植物生态学报 ›› 2022, Vol. 46 ›› Issue (12): 1486-1496.DOI: 10.17521/cjpe.2021.0187
所属专题: 青藏高原植物生态学:遥感生态学; 生态系统碳水能量通量
• 中国典型生态脆弱区碳水通量过程研究专题论文 • 上一篇 下一篇
收稿日期:
2021-05-17
接受日期:
2021-12-15
出版日期:
2022-12-20
发布日期:
2023-01-13
通讯作者:
*郑周涛, E-mail: 基金资助:
ZHENG Zhou-Tao1,*(), ZHANG Yang-Jian1,2,3
Received:
2021-05-17
Accepted:
2021-12-15
Online:
2022-12-20
Published:
2023-01-13
Supported by:
摘要:
水分利用效率(WUE)是衡量地表生态系统碳水耦合的重要指标。青藏高原是我国重要的生态屏障, 其生态系统对全球变化响应敏感, 开展青藏高原WUE研究有利于深入理解高寒生态系统碳水循环的过程和机制, 对指导植被生态建设具有重要意义。该研究基于GLASS遥感数据、气象数据和植被类型数据, 对1982-2018年期间青藏高原WUE的时空变化格局及其对温度、降水量、太阳辐射、饱和水汽压差、CO2浓度以及叶面积指数的响应进行了分析, 并进一步揭示了植被类型间的差异。结果表明: (1)青藏高原WUE总体呈现由东南向西北递减的空间分布格局, 多年平均值约为1.64 g C·kg-1。WUE在不同植被类型间差异明显, 森林最高, 高寒荒漠最低, 高寒草甸高于高寒草原。(2)青藏高原WUE主要呈现增加趋势, 除森林和栽培植被外, 其他植被类型WUE均显著增加, 总初级生产力主导了研究区77.84%面积的WUE变化。(3)叶面积指数和CO2浓度主导了青藏高原WUE的变化, 且均为正向效应。而饱和水汽压差的升高对高寒草原、高山植被、栽培植被以及高寒荒漠的WUE有抑制作用。
郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析. 植物生态学报, 2022, 46(12): 1486-1496. DOI: 10.17521/cjpe.2021.0187
ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau. Chinese Journal of Plant Ecology, 2022, 46(12): 1486-1496. DOI: 10.17521/cjpe.2021.0187
图2 青藏高原总初级生产力(GPP)(A)、蒸散发(ET)(B)和水分利用效率(WUE)(C)多年平均值的空间分布格局。
Fig. 2 Spatial distributions of the annual mean values for gross primary productivity (GPP)(A), evapotranspiration (ET)(B) and water use efficiency (WUE)(C) in Qingzang Plateau.
植被类型 Vegetation type | GPP (g C·m-2) | GPP变化趋势 Trend in GPP (g C·m-2·a-1) | ET (mm) | ET变化趋势 Trend in ET (mm·a-1) | WUE (g C·kg-1) | WUE变化趋势 Trend in WUE (10-2 g C·kg-1·a-1) |
---|---|---|---|---|---|---|
森林 Forest | 1 034.34 | 1.30 | 385.20 | 0.17 | 2.69 | 0.24 |
灌丛 Shrubland | 585.69 | 4.27*** | 303.49 | 0.59*** | 1.93 | 1.05*** |
高寒草甸 Alpine meadow | 328.76 | 4.45*** | 222.48 | 0.84*** | 1.48 | 1.46*** |
高寒草原 Alpine steppe | 100.31 | 1.58*** | 121.64 | 0.69*** | 0.82 | 0.84*** |
高山植被 Alpine vegetation | 156.39 | 2.60*** | 179.60 | 0.41*** | 0.87 | 1.26*** |
栽培植被 Cultural vegetation | 834.41 | 2.18*** | 370.99 | 0.73*** | 2.25 | 0.16 |
高寒荒漠 Alpine desert | 86.00 | 1.60*** | 130.12 | 1.36*** | 0.66 | 0.54*** |
表1 青藏高原不同植被类型1982-2018年总初级生产力(GPP)、蒸散发(ET)和水分利用效率(WUE)的平均值以及变化趋势
Table 1 Annual mean values and change trends for gross primary productivity (GPP), evapotranspiration (ET) and water use efficiency (WUE) during 1982-2018 in different vegetation types in Qingzang Plateau
植被类型 Vegetation type | GPP (g C·m-2) | GPP变化趋势 Trend in GPP (g C·m-2·a-1) | ET (mm) | ET变化趋势 Trend in ET (mm·a-1) | WUE (g C·kg-1) | WUE变化趋势 Trend in WUE (10-2 g C·kg-1·a-1) |
---|---|---|---|---|---|---|
森林 Forest | 1 034.34 | 1.30 | 385.20 | 0.17 | 2.69 | 0.24 |
灌丛 Shrubland | 585.69 | 4.27*** | 303.49 | 0.59*** | 1.93 | 1.05*** |
高寒草甸 Alpine meadow | 328.76 | 4.45*** | 222.48 | 0.84*** | 1.48 | 1.46*** |
高寒草原 Alpine steppe | 100.31 | 1.58*** | 121.64 | 0.69*** | 0.82 | 0.84*** |
高山植被 Alpine vegetation | 156.39 | 2.60*** | 179.60 | 0.41*** | 0.87 | 1.26*** |
