypomelaena. B, Everniastrum nepalense. C, Heterodermia boryi. D, Hypogymnia yunnanensis. E, Leptogium menziesii. F, Lobaria isidiophora. G, Lobaria retigera. H, Parmotrema reticulatum. I, Ramalina conduplicans. J, Sticta fuliginosa. K, Sticta nylanderiana. L, Sulcaria sulcate. M, Usnea dasopoga. N, Usnea florida. O, Usnea longissima. Ψ, water potential; RWC, relative water content. Different symbols represent different samples (n = 5).
水势参数 Water potential parameter | PC1 | PC2 |
---|---|---|
共质体水 Rs | 0.584 | - |
质外体水 Ra | 0.307 | -0.818 |
质壁分离时相对含水量 RWCTLP | -0.494 | -0.565 |
饱和渗透势 Ψsat | 0.566 | - |
标准差 Standard deviation | 1.451 | 1.038 |
方差贡献率 Proportion of variance | 52.66% | 26.94% |
方差累计贡献率 Cumulative proportion | 52.66% | 79.60% |
表3 云南哀牢山亚热带森林15种附生地衣水势参数在主成分分析(PCA)中的载荷和解释方差
Table 3 Principal component analysis (PCA) loading and interpretation variances of water potential parameters of 15 epiphytic lichens in subtropical forests in the Ailao Mountains, Yunnan
水势参数 Water potential parameter | PC1 | PC2 |
---|---|---|
共质体水 Rs | 0.584 | - |
质外体水 Ra | 0.307 | -0.818 |
质壁分离时相对含水量 RWCTLP | -0.494 | -0.565 |
饱和渗透势 Ψsat | 0.566 | - |
标准差 Standard deviation | 1.451 | 1.038 |
方差贡献率 Proportion of variance | 52.66% | 26.94% |
方差累计贡献率 Cumulative proportion | 52.66% | 79.60% |
图3 云南哀牢山亚热带森林15种附生地衣水势参数的主成分分析(PCA)。Anzhyp, 黑腹绵腹衣; Evenep, 短根条衣; Hetbor, 卷梢哑铃孢; Hypyun, 云南袋衣; Lepmen, 猫耳衣; Lobisi, 针芽肺衣; Lobret, 网肺衣; Parret, 网大叶梅; Ramcon, 裂髓树花; Stiful, 黑芽牛皮叶; Stinyl, 平滑牛皮叶; Sulsul, 槽枝衣; Usndas, 巢松萝; Usnflo, 多花松萝; Usnlon, 长松萝;
Fig. 3 Principal component analysis (PCA) plots of water potential parameters of 15 epiphytic lichens in subtropical forests in the Ailao Mountains, Yunnan. Anzhyp, Anzia hypomelaena; Evenep, Everniastrum nepalense; Hetbor, Heterodermia boryi; Hypyun, Hypogymnia yunnanensis; Lepmen, Leptogium menziesii; Lobisi, Lobaria isidiophora; Lobret, Lobaria retigera; Parret, Parmotrema reticulatum; Ramcon, Ramalina conduplicans; Stiful, Sticta fuliginosa; Stinyl, Sticta nylanderiana; Sulsul, Sulcaria sulcate; Usndas, Usnea dasopoga; Usnflo, Usnea florida; Usnlon, Usnea longissima. Ψsat, saturation water osmotic potential; Ra, apoplastic water; Rs, symplastic water; RWC TLP, relative water content at turgor loss point.
[1] | Barkman JJ (1958). Phytosociology and Ecology of Cryptogamic Epiphytes. van Gorcum, Assen, Netherlands. |
[2] |
Beckett RP (1997). Pressure-volume analysis of a range of poikilohydric plants implies the existence of negative turgor in vegetative cells. Annals of Botany, 79, 145-152.
DOI URL |
[3] | Cai JR, Qian TH, Lei JL (2015). Evaluation of drought resistance of five wild shrub species in South China. Ecological Science, 34, 94-103. |
[蔡静如, 钱瑭璜, 雷江丽 (2015). 华南地区5种野生灌木的抗旱性评价. 生态科学, 34, 94-103.] | |
[4] |
Castro-Díez P, Navarro J (2007). Water relations of seedlings of three Quercus species: variations across and within species grown in contrasting light and water regimes. Tree Physiology, 27, 1011-1018.
