植物生态学报 ›› 2016, Vol. 40 ›› Issue (8): 810-826.DOI: 10.17521/cjpe.2015.0445
胡涛1,2, 李苏1, 柳帅1,2, 刘文耀1,,A;*, 陈曦1,2, 宋亮1, 陈泉1,2
出版日期:
2016-08-10
发布日期:
2016-08-23
通讯作者:
刘文耀
基金资助:
Tao HU1,2, Su LI1, Shuai LIU1,2, Wen-Yao LIU1,*, Xi CHEN1,2, Liang SONG1, Quan CHEN1,2
Online:
2016-08-10
Published:
2016-08-23
Contact:
Wen-Yao LIU
摘要:
附生地衣是热带和亚热带山地森林生态系统中重要的结构性组分, 在生物多样性保护、环境监测、养分循环中发挥着重要作用。附生地衣按共生藻、生活型和繁殖策略的不同可划分为不同的功能群, 不同附生地衣功能群的分布格局存在较大的差异, 然而其生理生态机制仍不清楚。该研究以我国西南地区哀牢山亚热带山地森林中的附生地衣优势类群为研究对象, 对该地区蓝藻地衣、阔叶地衣、狭叶地衣及枝状地衣4种功能群的8种附生地衣的水分关系、光合生理特征等进行了测定分析, 结果显示: 不同功能群附生地衣的持水力和失水速率均存在差异, 其中蓝藻地衣具有较高的最大水分含量, 而枝状地衣的失水速率较快; 过高和过低的水分含量都会抑制附生地衣的光合作用, 但抑制程度有所差异; 蓝藻地衣的光合作用最适水分含量比较高, 表明它们的光合生理活动对水分条件要求较高, 所以它们偏好潮湿的生境, 同时蓝藻地衣的光补偿点比较低但光饱和点却不低, 反映出它们具有较宽的光强适应范围, 所以蓝藻地衣能够同时分布于强光和弱光生境中; 枝状地衣的光合最适水分含量较低, 表明它们的光合生理活动对水分条件要求不是很高, 能够适应较为干旱的环境, 同时枝状地衣的光补偿点和光饱和点都很高, 说明它们的光合生理活动对光照条件要求比较高, 所以它们广泛分布于强光生境中; 阔叶和狭叶地衣的光补偿点比较高, 说明它们更适应有充足光照条件的生境。
胡涛, 李苏, 柳帅, 刘文耀, 陈曦, 宋亮, 陈泉. 哀牢山山地森林不同附生地衣功能群的水分关系和光合生理特征. 植物生态学报, 2016, 40(8): 810-826. DOI: 10.17521/cjpe.2015.0445
Tao HU, Su LI, Shuai LIU, Wen-Yao LIU, Xi CHEN, Liang SONG, Quan CHEN. Water relations and photosynthetic characteristics in different functional groups of epiphytic lichens in montane forest of Ailaoshan. Chinese Journal of Plant Ecology, 2016, 40(8): 810-826. DOI: 10.17521/cjpe.2015.0445
功能群 Functional group | 简称 Abbreviation | 功能群特征 Functional traits |
---|---|---|
蓝藻地衣 Cyanolichens | CYL | 共生藻为蓝藻或包含蓝藻 With cyanobacteria |
枝状地衣 Fruticose lichens | FRL | 枝状或灌丛状, 共生藻为绿藻 Fruticose, with green algae |
阔叶地衣 Broadly lobed foliose lichens | BFL | 大型阔叶状, 共生藻为绿藻 Broadly lobed foliose, with green algae |
狭叶地衣 Narrowly lobed foliose lichens | NFL | 小型或中型细叶状, 共生藻为绿藻 Narrowly lobed foliose, with green algae |
表1 附生地衣功能群的划分
Table 1 Classification of functional groups of epiphytic lichens
功能群 Functional group | 简称 Abbreviation | 功能群特征 Functional traits |
---|---|---|
蓝藻地衣 Cyanolichens | CYL | 共生藻为蓝藻或包含蓝藻 With cyanobacteria |
枝状地衣 Fruticose lichens | FRL | 枝状或灌丛状, 共生藻为绿藻 Fruticose, with green algae |
阔叶地衣 Broadly lobed foliose lichens | BFL | 大型阔叶状, 共生藻为绿藻 Broadly lobed foliose, with green algae |
狭叶地衣 Narrowly lobed foliose lichens | NFL | 小型或中型细叶状, 共生藻为绿藻 Narrowly lobed foliose, with green algae |