栽培植被 Cultural vegetation | 834.41 | 2.18*** | 370.99 | 0.73*** | 2.25 | 0.16 |
高寒荒漠 Alpine desert | 86.00 | 1.60*** | 130.12 | 1.36*** | 0.66 | 0.54*** |
图3 青藏高原总初级生产力(GPP)(A)、蒸散发(ET)(B)和水分利用效率(WUE)(C)的时间变化。
Fig. 3 Temporal variations in gross primary productivity (GPP) (A), evapotranspiration (ET)(B) and water use efficiency (WUE) (C) in Qingzang Plateau.
图4 青藏高原总初级生产力(GPP)(A)、蒸散发(ET)(B)和水分利用效率(WUE)(C)时间变化趋势以及WUE变化主导因子(D)的空间分布。A-C中子图显示的是显著(p < 0.05)变化区域, 蓝色表示显著增加, 红色表示显著减少。
Fig. 4 Spatial distributions of the temporal trends in gross primary productivity (GPP)(A), evapotranspiration (ET)(B), water use efficiency (WUE)(C), and spatial distribution of the dominant factors controlling WUE change (D) in Qingzang Plateau. Insets in A-C showed the areas with significant (p < 0.05) change trends, with blue and red colors indicating significantly increasing and decreasing trends, respectively.
WUE变化主导因子 Dominant factors controlling WUE change | 判定标准 Criterions | ||
---|---|---|---|
GPP变化趋势 Trend in GPP | ET变化趋势 Trend in ET | WUE变化趋势 Trend in WUE | |
总初级生产力 GPP | + | + | + |
- | - | - | |
蒸散发 ET | + | + | - |
- | - | + | |
总初级生产力和蒸散发 GPP + ET | + | - | + |
- | + | - |
表2 青藏高原水分利用效率(WUE)变化主导因子的判定标准
Table 2 Criteria for the dominant factors controlling water use efficiency (WUE) change in Qingzang Plateau
WUE变化主导因子 Dominant factors controlling WUE change | 判定标准 Criterions | ||
---|---|---|---|
GPP变化趋势 Trend in GPP | ET变化趋势 Trend in ET | WUE变化趋势 Trend in WUE | |
总初级生产力 GPP | + | + | + |
- | - | - | |
蒸散发 ET | + | + | - |
- | - | + | |
总初级生产力和蒸散发 GPP + ET | + | - | + |
- | + | - |
植被类型 Vegetation type | 温度 Temperature | 降水量 Precipitation | 太阳辐射 Solar radiation | 饱和水汽压差 Vapor pressure deficit | CO2浓度 CO2 concentration | 叶面积指数 Leaf area index |
---|---|---|---|---|---|---|
所有植被 All vegetation | 0.20 | 0.23 | 0.30 | -0.24 | 0.55 | 0.72 |
森林 Forest | - | -0.54 | - | - | - | 0.59 |
灌丛 Shrubland | - | 0.26 | - | - | 0.50 | 0.76 |
高寒草甸 Alpine meadow | 0.16 | 0.09 | 0.25 | - | 0.81 | 0.74 |
高寒草原 Alpine steppe | - | 0.16 | 0.13 | -0.25 | 0.75 | 0.62 |
高山植被 Alpine vegetation | 0.22 | 0.33 | 0.47 | -0.23 | 0.71 | 0.79 |
栽培植被 Cultural vegetation | - | -0.43 | - | -0.55 | 0.50 | 0.60 |
高寒荒漠 Alpine desert | - | -0.23 | 0.21 | -0.15 | 1.03 | 0.80 |
表3 青藏高原不同植被类型中环境因子对水分利用效率的总效应
Table 3 Total effects of environmental factors on the water use efficiency for different vegetation types on Qingzang Plateau
植被类型 Vegetation type | 温度 Temperature | 降水量 Precipitation | 太阳辐射 Solar radiation | 饱和水汽压差 Vapor pressure deficit | CO2浓度 CO2 concentration | 叶面积指数 Leaf area index |
---|---|---|---|---|---|---|
所有植被 All vegetation | 0.20 | 0.23 | 0.30 | -0.24 | 0.55 | 0.72 |
森林 Forest | - | -0.54 | - | - | - | 0.59 |
灌丛 Shrubland | - | 0.26 | - | - | 0.50 | 0.76 |
高寒草甸 Alpine meadow | 0.16 | 0.09 | 0.25 | - | 0.81 | 0.74 |
高寒草原 Alpine steppe | - | 0.16 | 0.13 | -0.25 | 0.75 | 0.62 |
