植物生态学报 ›› 2023, Vol. 47 ›› Issue (9): 1225-1233.DOI: 10.17521/cjpe.2022.0478
李伟斌1,2(), 张红霞3, 张玉书1, 陈妮娜1,*()
收稿日期:
2022-11-28
接受日期:
2023-06-27
出版日期:
2023-09-20
发布日期:
2023-09-28
通讯作者:
* 陈妮娜(作者简介:
ORCID:李伟斌: 0000-0001-8970-0318
基金资助:
LI Wei-Bin1,2(), ZHANG Hong-Xia3, ZHANG Yu-Shu1, CHEN Ni-Na1,*()
Received:
2022-11-28
Accepted:
2023-06-27
Online:
2023-09-20
Published:
2023-09-28
Contact:
* CHEN Ni-Na(Supported by:
摘要:
过去50年的气温数据表明全球陆地表面在夜间比白天变暖更快, 然而以往的研究大多关注全天对等增温的影响, 对昼夜不对称增温效应的认识不足。该研究利用光合增益和水力成本优化模型分析了两种增温情景(昼夜等幅升温和昼夜不等幅升温)对长白山阔叶红松林植被动态的影响。结果表明: 光合增益和水力成本优化模型可以很好地模拟长白山阔叶红树林的碳收支状态(R2 = 0.67, p < 0.001)。增温普遍促进了长白山阔叶红树林的碳汇(11.2%-13.8%), 但未显著改变其水分利用效率; 而不同增温情景对年固碳量的促进作用并无显著差异。与此同时, 增温增加了森林植被的水分压力, 从而增加了植物的导水率损失百分数(水力脆弱性, 1.1%)。由此可见, 相比于当前气候条件, 所有增温情景均会提高森林的碳汇能力, 但同时也会加大森林的死亡风险, 进而降低森林碳汇潜力。
李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响. 植物生态学报, 2023, 47(9): 1225-1233. DOI: 10.17521/cjpe.2022.0478
LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China. Chinese Journal of Plant Ecology, 2023, 47(9): 1225-1233. DOI: 10.17521/cjpe.2022.0478
变量 Variable | 单位 Unit | 输入值 Input value | 数据来源 Data source |
---|---|---|---|
气象数据 Meteorological data | |||
太阳辐射 Solar radiation | W·m-2 | 2003-2010年气候数据 Meteorological data from 2003 to 2010 | |
降水量 Precipitation | mm | ||
风速 Wind speed | m·s-1 | ||
大气温度 Air temperature | ℃ | ||
土壤温度 Soil temperature | ℃ | ||
饱和水汽压差 Vapor pressure deficit | kPa | ||
样地参数 Site parameters | |||
纬度 Latitude | °(N) | 42.4 | - |
经度 Longitude | °(E) | 128.1 | - |
海拔 Altitude | m | 740 | - |
单位土地面积的基径面积 Basal area to ground area | m2·hm-2 | 97.6 | Wang et al., |
植物参数1) Plant parameters1) | |||
树高 Tree height | m | 22.2/24.3 | Liang & Liu, |
叶宽 Leaf width | m | 0.001 3/0.051 9 | - |
25 ℃最大羧化速率 Maximum carboxylation rate of 25 °C | μmol·m-2·s-1 | 68.8/86.3 | Liang & Liu, |
叶片角度 Leaf angle parameter | - | 1 (随机 Random leaf orientation) | Sperry et al., |
冠层叶面积指数 Canopy leaf area index | - | 7.7 | Zhou et al., |
土壤参数 Soil parameters | |||
土层数 Number of soil layers | - | 5 | Sperry et al., |
岩石比例 Fraction of soil volume in rocks | - | 0 | Li et al., |
表1 Sperry模型的主要输入参数及驱动变量
Table 1 Main input parameters and driving variables of the Sperry model
变量 Variable | 单位 Unit | 输入值 Input value | 数据来源 Data source |
---|---|---|---|
气象数据 Meteorological data | |||
太阳辐射 Solar radiation | W·m-2 | 2003-2010年气候数据 Meteorological data from 2003 to 2010 | |
降水量 Precipitation | mm | ||
风速 Wind speed | m·s-1 | ||
大气温度 Air temperature | ℃ | ||
土壤温度 Soil temperature | ℃ | ||
饱和水汽压差 Vapor pressure deficit | kPa | ||
样地参数 Site parameters | |||
纬度 Latitude | °(N) | 42.4 | - |
经度 Longitude | °(E) | 128.1 | - |
海拔 Altitude | m | 740 | - |
单位土地面积的基径面积 Basal area to ground area | m2·hm-2 | 97.6 | Wang et al., |
植物参数1) Plant parameters1) | |||