物种 Species | 单位干质量持水量 Water-holding capacity per dry mass (n = 10) | 最大含水量 Maximum water content (% dry mass) | T80 (h) | T50 (h) | T20 (h) |
---|---|---|---|---|---|
皮革肾岛衣 Nephromopsis pallescens | 3.01 ± 0.09cd | 308.8 | 0.59 | 1.77 | 3.78 |
针芽肺衣 Lobaria isidiophora | 2.84 ± 0.16d | 315.1 | 0.61 | 1.83 | 3.86 |
网肺衣 Lobaria retigera | 3.76 ± 0.20bcd | 373.1 | 0.63 | 1.87 | 3.82 |
猫耳衣 Leptogium menziesii | 10.49 ± 0.49a | 1 104.1 | 1.03 | 2.94 | 5.64 |
云南袋衣 Hypogymnia yunnanensis | 5.01 ± 0.30abc | 473.6 | 0.56 | 1.69 | 3.69 |
白绵腹衣 Anzia leucobatoides | 5.70 ± 0.19ab | 514.2 | 1.83 | 4.85 | 8.28 |
多花松萝 Usnea florida | 3.22 ± 0.09cd | 193.6 | 0.4 | 1.26 | 3.14 |
裂髓树花 Ramalina conduplicans | 6.07 ± 0.18ab | 449.2 | 0.48 | 1.48 | 3.41 |
表2 不同附生地衣的持水量与失水速率(平均值±标准误差)
Table 2 Water-holding and rate of water loss in different epiphytic lichens (mean ± SE)
物种 Species | 单位干质量持水量 Water-holding capacity per dry mass (n = 10) | 最大含水量 Maximum water content (% dry mass) | T80 (h) | T50 (h) | T20 (h) |
---|---|---|---|---|---|
皮革肾岛衣 Nephromopsis pallescens | 3.01 ± 0.09cd | 308.8 | 0.59 | 1.77 | 3.78 |
针芽肺衣 Lobaria isidiophora | 2.84 ± 0.16d | 315.1 | 0.61 | 1.83 | 3.86 |
网肺衣 Lobaria retigera | 3.76 ± 0.20bcd | 373.1 | 0.63 | 1.87 | 3.82 |
猫耳衣 Leptogium menziesii | 10.49 ± 0.49a | 1 104.1 | 1.03 | 2.94 | 5.64 |
云南袋衣 Hypogymnia yunnanensis | 5.01 ± 0.30abc | 473.6 | 0.56 | 1.69 | 3.69 |
白绵腹衣 Anzia leucobatoides | 5.70 ± 0.19ab | 514.2 | 1.83 | 4.85 | 8.28 |
多花松萝 Usnea florida | 3.22 ± 0.09cd | 193.6 | 0.4 | 1.26 | 3.14 |
裂髓树花 Ramalina conduplicans | 6.07 ± 0.18ab | 449.2 | 0.48 | 1.48 | 3.41 |
图2 不同附生地衣失水动力学曲线。A, 皮革肾岛衣。B, 针芽肺衣。C, 网肺衣。D, 猫耳衣。E, 云南袋衣。F, 白绵腹衣。G, 多花松萝。H, 裂髓树花。WC表示含水量。不同形状的图列符号表示不同的样品(n = 3-5)。
Fig. 2 Water release curves for different epiphytic lichens. A, Nephromopsis pallescens. B, Lobaria isidiophora. C, Lobaria retigera. D, Leptogium menziesii. E, Hypogymnia yunnanensis. F, Anzia leucobatoides. G, Usnea florida. H, Ramalina conduplicans. WC in graphs refers to water content. Different shapes of symbols represent different samples (n = 3-5).
图3 不同附生地衣失水过程中不同时刻的含水量。含水量表示为地衣含水量占最大含水量的百分比。
Fig. 3 Water content in different epiphytic lichens at different times during water loss. Hydration (%) refers to the percentage of maximum water content.