DOI URL |
[5] | Chen K, Liu WY, Li S, Song L (2014). Photosynthetic characteristics of three epiphytic lichens under different water conditions. Plant Diversity and Resources, 36, 603-610. |
[陈克, 刘文耀, 李苏, 宋亮 (2014). 不同水分条件下三种附生地衣的光合作用特性. 植物分类与资源学报, 36, 603-610.] | |
[6] |
Eriksson A, Gauslaa Y, Palmqvist K, Ekström M, Esseen PA (2018). Morphology drives water storage traits in the globally widespread lichen genus Usnea. Fungal Ecology, 35, 51-61.
DOI URL |
[7] |
Esseen PA, Rönnqvist M, Gauslaa Y, Coxson DS (2017). Externally held water—A key factor for hair lichens in boreal forest canopies. Fungal Ecology, 30, 29-38.
DOI URL |
[8] |
Gauslaa Y, Coxson DS (2011). Interspecific and intraspecific variations in water storage in epiphytic old forest foliose lichens. Botany, 89, 787-798.
DOI URL |
[9] |
Hartard B, Cuntz M, Máguas C, Lakatos M (2009). Water isotopes in desiccating lichens. Planta, 231, 179-193.
DOI PMID |
[10] |
He XD, Cong PF, Gao YB, Lu JG, Wang HT, Xue PP, Zhang X (2007). Drought resistance of four grasses using pressure- volume curve. Frontiers of Biology in China, 2, 425-430.
DOI URL |
[11] |
Honegger R, Peter M, Scherrer S (1996). Drought-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens. Protoplasma, 190, 221-232.
DOI URL |
[12] |
Hu T, Li S, Liu S, Liu WY, Chen X, Song L, Chen Q (2016). Water relations and photosynthetic characteristics in different functional groups of epiphytic lichens in montane forest of Ailaoshan. Chinese Journal of Plant Ecology, 40, 810-826.
DOI URL |
[胡涛, 李苏, 柳帅, 刘文耀, 陈曦, 宋亮, 陈泉 (2016). 哀牢山山地森林不同附生地衣功能群的水分关系和光合生理特征. 植物生态学报, 40, 810-826.]
DOI |
|
[13] | Lange OL (2003). Photosynthetic productivity if the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchanges physiological interpretation. Diel, seasonal, and annual carbon budgets. Flora, 198, 277-292. |
[14] | Lange OL, Ziegler H (1986). Different Limiting Processes of Photosynthesis in Lichens. Biological Control of Photosynthesis. Martinus Nijhoff Publishers, Dordrecht.147-161. |
[15] | Li HJ, Di XY, Chen JW, Wang MB (2004). A method of using SigmaPlot to calculate the moisture parameter Ψ TLP of the PV curve. Plant Research, 24, 71-75. |
[李洪建, 狄晓艳, 陈建文, 王孟本 (2004). 一种用SigmaPlot求PV曲线水分参数 Ψ TLP的方法. 植物研究, 24, 71-75.] | |
[16] |
Li S, Liu WY, Li DW (2013a). Bole epiphytic lichens as potential indicators of environmental change in subtropical forest ecosystems in southwest China. Ecological Indicators, 29, 93-104.
DOI URL |
[17] |
Li S, Liu WY, Li DW (2013b). Epiphytic lichens in subtropical forest ecosystems in southwest China: species diversity and implications for conservation. Biological Conservation, 159, 88-95.
DOI URL |
[18] |
Li S, Liu WY, Wang LS, Ma WZ, Song L (2011). Biomass, diversity and composition of epiphytic macrolichens in primary and secondary forests in the subtropical Ailao Mountains, SW China. Forest Ecology and Management, 261, 1760-1770.
DOI URL |
[19] |
Li S, Liu WY, Wang LS, Yang GP, Li DW (2007). Species diversity and distribution of epiphytic lichens in the primary and secondary forests in Ailao Mountain, Yunnan. Biodiversity Science, 15, 445-455.