树高 Tree height | m | 22.2/24.3 | Liang & Liu, |
叶宽 Leaf width | m | 0.001 3/0.051 9 | - |
25 ℃最大羧化速率 Maximum carboxylation rate of 25 °C | μmol·m-2·s-1 | 68.8/86.3 | Liang & Liu, |
叶片角度 Leaf angle parameter | - | 1 (随机 Random leaf orientation) | Sperry et al., |
冠层叶面积指数 Canopy leaf area index | - | 7.7 | Zhou et al., |
土壤参数 Soil parameters | |||
土层数 Number of soil layers | - | 5 | Sperry et al., |
岩石比例 Fraction of soil volume in rocks | - | 0 | Li et al., |
图2 2003-2010年不同增温情景下长白山阔叶红松林CO2通量的变化. A, 日平均动态。B, 年累计固碳量。*, p < 0.05; ***, p < 0.001; ns, p > 0.05。
Fig. 2 Changes of CO2 flux in a broadleaf Korean pine forest in Changbai Mountains under different warming scenarios from 2003 to 2010. A, Daily average dynamics. B, Annual cumulative carbon sequestration. *, p < 0.05; ***, p < 0.001; ns, p > 0.05.
图3 2003-2010年不同增温情景下长白山阔叶红松林的水分利用效率。ns, p > 0.05。
Fig. 3 Water use efficiency of a broadleaf Korean pine forest in Changbai Mountains under different warming scenarios from 2003 to 2010. ns, p > 0.05.
图4 2003-2010年长白山阔叶红松林与当前情景相比不同增温情景下模拟CO2通量与模拟导水率损失百分比(PLC)变化率之间的关系。
Fig. 4 Relationship between changes in model simulated CO2 flux and changes in simulated percentage of water conductivity loss (PLC) under different warming scenarios under ambient conditions in Changbai Mountains from 2003 to 2010.
[1] |
Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 1, 1285-1291.
DOI |
[2] |
Anderegg WRL, Ballantyne AP, Smith WK, Majkut J, Rabin S, Beaulieu C, Birdsey R, Dunne JP, Houghton RA, Myneni RB, Pan YD, Sarmiento JL, Serota N, Shevliakova E, Tans P, et al. (2015). Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 112, 15591-15596.
DOI PMID |
[3] |
Anderegg WRL, Kane JM, Anderegg LDL (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3, 30-36.
DOI |
[4] |
Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought- induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 113, 5024-5029.
DOI PMID |
[5] |
Bai E, Li SL, Xu W, Li WH, Dai WW, Jiang P (2013). A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199, 441-451.
DOI URL |
[6] |
Bai WM, Xia JY, Wan SQ, Zhang WH, Li LH (2012). Day and night warming have different effect on root lifespan. Biogeosciences, 9, 375-384.
DOI URL |
[7] |
Cao J, Zhao B, Gao LS, Li J, Li ZS, Zhao XH (2018). Increasing temperature sensitivity caused by climate warming, evidence from Northeastern China. Dendrochronologia, 51, 101-111.
DOI URL |
[8] |
Das S, Bhattacharyya P, Adhya TK (2011). Interaction effects of elevated CO2 and temperature on microbial biomass and enzyme activities in tropical rice soils. Environmental Monitoring and Assessment, 182, 555-569.
DOI URL |
[9] |
Du Y, Lu RL, Xia JY (2020). Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants. Functional Ecology, 34, 1525-1536.