图4 不同附生地衣光合作用水分响应曲线。A, 皮革肾岛衣。B, 针芽肺衣。C, 网肺衣。D, 猫耳衣。E, 云南袋衣(R2 = 0.83, p < 0.001)。F, 白绵腹衣。G, 多花松萝。H, 裂髓树花。Pn和WC分别表示净光合速率和含水量。不同形状的图列符号表示不同的样品(n = 4, 5)。
Fig. 4 Photosynthetic water response curves for different epiphytic lichens. A, Nephromopsis pallescens. B, Lobaria isidiophora. C, Lobaria retigera. D, Leptogium menziesii. E, Hypogymnia yunnanensis. F, Anzia leucobatoides. G, Usnea florida. H, Ramalina conduplicans. Pn and WC in graphs refer to net photosynthesis rate and water content, respectively. Different shapes of symbols represent different samples (n = 4, 5).
图5 附生地衣光合最适水分含量和最大水分含量的关系(A), 水分补偿点和最适水分补偿点的关系(B), 水分含量和光合作用的关系(C)。图C中净光合速率比表示为占最大净光合速率的百分比。
Fig. 5 The relationship between optimal water content and maximum water content (A), the relationship between water compensation point and optimal water content (B), and the relationship between photosynthesis and water content in different epiphytic lichens (C). Photosynthesis is expressed as the percentage of max net photosynthesis.
物种 Species | 最适水分含量 Optimal water content (% dry mass) | 水分补偿点 Water compensation point (% dry mass) | 初始斜率 Initial slope |
---|---|---|---|
皮革肾岛衣 Nephromopsis pallescens | 232.6 | 24.2 | 0.75 |
针芽肺衣 Lobaria isidiophora | 119.0 | 16.0 | 2.11 |
网肺衣 Lobaria retigera | 172.9 | 44.4 | 1.11 |
猫耳衣 Leptogium menziesii | 419.5 | 16.3 | 0.50 |
云南袋衣 Hypogymnia yunnanensis | 175.0 | 22.3 | 0.98 |
白绵腹衣 Anzia leucobatoides | 298.9 | 19.7 | 0.64 |
多花松萝 Usnea florida | 93.0 | 27.0 | 2.59 |
裂髓树花 Ramalina conduplicans | 139.4 | 33.7 | 1.92 |
表3 各附生地衣光合作用的最适水分含量和水分补偿点, 光合作用和水分含量关系曲线的初始斜率
Table 3 Optimal water content, water compensation point, and initial slope of water content-dependent net photosynthesis in different epiphytic lichens
物种 Species | 最适水分含量 Optimal water content (% dry mass) | 水分补偿点 Water compensation point (% dry mass) | 初始斜率 Initial slope |
---|---|---|---|
皮革肾岛衣 Nephromopsis pallescens | 232.6 | 24.2 | 0.75 |
针芽肺衣 Lobaria isidiophora | 119.0 | 16.0 | 2.11 |
网肺衣 Lobaria retigera | 172.9 | 44.4 | 1.11 |
猫耳衣 Leptogium menziesii | 419.5 | 16.3 | 0.50 |
云南袋衣 Hypogymnia yunnanensis | 175.0 | 22.3 | 0.98 |
白绵腹衣 Anzia leucobatoides | 298.9 | 19.7 | 0.64 |
多花松萝 Usnea florida | 93.0 | 27.0 | 2.59 |
裂髓树花 Ramalina conduplicans | 139.4 | 33.7 | 1.92 |
图6 各附生地衣光响应曲线。A, 皮革肾岛衣。B, 针芽肺衣。C, 网肺衣。D, 猫耳衣。E, 云南袋衣(R2 = 0.83, p < 0.001)。F, 白绵腹衣。G, 多花松萝。H, 裂髓树花。不同形状的图列符号表示不同的样品(n = 4, 5)。
Fig. 6 Photosynthetic light response curves for different epiphytic lichens. A, Nephromopsis pallescens. B, Lobaria isidiophora. C, Lobaria retigera. D, Leptogium menziesii. E, Hypogymnia yunnanensis. F, Anzia leucobatoides. G, Usnea florida. H, Ramalina conduplicans. Pn and I in graphs refer to net photosynthesis and light intensity, respectively. Different shapes of symbols represent different samples (n = 4, 5).