DOI URL |
[李苏, 刘文耀, 王立松, 杨国平, 李达文 (2007). 云南哀牢山原生林及次生林群落附生地衣物种多样性与分布. 生物多样性, 15, 445-455.]
DOI |
|
[20] |
Longinotti S, Solhaug K, Gauslaa Y (2017). Hydration traits in cephalolichen members of the epiphytic old forest genus Lobaria (s. lat.). The Lichenologist, 49, 493-596.
DOI URL |
[21] |
McCune B (1993). Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of different ages in western Oregon and Washington. The Bryologist, 96, 405-411.
DOI URL |
[22] |
Motalebifard R, Najafi N, Oustan S, Nyshabouri MR, Valizadeh M (2013). The combined effects of phosphorus and zinc on evapotranspiration, leaf water potential, water use efficiency and tuber attributes of potato under water deficit conditions. Scientia Horticulturae, 162, 31-38.
DOI URL |
[23] |
Nardini A, Marchetto A, Tretiach M (2013). Water relation parameters of six Peltigera species correlate with their habitat preferences. Fungal Ecology, 6, 397-407.
DOI URL |
[24] | Nash TH (2008). Lichen Biology. 2nd ed. Cambridge University Press, Cambridge, UK. |
[25] | Nimis PL, Martellos S (2008). ITALIC-The Information System on Italian Lichens. Version 4.0. [2015-12-07]. http://dbiodbs.univ.trieste.it/. |
[26] |
Olson DM, Dinerstein E (1998). The global 200: a representation approach to conserving the earth’s most biologically valuable ecoregions. Conservation Biology, 12, 502-515.
DOI URL |
[27] |
Saruwatari MW, Davis SD (1989). Tissue water relations of three chaparral shrub species after wildfire. Oecologia, 80, 303-308.
DOI PMID |
[28] |
Sato T, Abdalla OS, Oweis TY, Sakuratani T (2006). The validity of predawn leaf water potential as an irrigation- timing indicator for field-grown wheat in northern Syria. Agricultural Water Management, 82, 223-236.
DOI URL |
[29] |
Smith DC, Molesworth S (1973). Lichen physiology xiii. Effects of rewetting dry lichens. New Phytologist, 72, 525-533.
DOI URL |
[30] |
Song L, Zhang YJ, Chen X, Li S, Lu HZ, Wu CS, Tan ZH, Liu WY, Shi XM (2015). Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest. Journal of Plant Research, 128, 573-584.
DOI URL |
[31] |
Tyree MT, Hammel HT (1972). The measurement of the turgor pressure and the water relations of plants by the pressure- bomb technique. Journal of Experimental Botany, 23, 267-282.
DOI URL |
[32] |
Vries MC, Watling JR (2008). Differences in the utilization of water vapour and free water in two co-occurring foliose lichens from semi-arid southern Australia. Austral Ecology, 33, 975-985.
DOI URL |
[33] | Wang LS (1995). Anzia physowea, a lichen new to China. Mycosystema, 14, 313-314. |
[王立松 (1995). 棒根绵腹衣在我国的首次发现. 真菌学报, 14, 313-314.] | |
[34] | Wang MB, Li HJ, Chai BF, Wu DM (1999). Drought resistance index of tree species in the loess region. Bulletin of Botanical Research, 19, 341-346. |
[王孟本, 李洪建, 柴宝峰, 武冬梅 (1999). 黄土区树种抗旱性指数的研究. 植物研究, 19, 341-346.] | |
[35] |
Wenkert W, Lemon ER, Sinclair TR (1978). Water content potential relationship in soya bean: changes in component potentials for mature and immature leaves under field conditions. Annals of Botany, 42, 295-307.
DOI URL |
[36] | Yan MJ, Yamamoto M, Yamanaka N, Yamamoto F, Liu GB, Du S (2013). A comparison of pressure-volume curves with and without rehydration pretreatment in eight woody species of the semiarid Loess Plateau. Acta Physiologiae Plantarum, 35, 1051-1060. |
[37] |
Zhang LS, Zhang HT, Hu JJ, Quan J, Xu SR, Han MY, Ma FW (2013). The response of pressure volume curve water parameters and root system hydraulic architecture of two apple rootstocks to drought stress. Acta Ecologica Sinica, 33, 3324-3331.