高山植被 Alpine vegetation | 0.22 | 0.33 | 0.47 | -0.23 | 0.71 | 0.79 |
栽培植被 Cultural vegetation | - | -0.43 | - | -0.55 | 0.50 | 0.60 |
高寒荒漠 Alpine desert | - | -0.23 | 0.21 | -0.15 | 1.03 | 0.80 |
[1] |
Bai Y, Zha T, Bourque CPA, Jia X, Ma J, Liu P, Yang R, Li C, Du T, Wu Y (2020). Variation in ecosystem water use efficiency along a southwest-to-northeast aridity gradient in China. Ecological Indicators, 110, 105932. DOI: 10.1016/j.ecolind.2019.105932.
DOI URL |
[2] |
Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC (2012). Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488, 70-72.
DOI |
[3] |
Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001). Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357-373.
DOI URL |
[4] | Di YP, Zhang YJ, Zeng H, Tang Z (2019). Effects of changed Asian water tower on Tibetan Plateau ecosystem: a review. Bulletin of Chinese Academy of Sciences, 34, 1322-1331. |
[ 底阳平, 张扬建, 曾辉, 唐泽 (2019). “亚洲水塔”变化对青藏高原生态系统的影响. 中国科学院院刊, 34, 1322-1331.] | |
[5] | Editorial Committee of Vegetation Map of China, Chinese of Academy of Sciences(2001). 1:1000000 Vegetation Atlas of China. Science Press, Beijing. |
[中国科学院中国植被图编辑委员会(2001). 1:1000000 中国植被图集. 科学出版社, 北京.] | |
[6] |
Feng X, Fu B, Piao S, Wang S, Ciais P, Zeng Z, Lü Y, Zeng Y, Li Y, Jiang X, Wu B (2016). Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 6, 1019-1022.
DOI |
[7] |
Feng ZZ, Li P, Zhang GY, Li ZZ, Ping Q, Peng JL, Liu S (2020). Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: problems and prospective. Chinese Journal of Plant Ecology, 44, 461-474.
DOI URL |
[ 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕 (2020). 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望. 植物生态学报, 44, 461-474.]
DOI |
|
[8] |
Gao QZ, Li Y, Wan YF, Qin XB, Jiangcun WZ, Liu YH (2009). Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Climatic Change, 97, 515-528.
DOI URL |
[9] |
Guo LM, Sun FB, Liu WB, Zhang YG, Wang H, Cui HJ, Wang HQ, Zhang J, Du BX (2019). Response of ecosystem water use efficiency to drought over China during 1982-2015: spatiotemporal variability and resilience. Forests, 10, 598. DOI: 10.3390/f10070598.
DOI URL |
[10] |
Han JY, Guo CY, Ye S, Zhang LM, Li SG, Wang HM, Yu GR (2020). Effects of diffuse photosynthetically active radiation on gross primary productivity in a subtropical coniferous plantation vary in different timescales. Ecological Indicators, 115, 106403. DOI: 10.1016/j.ecolind.2020.106403.
DOI URL |
[11] |
Hu ZM, Yu GR, Fu YL, Sun XM, Li YN, Shi PL, Wang YF, Zheng ZM (2008). Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Global Change Biology, 14, 1609-1619.
DOI URL |
[12] |
Huang MT, Piao SL, Sun Y, Ciais P, Cheng L, Mao JF, Poulter B, Shi XY, Zeng ZZ, Wang YP (2015). Change in terrestrial ecosystem water-use efficiency over the last three decades. Global Change Biology, 21, 2366-2378.