物种 Species | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) | 最大净光合速率 Pnmax (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) |
---|---|---|---|---|
皮革肾岛衣 Nephromopsis pallescens | 46.6 ± 2.3a | 407.5 ± 14.6b | 0.88 ± 0.03e | 0.66 ± 0.04ab |
针芽肺衣 Lobaria isidiophora | 43.4 ± 2.6ab | 466.4 ± 22.7b | 1.77 ± 0.06c | 0.83 ± 0.03a |
网肺衣 Lobaria retigera | 20.3 ± 2.2c | 416.3 ± 25.4b | 2.85 ± 0.05a | 0.63 ± 0.03ab |
猫耳衣 Leptogium menziesii | 23.2 ± 0.3c | 322.4 ± 25.4b | 1.61 ± 0.02c | 0.60 ± 0.02ab |
云南袋衣 Hypogymnia yunnanensis | 41.1 ± 3.7ab | 410.7 ± 40.6b | 1.72 ± 0.05c | 0.94 ± 0.16a |
白绵腹衣 Anzia leucobatoides | 36.0 ± 2.1b | 441.7 ± 37.6b | 2.17 ± 0.07b | 0.90 ± 0.04a |
多花松萝 Usnea florida | 35.5 ± 2.2b | 610.9 ± 54.3a | 1.29 ± 0.07d | 0.37 ± 0.01b |
裂髓树花 Ramalina conduplicans | 38.6 ± 2.3ab | 613.4 ± 42.3a | 2.10 ± 0.08b | 0.95 ± 0.03a |
表4 各附生地衣的光响应曲线参数(平均值±标准误差, n = 5)
Table 4 Parameters of light response curves for different epiphytic lichens (mean ± SE, n = 5)
物种 Species | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) | 最大净光合速率 Pnmax (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) |
---|---|---|---|---|
皮革肾岛衣 Nephromopsis pallescens | 46.6 ± 2.3a | 407.5 ± 14.6b | 0.88 ± 0.03e | 0.66 ± 0.04ab |
针芽肺衣 Lobaria isidiophora | 43.4 ± 2.6ab | 466.4 ± 22.7b | 1.77 ± 0.06c | 0.83 ± 0.03a |
网肺衣 Lobaria retigera | 20.3 ± 2.2c | 416.3 ± 25.4b | 2.85 ± 0.05a | 0.63 ± 0.03ab |
猫耳衣 Leptogium menziesii | 23.2 ± 0.3c | 322.4 ± 25.4b | 1.61 ± 0.02c | 0.60 ± 0.02ab |
云南袋衣 Hypogymnia yunnanensis | 41.1 ± 3.7ab | 410.7 ± 40.6b | 1.72 ± 0.05c | 0.94 ± 0.16a |
白绵腹衣 Anzia leucobatoides | 36.0 ± 2.1b | 441.7 ± 37.6b | 2.17 ± 0.07b | 0.90 ± 0.04a |
多花松萝 Usnea florida | 35.5 ± 2.2b | 610.9 ± 54.3a | 1.29 ± 0.07d | 0.37 ± 0.01b |
裂髓树花 Ramalina conduplicans | 38.6 ± 2.3ab | 613.4 ± 42.3a | 2.10 ± 0.08b | 0.95 ± 0.03a |
[1] | Aptroot A (1997). Lichen biodiversity in Papua New Guinea, with the report of 173 species on one tree. In: Türk R, Zore R eds. Progress and Problems in Lichenology in the Nineties. Bibliotheca Lichenologica, Berlin, Germany. 203-213. |
[2] | Aptroot A, Sipman HJM (1997). Diversity of lichenized fungi in the tropics. In: Hyde KD ed. Biodiversity of Tropical Microfungi. Hong Kong University Press, Hong Kong, China. 93-106. |
[3] | Chen K, Liu WY, Li S, Song L (2014). Photosynthetic characteristics of three epiphytic lichens under different water conditions. Plant Diversity and Resources, 36, 603-610. (in Chinese with English abstract)[陈克, 刘文耀, 李苏, 宋亮 (2014). 不同水分条件下三种附生地衣的光合作用特性. 植物分类与资源学报, 36, 603-610.] |
[4] | Cislaghi C, Nimis PL (1997). Lichens, air pollution and lung cancer. Nature, 387, 463-464. |
[5] | Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ (2007). Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry. Annals of Botany, 99, 987-1001. |
[6] | Cornelissen JHC, Steege HT (1989). Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. Journal of Tropical Ecology, 5, 29-35. |
[7] | DÍaz S, Cabido M (2001). Vive la difference: Plant functional diversity matters to ecosystem processes. Tends in Ecology & Evolution, 16, 646-655. |
[8] | Ellis CJ, Coppins BJ (2006). Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. Journal of Biogeography, 33, 1643-1656. |
[9] | Ellis CJ, Coppins BJ (2007). Changing climate and historic-woodland structure interact to control species diversity of the ‘Lobarion’ epiphyte community in Scotland. Journal of Vegetation Science, 18, 725-34. |
[10] | Ellis CJ, Coppins BJ (2010). Integrating multiple landscape- scale drivers in the lichen epiphyte response: Climatic setting, pollution regime and woodland spatial-temporal structure. Diversityand Distributions, 16, 43-52. |