DOI URL |
[10] | Gong XW, Hao GY (2023). The synergistic effect of hydraulic and thermal impairments accounts for the severe crown damage in Fraxinus mandshurica seedlings following the combined drought-heatwave stress. Science of the Total Environment, 856, 159017. DOI: 10.1016/j.scitotenv.2022.159017. |
[11] |
Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, McDowell NG (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226, 1550-1566.
DOI PMID |
[12] |
Hartmann H, Bastos A, Das AJ, Esquivel-Muelbert A, Hammond WM, Martínez-Vilalta J, McDowell NG, Powers JS, Pugh TAM, Ruthrof KX, Allen CD (2022). Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology, 73, 673-702.
DOI PMID |
[13] | IPCC (2019). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. [2022-11-10]. https://www.ipcc.ch/srccl/. |
[14] | Li WB (2017). The Influence of Tree Species on Small Scale Spatial Heterogeneity of Soil Respiration in a Temperate Mixed Forest. PhD dissertation, University of Chinese Academy of Sciences, Beijing. |
[李伟斌 (2017). 树种对针阔混交林土壤呼吸空间异质性的影响. 博士学位论文, 中国科学院大学, 北京.] | |
[15] |
Li WB, Bai Z, Jin CJ, Zhang XZ, Guan DX, Wang AZ, Yuan FH, Wu JB (2017). The influence of tree species on small scale spatial heterogeneity of soil respiration in a temperate mixed forest. Science of the Total Environment, 590-591, 242-248.
DOI URL |
[16] | Li WB, Hartmann H, Adams HD, Zhang HX, Jin CJ, Zhao CY, Guan DX, Wang AZ, Yuan FH, Wu JB (2018). The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. Tree Physiology, 38, 1706-1723. |
[17] | Li WB, Jin CJ, Jing YL, Wu JB, Yuan FH, Guan DX, Wang AZ (2014). Response of soil respiration to enhanced nitrogen deposition in broadleaved Korean pine forest in Changbai Mountains. Journal of Northeast University, 42(12), 89-93. |
[李伟斌, 金昌杰, 井艳丽, 吴家兵, 袁凤辉, 关德新, 王安志 (2014). 长白山阔叶红松林土壤呼吸对氮沉降增加的响应. 东北林业大学学报, 42(12), 89-93.] | |
[18] |
Li WB, McDowell NG, Zhang HX, Wang WZ, MacKay DS, Leff R, Zhang PP, Ward ND, Norwood M, Yabusaki S, Myers-Pigg AN, Pennington SC, Pivovaroff AL, Waichler S, Xu CG, et al. (2022). The influence of increasing atmospheric CO2, temperature, and vapor pressure deficit on seawater-induced tree mortality. New Phytologist, 235, 1767-1779.
DOI URL |
[19] |
Li WB, Zhang HX, Huang GZ, Liu RX, Wu HJ, Zhao CY, McDowell NG (2020). Effects of nitrogen enrichment on tree carbon allocation: a global synthesis. Global Ecology and Biogeography, 29, 573-589.
DOI URL |
[20] |
Liang JY, Xia JY, Liu LL, Wan SQ (2013). Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. Journal of Plant Ecology, 6, 437-447.
DOI URL |
[21] | Liang XY, Liu SR (2019). In-situ measurement of photosynthetic characteristics of dominant tree species based on canopy crane in a Korean pine broad-leaved forest in Changbai Mountain, northeastern China. Chinese Journal of Applied Ecology, 30, 1494-1502. |
[梁星云, 刘世荣 (2019). 基于冠层塔吊原位测定长白山温带阔叶红松原始林群落主要树种的光合特征. 应用生态学报, 30, 1494-1502.]
DOI |
|
[22] | Liu YL, Parolari AJ, Kumar M, Huang CW, Katul GG, Porporato A (2017). Increasing atmospheric humidity and CO2 concentration alleviate forest mortality risk. Proceedings of the National Academy of Sciences of the United States of America, 114, 9918-9923. |
[23] |
Luo DD, Wang CK, Jin Y (2017). Plant water-regulation strategies: isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 41, 1020-1032.