DOI PMID |
[13] |
Huang MT, Piao SL, Zeng ZZ, Peng SS, Ciais P, Cheng L, Mao JF, Poulter B, Shi XY, Yao YT, Yang H, Wang YP (2016). Seasonal responses of terrestrial ecosystem water-use efficiency to climate change. Global Change Biology, 22, 2165-2177.
DOI PMID |
[14] |
Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499, 324-327.
DOI |
[15] |
Li HQ, Zhu JB, Zhang FW, He HD, Yang YS, Li YN, Cao GM, Zhou HK (2019). Growth stage-dependant variability in water vapor and CO2 exchanges over a humid alpine shrubland on the northeastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 268, 55-62.
DOI URL |
[16] |
Li Y, Shi H, Zhou L, Eamus D, Huete A, Li L, Cleverly J, Hu Z, Harahap M, Yu Q, He L, Wang S (2018). Disentangling climate and LAI effects on seasonal variability in water use efficiency across terrestrial ecosystems in China. Journal of Geophysical Research: Biogeosciences, 123, 2429-2443.
DOI URL |
[17] |
Lin S, Wang GX, Hu ZY, Huang KW, Sun JY, Sun XY (2020). Spatiotemporal variability and driving factors of Tibetan Plateau water use efficiency. Journal of Geophysical Research: Atmospheres, 125, e2020JD032642. DOI: 10.1029/2020JD032642.
DOI |
[18] |
Liu XF, Feng XM, Fu BJ (2020). Changes in global terrestrial ecosystem water use efficiency are closely related to soil moisture. Science of the Total Environment, 698, 134165. DOI: 10.1016/j.scitotenv.2019.134165.
DOI URL |
[19] |
Liu YB, Xiao JF, Ju WM, Zhou YL, Wang SQ, Wu XC (2015). Water use efficiency of Chinaʼs terrestrial ecosystems and responses to drought. Scientific Reports, 5, 13799. DOI: 10.1038/srep13799.
DOI |
[20] |
Mi ZR, Chen LT, Zhang ZH, He JS (2015). Alpine grassland water use efficiency based on annual precipitation, growing season precipitation and growing season evapotranspiration. Chinese Journal of Plant Ecology, 39, 649-660.
DOI URL |
[ 米兆荣, 陈立同, 张振华, 贺金生 (2015). 基于年降水、生长季降水和生长季蒸散的高寒草地水分利用效率. 植物生态学报, 39, 649-660.]
DOI |
|
[21] |
Niu SL, Xing XR, Zhang Z, Xia JY, Zhou XH, Song B, Li LH, Wan SQ (2011). Water-use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe. Global Change Biology, 17, 1073-1082.
DOI URL |
[22] | Pan S, Tian H, Dangal SRS, Yang Q, Yang J, Lu C, Tao B, Ren W, Ouyang Z (2015). Responses of global terrestrial evapotranspiration to climate change and increasing atmospheric CO2 in the 21st century. Earthʼs Future, 3, 15-35. |
[23] |
Peng SZ, Ding YX, Liu WZ, Li Z (2019). 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 11, 1931-1946.
DOI URL |
[24] |
Piao S, Mohammat A, Fang J, Cai Q, Feng J (2006). NDVI- based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environmental Change, 16, 340-348.
DOI URL |
[25] | Piao SL, Zhang XZ, Wang T, Liang EY, Wang SP, Zhu JT, Niu B (2019). Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chinese Science Bulletin, 64, 2842-2855. |
[ 朴世龙, 张宪洲, 汪涛, 梁尔源, 汪诗平, 朱军涛, 牛犇 (2019). 青藏高原生态系统对气候变化的响应及其反馈. 科学通报, 64, 2842-2855.] | |
[26] |
Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156-173.
DOI URL |
[27] |
Sun SB, Song ZL, Wu XC, Wang TJ, Wu YT, Du WL, Che T, Huang CL, Zhang XJ, Ping B, Lin XF, Li P, Yang YX, Chen BZ (2018). Spatio-temporal variations in water use efficiency and its drivers in China over the last three decades. Ecological indicators, 94, 292-304.
DOI URL |
[28] |
Wang LM, Li MY, Wang JX, Li XG, Wang LC (2020a). An analytical reductionist framework to separate the effects of climate change and human activities on variation in water use efficiency. Science of the Total Environment, 727, 138306. DOI: 10.1016/j.scitotenv.2020.138306.
DOI URL |
[29] |
Wang LX, Good SP, Caylor KK (2014). Global synthesis of vegetation control on evapotranspiration partitioning. Geophysical Research Letters, 41, 6753-6757.