[11] | Esseen PA, Olsson T, Coxson D, Gauslaa Y (2015). Morphology influences water storage in hair lichens from boreal forest canopies. Fungal Ecology, 18, 26-35. |
[12] | Galun M (1988). Handbook of Lichenology. CRC Press, Boca Raton, USA. |
[13] | Gauslaa Y, Coxson DS (2011). Interspecific and intraspecific variations in water storage in epiphytic old forest foliose lichens. Botany, 89, 787-798. |
[14] | Geiser LH, Neitlich PN (2007). Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environment Pollution, 145, 203-218. |
[15] | Giordani P (2007). Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environmental Pollution, 146, 317-323. |
[16] | Giordani P, Brunialti G, Bacaro G, Nascimbene J (2012). Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecological Indicators, 18, 413-420. |
[17] | Giordani P, Incerti G (2008). The influence of climate on the distribution of lichens: A case study in a borderline area (Liguria, NW Italy). Plant Ecology, 195, 257-272. |
[18] | Giordani P, Incerti G, Rizzl G, Rellini I, Nimis PL, Modenesi P (2014). Functional traits of cryptogams in Mediterranean ecosystems are driven by water, light and substrate interactions. Journal of Vegetation Science, 25, 778-792. |
[19] | Glime JM (. Cited: 2012-06-20. |
[20] | Goward T, Arsenault A (2000). Cyanolichen distribution in young unmanaged forests: A dripzone effect? The Bryologist, 103, 28-37. |
[21] | Gradstein SR (1992). The vanishing tropical rain forest as an environment for bryophytes and lichens. In: Bates JW, Farvner AM eds. Bryophytes and Lichens in a Changing Environment. Clarendon Press, Oxford, UK. 234-258. |
[22] | Green TGA, Büdel B, Meyer A, Zellner H, Lange OL (1997). Temperate rainforest lichens in New Zealand: Light response of photosynthesis. New Zealand Journal of Botany, 35, 493-504. |
[23] | Green TGA, Lange OL (1994). Photosynthesis of poikilohydric plants: Lichens and bryophytes—A comparison. In: Schulze DE, Caldwell MM eds. Ecophysiology of Photosynthesis. Springer-Verlag, Berlin. 319-342. |
[24] | Green TGA, Sancho LG, Pintado A (2011).Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Lüttge U, Beck E, Bartels D eds. Plant Desiccation Tolerance. Springer-Verlag, Berlin, Germany. 89-120. |
[25] | Gustafsson L, Eriksson I (1995). Factors of importance for the epiphytic vegetation aspen Populus tremula with special emphasis on chemistry and soil chemistry. Journal of Applied Ecology, 32, 412-424. |
[26] | Hartard B, Cuntz M, Maguas C, Lakatos M (2009). Water isotopes in desiccating lichens. Planta, 231, 179-193. |
[27] | Hauck M, Dulamsuren C, Mühlenberg M (2007). Lichen diversity on steppe slopes in the northern Mongolian mountain taiga and its dependence on microclimate. Flora, 202, 530-546. |
[28] | Hauck M, Spribille T (2005). The significance of precipitation and substrate chemistry for epiphytic lichen diversity in spruce-fir forests of the Salish Mountains, northwestern Montana. Flora, 200, 547-562. |
[29] | Holz I, Gradstein SR (2005). Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica—Species richness, community composition and ecology. Plant Ecology, 178, 89-109. |
[30] | Honegger R, Peter M, Scherrer S (1996). Drought-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens. Protoplasma, 190, 221-232. |
[31] | Johansson P (2008). Consequences of disturbance on epiphytic lichens in boreal and near boreal forests. Biological Conservation, 141, 1933-1944. |
[32] | Jovan S, McCune B (2004). Regional variation in epiphytic macrolichen communities in northern and central California forests. Bryologist, 107, 328-339. |
[33] | Lakatos M, Lange-Bertalot H, Büdel B (2004). Diatoms living inside the thallus of the green algal lichen Coenogonium linkii in neotropical lowland rain forests. Journal of Phycology, 40, 70-73. |