DOI URL |
[罗丹丹, 王传宽, 金鹰 (2017). 植物水分调节对策: 等水与非等水行为. 植物生态学报, 41, 1020-1032.]
DOI |
|
[24] |
McDowell NG, Allen CD (2015). Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 5, 669-672.
DOI |
[25] | McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, Hurtt GC, Jackson RB, Johnson DJ, Kueppers L, Lichstein JW, et al. (2020). Pervasive shifts in forest dynamics in a changing world. Science, 368, eaaz9463. DOI: 10.1126/science.aaz946. |
[26] |
McDowell NG, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI PMID |
[27] | McDowell NG, Sapes G, Pivovaroff A, Adams HD, Allen CD, Anderegg WRL, Arend M, Breshears DD, Brodribb T, Choat B, Cochard H, de Cáceres M, De Kauwe MG, Grossiord C, Hammond WM, et al. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 3, 294-308. |
[28] |
Peng SS, Piao SL, Ciais P, Myneni RB, Chen AP, Chevallier F, Dolman AJ, Janssens IA, Peñuelas J, Zhang GX, Vicca S, Wan SQ, Wang SP, Zeng H (2013). Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501, 88-92.
DOI |
[29] |
Pivovaroff AL, McDowell NG, Rodrigues TB, Brodribb T, Cernusak LA, Choat B, Grossiord C, Ishida Y, Jardine KJ, Laurance S, Leff R, Li WB, Liddell M, MacKay DS, Pacheco H, et al. (2021). Stability of tropical forest tree carbon-water relations in a rainfall exclusion treatment through shifts in effective water uptake depth. Global Change Biology, 27, 6454-6466.
DOI PMID |
[30] |
Prieto I, Querejeta JI (2020). Simulated climate change decreases nutrient resorption from senescing leaves. Global Change Biology, 26, 1795-1807.
DOI PMID |
[31] | Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, MacKay DS, Wang YJ, Love DM (2017). Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant, Cell & Environment, 40, 816-830. |
[32] | Sperry JS, Venturas MD, Todd HN, Trugman AT, Anderegg WRL, Wang YJ, Tai XN (2019). The impact of rising CO2 and acclimation on the response of US forests to global warming. Proceedings of the National Academy of Sciences of the United States of America, 116, 25734-25744. |
[33] |
Tan JG, Piao SL, Chen AP, Zeng ZZ, Ciais P, Janssens IA, Mao JF, Myneni RB, Peng SS, Peñuelas J, Shi XY, Vicca S (2015). Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere. Global Change Biology, 21, 377-387.
DOI PMID |
[34] | Vose RS, Easterling DR, Gleason B (2005). Maximum and minimum temperature trends for the globe: an update through 2004. Geophysical Research Letters, 32, L23822. DOI: 10.1029/2005GL024379. |
[35] |
Wan SQ, Xia JY, Liu WX, Niu SL (2009). Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 90, 2700-2710.
PMID |
[36] | Wang M, Guan DX, Wang YS, Hao ZQ, Liu YQ (2006). Estimation on ecosystem productivity of the broad leaved-Korean pine forest in Changbai Mountain. Science in China: Earth Science, 36(Suppl. I), 70-82. |
[王淼, 关德新, 王跃思, 郝占庆, 刘亚琴 (2006). 长白山红松针阔叶混交林生态系统生产力的估算. 中国科学: 地球科学, 36(增I), 70-82.] | |
[37] |
Wu J, Serbin SP, Ely KS, Wolfe BT, Dickman LT, Grossiord C, Michaletz ST, Collins AD, Detto M, McDowell NG, Wright SJ, Rogers A (2020). The response of stomatal conductance to seasonal drought in tropical forests. Global Change Biology, 26, 823-839.
DOI PMID |
[38] |
Xia JY, Chen JQ, Piao SL, Ciais P, Luo YQ, Wan SQ (2014). Terrestrial carbon cycle affected by non-uniform climate warming. Nature Geoscience, 7, 173-180.
DOI |
[39] |
Xia JY, Lu RL, Zhu C, Cui EQ, Du Y, Huang K, Sun BY (2020). Response and adaptation of terrestrial ecosystem processes to climate warming. Chinese Journal of Plant Ecology, 44, 494-514.