DOI URL |
[张林森, 张海亭, 胡景江, 权静, 胥生荣, 韩明玉, 马锋旺 (2013). 两种苹果砧木根系水力结构及其PV曲线水分参数对干旱胁迫的响应. 生态学报, 33, 3324-3331.] | |
[38] |
Zheng YX, Wu JC, Cao FL, Zhang YP (2010). Effects of water stress on photosynthetic activity, dry mass partitioning and some associated metabolic changes in four provenances of neem (Azadirachta indica A. Juss). Photosynthetica, 48, 361-369.
DOI URL |
[39] | Zhu H, Yan LC (2009). List of Seed Plants in the Ailao Mts. of Yunnan Province, China. Yunnan Science and Technology Press, Kunming. |
[朱华, 闫丽春 (2009). 云南哀牢山种子植物. 云南科技出版社, 昆明.] |
[1] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[2] | 孙文泰, 马明. 黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J]. 植物生态学报, 2021, 45(9): 972-986. |
[3] | 董正武, 赵英, 雷加强, 喜银巧. 塔克拉玛干沙漠不同区域柽柳沙包土壤盐分分布特征及其影响因素[J]. 植物生态学报, 2018, 42(8): 873-884. |
[4] | 胡涛, 李苏, 柳帅, 刘文耀, 陈曦, 宋亮, 陈泉. 哀牢山山地森林不同附生地衣功能群的水分关系和光合生理特征[J]. 植物生态学报, 2016, 40(8): 810-826. |
[5] | 徐世琴, 吉喜斌, 金博文. 典型固沙植物梭梭生长季蒸腾变化及其对环境因子的响应[J]. 植物生态学报, 2015, 39(9): 890-900. |
[6] | 李苏, 刘文耀, 石贤萌, 柳帅, 胡涛, 黄俊彪, 陈曦, 宋亮, 武传胜. 亚热带森林系统4种附生蓝藻地衣的分布对生境变化的响应[J]. 植物生态学报, 2015, 39(3): 217-228. |
[7] | 陈天翌, 刘增辉, 娄安如. 刺萼龙葵种群在中国不同分布地区的表型变异[J]. 植物生态学报, 2013, 37(4): 344-353. |
[8] | 慈敦伟,戴良香,宋文武,张智猛. 花生萌发至苗期耐盐胁迫的基因型差异[J]. 植物生态学报, 2013, 37(11): 1018-1027. |
[9] | 李贺, 张维康, 王国宏. 中国云杉林的地理分布与气候因子间的关系[J]. 植物生态学报, 2012, 36(5): 372-381. |
[10] | 魏丽萍, 王孝安, 王世雄, 朱志红, 郭华, 孙嘉男, 郝江勃. 黄土高原马栏林区基于不同植被组织尺度的群落物种多样性[J]. 植物生态学报, 2011, 35(1): 17-26. |
[11] | 吴清凤, 刘华杰. 火烧对内蒙古草原中坚韧胶衣固氮活性的影响[J]. 植物生态学报, 2008, 32(4): 908-913. |
[12] | 杨娟, 葛剑平, 刘丽娟, 丁易, 谭迎春. 卧龙自然保护区针阔混交林林隙更新规律[J]. 植物生态学报, 2007, 31(3): 425-430. |
[13] | 林金成, 强胜. 空心莲子草对南京春季杂草群落组成和物种多样性的影响[J]. 植物生态学报, 2006, 30(4): 585-592. |
[14] | 艾尼瓦尔·吐米尔, 阿地里江·阿不都拉, 阿不都拉·阿巴斯. 天山森林生态系统树生地衣植物群落数量分类及其物种多样性的研究[J]. 植物生态学报, 2005, 29(4): 615-622. |
[15] | 吐米尔, 阿不都拉·阿巴斯, 热衣木江·马木提, 孜比尔尼沙·吾买尔. 新疆天山西部山脉森林生态系统地衣群落结构的初步研究[J]. 植物生态学报, 2003, 27(6): 810-816. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19