[34] | Lakatos M, Rascher U, Büdel B. (2006). Functional character- istics of corticolous lichens in the understory of a tropical lowland and rain forest. New Phytologist, 172, 679-695. |
[35] | Lange OL (1980). Moisture content and CO2 exchange in lichens. I. In?uence of temperature on moisture dependent net photosynthesis and dark respiration in Ramalina maciformis. Oecologia, 45, 82-87. |
[36] | Lange OL (2002). Photosynthetic productivity of the epilithic lichen Lecanora muralis: Long-term field monitoring of CO2 exchange and its physiological interpretation. I. Dependence of photosynthesis on water content, light, temperature, and CO2 concentration from laboratory measurements. Flora, 197, 233-249. |
[37] | Lange OL, Büdel B, Heber U, Meyer A, Zellner H, Green TGA (1993). Temperate rainforest lichens in New Zealand: High thallus water content can severely limit photosynthetic CO2 exchange. Oecologia, 95, 303-313. |
[38] | Lange OL, Büdel B, Meyer A, Zellner H, Zotz G (2004). Lichen carbon gain under tropical conditions: Water relations and CO2 exchange of three Lobariaceae species of a lower montane rainforest in Panama. Lichenologist, 36, 329-334. |
[39] | Lange OL, Green TGA, Reichenberger H, Meyer A (1996). Photosynthetic depression at high thallus water content in lichens: Concurrent use of gas exchange and fluorescence techniques with a cyanobacterial and a green algal Peltigera species. Botanica Acta, 109, 43-50. |
[40] | Lange OL, Matthes U (1981). Moisture-dependent CO2 exchange of lichens. Photosynthetica, 15, 555-574. |
[41] | Lange OL, Meyer A, Ullmann I, Zellner H (1991). Mikroklima, Wassergehalt und Photosynthese von Flechten in der küstennahen Nebelzone der Namib-Wüste: Messungen während der herbstlichen Witterungsperiod. Flora, 185, 233-266. |
[42] | Lange OL, Meyer A, Zellner H, Heber U (1994). Photosynthesis and water relations of lichen soil crusts—Field measurements in the coastal fog zone of the Namib Desert. Functional Ecology, 8, 253-264. |
[43] | Lange OL, Ziegler H (1986). Different limiting processes of photosynthesis in lichens. In: Marcelle R, Clijsters H, van Poucke M eds. Biological Control of Photosynthesis. Martinus Nijhoff Publishers, Dordrecht. 147-161. |
[44] | Larson DW (1981). Differential wetting in some lichens and mosses: The role of morphology. The Bryologist, 84, 1-15. |
[45] | Larson DW, Kershaw KA (1976). Studies on lichen-dominated systems XVIII. Morphological control of evaporation in lichens. Canadian Journal of Botany, 54, 2061-2073. |
[46] | Li S, Liu WY, Li DW (2013a). Bole epiphytic lichens as potential indicators of environmental change in subtropical forest ecosystems in southwest China. Ecological Indicators, 29, 93-104. |
[47] | Li S, Liu WY, Li DW (2013b). Epiphytic lichens in subtropical forest ecosystems in southwest China: Species diversity and implications for conservation. Biological Conservation,159, 88-95. |
[48] | Li S, Liu WY, Shi XM, Liu S, Hu T, Huang JB, Chen X, Song L, Wu CS (2015). Responses of the distribution of four epiphytic cyanolichens to habitat change in subtropical forests. Chinese Journal of Plant Ecology, 39, 217-228. (in Chinese with English abstract)[李苏, 刘文耀, 石贤萌, 柳帅, 胡涛, 黄俊彪, 陈曦, 宋亮, 武传胜 (2015). 亚热带森林生态系统4种附生蓝藻地衣的分布对生境变化的响应. 植物生态学报, 39, 217-228.] |
[49] | Li S, Liu WY, Wang LS, Ma WZ, Song L (2011). Biomass, diversity and composition of epiphytic macrolichens in primary and secondary forests in the subtropical Ailao Mountains, southwest China. Forest Ecology and Management, 261, 1760-1770. |