DOI URL |
[夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉 (2020). 陆地生态系统过程对气候变暖的响应与适应. 植物生态学报, 44, 494-514.]
DOI |
|
[40] |
Zhang HX, McDowell NG, Adams HD, Wang AZ, Wu JB, Jin CJ, Tian JY, Zhu K, Li WB, Zhang YS, Yuan FH, Guan DX (2020a). Divergences in hydraulic conductance and anatomical traits of stems and leaves in three temperate tree species coping with drought, N addition and their interactions. Tree Physiology, 40, 230-244.
DOI URL |
[41] |
Zhang HX, Yuan FH, Wu JB, Jin CJ, Pivovaroff AL, Tian JY, Li WB, Guan DX, Wang AZ, McDowell NG (2020b). Responses of functional traits to seven-year nitrogen addition in two tree species: coordination of hydraulics, gas exchange and carbon reserves. Tree Physiology, 41, 190-205.
DOI URL |
[42] | Zhang N, Yu GR, Zhao SD, Yu ZL (2003). Carbon budget of ecosystem in Changbai Mountain Natural Reserve. Chinese Journal of Enviromental Science, 24, 24-32. |
[张娜, 于贵瑞, 赵士洞, 于振良 (2003). 长白山自然保护区生态系统碳平衡研究. 环境科学, 24, 24-32.] | |
[43] |
Zhang XH, Qin HY, Huang YL, Huang YN, Qiao ZH (2022). Intertemporal allocation and cost of forest carbon sequestration in China under the carbon neutrality target. Chinese Journal of Applied Ecology, 33, 2413-2421.
DOI |
[张祥华, 秦会艳, 黄颖利, 黄亚楠, 乔振华 (2022). 碳中和目标下中国森林固碳量跨期分配及成本. 应用生态学报, 33, 2413-2421.]
DOI |
|
[44] |
Zhang XZ, Shen ZX, Fu G (2015). A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 87, 32-38.
DOI URL |
[45] | Zhao J, Du ZQ, Wu ZT, Zhang H, Guo N, Ma ZT, Liu XJ (2018). Seasonal variations of day- and nighttime warming and their effects on vegetation dynamics in China’s temperate zone. Acta Geographica Sinica, 73, 395-404. |
[赵杰, 杜自强, 武志涛, 张红, 郭娜, 马志婷, 刘雪佳 (2018). 中国温带昼夜增温的季节性变化及其对植被动态的影响. 地理学报, 73, 395-404.]
DOI |
|
[46] | Zhou YY, Tang SH, Zhu QJ, Li JT, Sun R, Liu SH (2003). Measurement of LAI in Changbai Mountains Nature Reserve and its result. Resources Science, 25(6), 38-42. |
[周宇宇, 唐世浩, 朱启疆, 李江涛, 孙睿, 刘素红 (2003). 长白山自然保护区叶面积指数测量及结果. 资源科学, 25(6), 38-42.] | |
[47] |
Zhu EX, Cao ZJ, Jia J, Liu CZ, Zhang ZH, Wang H, Dai GH, He JS, Feng XJ (2021). Inactive and inefficient: warming and drought effect on microbial carbon processing in alpine grassland at depth. Global Change Biology, 27, 2241-2253.
DOI PMID |
[48] | Zhu JT, Zheng JH (2022). Effects of diurnal asymmetric warming on terrestrial ecosystems. Chinese Journal of Ecology, 41, 777-783. |
[朱军涛, 郑家禾 (2022). 昼夜不对称变暖对陆地生态系统的影响. 生态学杂志, 41, 777-783.] |
[1] | 王嘉仪, 王襄平, 徐程扬, 夏新莉, 谢宗强, 冯飞, 樊大勇. 北京市行道树绒毛梣的水力结构对城市不透水表面比例的响应[J]. 植物生态学报, 2023, 47(7): 998-1009. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[4] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[5] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[6] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[7] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[8] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[9] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[10] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[11] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[12] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[13] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[14] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[15] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19