[50] | Li S, Liu WY, Wang LS, Yang GP, Li DW (2007). Species diversity and distribution of epiphytic lichens in the primary and secondary forests in Ailao Mountain, Yunnan. Biodiversity Science, 15, 445-455. (in Chinese with English abstract)[李苏, 刘文耀, 王立松, 杨国平, 李达文 (2007). 云南哀牢山原生林及次生林群落附生地衣物种多样性与分布. 生物多样性, 15, 445-455.] |
[51] | Liu WY, Fox JED, Xu ZF (2002). Nutrient fluxes in bulk precipitation, throughfall and stemflow in montane moist evergreen broad-leaved forest on Ailao Mountain in Yunnan, SW China. Journal of Tropical Ecology, 18, 527-548. |
[52] | Liu Y, Zhang YP, Liu YH, Gao F, Gong HD (2009). Climate change from 1980 to 2005 in the Ailao Mountains, Southwest China. Journal of Mountain Research, 27, 203-210. (in Chinese with English abstract)[刘洋, 张一平, 刘玉洪, 高富, 巩合德 (2009). 哀牢山北段地区气候特征及变化趋势. 山地学报, 27, 203-210.] |
[53] | Liu YH (1993). Study on climate characteristics of evergreen broad-leaf forest on Ailao Mountain. Scientia Silvae Sinicae, 29, 547-552. (in Chinese with English abstract)[刘玉洪 (1993). 哀牢山常绿阔叶林地的气候特征研究. 林业科学, 29, 547-552.] |
[54] | Ma WZ (2009). The Composition and Biomass of Epiphytic Materials and Their Relationships with Ecological Factors in Xujiaba Region form Ailao Mountain, Yunnan. PhD dissertation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming. (in Chinese)[马文章 (2009). 云南哀牢山徐家坝地区附生(植)物的组成、生物量及其与生态因子的关系. 博士学位论文, 中国科学院西双版纳热带植物园, 昆明.] |
[55] | Marini L, Nascimbene J, Nimis PL (2011). Large-scale patterns of epiphytic lichen species richness: Photobiont-dependent response to climate and forest structure. Science of the Total Environment, 409, 4381-4386. |
[56] | McCune B (1993). Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of different ages in western Oregon and Washington. The Bryologist, 96, 405-411. |
[57] | Montfoort D, Ek R (1990). Vertical distribution and ecology of epiphytic bryophytes and lichens in a lowland rain forest in French Guyana. PhD dissertation, University of Utrecht, Utrecht, the Netherlands. |
[58] | Nascimbene J, Brunialti G, Ravera S, Frati L, Caniglia G (2010). Testing Lobaria pulmonaria (L.) Hoffm as an indicator of lichen conservation importance of Italian forests. Ecological Indicators, 10, 353-360. |
[59] | Nimis PL, Martellos S (. Cited: 2015-12-07. |
[60] | Palmqvist K (2000). Carbon economy in lichens. New Phytologist, 148, 11-36. |
[61] | Pintado A, Valladares F, Sancho LG (1997). Exploring phenol- typic plasticity in the lichen Ramalina capitata: Morphol- ogy, water relations and chlorophyll content in north- and south-facing populations. Annals of Botany, 80, 345-353. |
[62] | Ricotta C, Bacaro (2010). On plot to plot dissimilarity measures based on species functional traits. Community Ecology, 11, 113-119. |
[63] | Rikkinen J (2009). Relations between cyanobacterial symbionts in lichens and plants. In: Pawlowski K ed. Prokaryotic Symbionts in Plants. Springer, Berlin. 265-270. |
[64] | Sala OE, Chapin III FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774. |
[65] | Sancho LG, Kappen L (1989). Photosynthesis and water rela- tions and the role of anatomy in Umbilicariaceae (lichens) from Central Spain. Oecologia, 81, 473-480. |
[66] | Sipman HJM, Harris RC (1989). Lichens. In: Lieth H, Werger MJA eds. Tropical Rain Forest Ecosystems (Bio- geographical and Ecological Studies), Ecosystems of the World 14B. Elsevier, Amsterdam, USA. 303-309. |
[67] | Sipman HJM, Tan BC (1990). A field impression of the lichen and bryophyte zonation on Mount Kinabalu. Flora Malesiana Bulletin, 10, 241-244. |
[68] | Song L, Zhang YJ, Chen X, Li S, LU HZ, Wu CS, Tan ZH, Liu WY, Shi XM (2015). Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest. Journal of Plant Research, 128, 573-584. |
[69] | Travis JMJ, Brooker RW, Clark, EJ, Dytham C (2006). The distribution of positive and negative species interactions across environmental gradients on a dual-lattice model. Journal of Theoretical Biology, 241, 896-902. |
[70] | Webb CT, Hoeting JA, Arns GM, Pyne MI, Poff NL (2010). A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters, 13, 267-283. |
[71] | Xu HQ, Liu WY (2005). Species diversity and distribution of epiphytes in the montane moist evergreen broad-leaved forest in Ailao Mountain, Yunnan. Biodiversity Science, 13, 137-147.[徐海清, 刘文耀 (2005). 云南哀牢山山地湿性常绿阔叶林附生植物的多样性与分布. 生物多样性, 13, 137-147.] |
[72] | Yao YL, Liu WY, Ma WZ, Song L (2012). Species composition and diversity of epiphytes of several ecotones in Ailao Mountain National Nature Reserve, Yunnan. Biodiversity Science, 20, 654-664. (in Chinese with English abstract)[姚元林, 刘文耀, 马文章, 宋亮 (2012). 云南哀牢山国家保护区几个过渡带树干附生苔藓的物种组成与多样性. 生物多样性, 20, 654-664.] |
[73] | Ye ZP (2007). A new model for relationship between light intensity and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45, 637-640. |
[74] | Ye ZP (2010). A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 34, 727-740. (in Chinese with English abstract)[叶子飘 (2010). 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 34, 722-740.] |
[75] | You CX (1983). Classification of vegetation in Xujiaba region in Ailao Mts. In: Wu ZY ed. Research of Forest Ecosystems on Ailao Mountains, Yunnan. Yunnan Science and Technology Press, Kunming. 74-117.(in Chinese). [游承侠 (1983). 哀牢山徐家坝地区的植被分类. 见: 吴征镒主编. 云南哀牢山森林生态系统研究. 云南科技出版社, 昆明. 74-117.] |
[76] | Young SS, Herwitz SR (1995). Floristic diversity and co- occurrences in a subtropical broad-leaved forest and two contrasting regrowth stands in central-west Yunnan Province, China. Vegetatio, 119, 1-13. |
[77] | Zedda L, Kong SM, Rambold G (2011). Morphological groups as a surrogate for soil lichen biodiversity in Southern Africa. In: Bates ST, Bungartz F, Lücking R, Herrera- Campos MA, Zambrano A eds. Biomonitoring, Ecology, and Systematics of Lichens Festschrift Thomas H. Nash III, Bibliotheca Lichenologica 106. Borntraeger Verlagsbuchhandlung, Stuttgart. 391-408. |
[78] | Zhu H, Yan LC (2009). List of Seed Plants in the Ailao Mts. of Yunnan Province, China. Yunnan Science and Technology Press, Kunming. (in Chinese)[朱华, 闫丽春 (2009). 云南哀牢山种子植物. 云南科技出版社, 昆明.] |
[79] | Zotz G, Büdel B, Meyer A, Zellner H, Lange OL (1998). In situ studies of water relations and CO2 exchange of the tropical macrolichen, Sticta tomentosa. New Phytologist, 139, 525-535. |
[80] | Zotz G, Schultz S, Rottenberger S (2003). Are tropical lowlands a marginal habitat for macrolichens? Evidence from a field study with Parmotrema endosulphureum in Panama. Flora, 198, 71-77. |
[81] | Zotz Z, Winter K (1994). Photosynthesis and carbon gain of the lichen, Leptogium azureum, in lowland tropical forest. Flora, 189, 179-186. |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[4] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[5] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[6] | 赵小宁, 田晓楠, 李新, 李广德, 郭有正, 贾黎明, 段劼, 席本野. Granier原始公式计算树干液流速率的适用性分析——以毛白杨为例[J]. 植物生态学报, 2023, 47(3): 404-417. |
[7] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[8] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[9] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
[10] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[11] | 宗宁, 石培礼, 赵广帅, 郑莉莉, 牛犇, 周天财, 侯阁. 降水量变化对藏北高寒草地养分限制的影响[J]. 植物生态学报, 2021, 45(5): 444-455. |
[12] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[13] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[14] | 董琳琳, 普晓妍, 张璐璐, 宋亮, 鲁志云, 李苏. 亚热带森林附生地衣压力-体积曲线分析及其适用性[J]. 植物生态学报, 2021, 45(3): 274-285. |
[15] | 阿依古丽•阿卜杜热伊木, 焦芳芳, 张爱勤. 异型花柱植物喀什补血草的传粉者功能群与花粉转移效率[J]. 植物生态学报, 2021, 45(1): 51-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19