DOI URL |
[30] |
Wang S, Zhang Y, Ju W, Chen JM, Ciais P, Cescatti A, Sardans J, Janssens IA, Wu M, Berry JA, Campbell E, Fernández- Martínez M, Alkama R, Sitch S, Friedlingstein P, et al. (2020b). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 370, 1295-1300.
DOI URL |
[31] |
Wang Y, Zhou L, Ping XY, Jia QY, Li RP (2018). Ten-year variability and environmental controls of ecosystem water use efficiency in a rainfed maize cropland in Northeast China. Field Crops Research, 226, 48-55.
DOI URL |
[32] |
Wang ZP, Wu JS, Niu B, He YT, Zu JX, Li M, Zhang XZ (2020c). Vegetation expansion on the Tibetan Plateau and its relationship with climate change. Remote Sensing, 12, 4150. DOI: 10.3390/rs12244150.
DOI URL |
[33] |
Wu JS, Zhang XZ, Shen ZX, Shi PL, Xu XL, Li XJ (2013). Grazing-exclusion effects on aboveground biomass and water-use efficiency of alpine grasslands on the northern Tibetan Plateau. Rangeland Ecology & Management, 66, 454-461.
DOI URL |
[34] | Wu XC, Li XY, Chen YH, Bai Y, Tong YQ, Wang P, Liu HY, Wang MJ, Shi FZ, Zhang CC, Huang YM, Ma YJ, Hu X, Shi CM (2019). Atmospheric water demand dominates daily variations in water use efficiency in alpine meadows, northeastern Tibetan Plateau. Journal of Geophysical Research, 124, 2174-2185. |
[35] |
Xiao J, Sun G, Chen J, Chen H, Chen S, Dong G, Gao S, Guo HQ, Guo J, Han S, Kato T, Li Y, Lin G, Lu W, Ma M, et al. (2013). Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China. Agricultural and Forest Meteorology, 182-183, 76-90.
DOI URL |
[36] |
Xiao ZQ, Liang SL, Wang JD, Xiang Y, Zhao X, Song JL (2016). Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 54, 5301-5318.
DOI URL |
[37] |
Xu HJ, Zhao CY, Wang XP (2019). Spatiotemporal differentiation of the terrestrial gross primary production response to climate constraints in a dryland mountain ecosystem of northwestern China. Agricultural and Forest Meteorology, 276-277, 107628. DOI: 10.1016/j.agrformet.2019.107628.
DOI URL |
[38] |
Xue BL, Guo QH, Otto A, Xiao JF, Tao SL, Li L (2015). Global patterns, trends, and drivers of water use efficiency from 2000 to 2013. Ecosphere, 6, 174. DOI: 10.1890/ES14-00416.1.sm.
DOI |
[39] | Yao TD, Wu GJ, Xu BQ, Wang WC, Gao J, An BS (2019). Asian water tower change and its impacts. Bulletin of Chinese Academy of Sciences, 34, 1203-1209. |
[ 姚檀栋, 邬光剑, 徐柏青, 王伟财, 高晶, 安宝晟 (2019). “亚洲水塔”变化与影响. 中国科学院院刊, 34, 1203-1209.] | |
[40] | Yao Y, Liang S, Li X, Hong Y, Fisher JB, Zhang N, Chen J, Cheng J, Zhao S, Zhang X, Jiang B, Sun L, Jia K, Wang K, Chen Y, Mu Q, Feng F (2014). Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations. Journal of Geophysical Research, 119, 4521-4545. |
[41] |
Yu BH, Lv CH (2011). Assessment of ecological vulnerability on the Tibetan Plateau. Geographical Research, 30, 2289-2295.
DOI |
[ 于伯华, 吕昌河 (2011). 青藏高原高寒区生态脆弱性评价. 地理研究, 30, 2289-2295.] | |
[42] |
Yu GR, Song X, Wang QF, Liu YF, Guan DX, Yan JH, Sun XM, Zhang LM, Wen XF (2008). Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist, 177, 927-937.
DOI PMID |
[43] |
Yuan W, Zheng Y, Piao S, Ciais P, Lombardozzi D, Wang Y, Ryu Y, Chen G, Dong W, Hu Z, Jain AK, Jiang C, Kato E, Li S, Lienert S, et al. (2019). Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 5, eaax1396. DOI: 10.1126/sciadv.aax1396.
DOI URL |
[44] |
Zhang FM, Ju WM, Shen SH, Wang SQ, Yu GR, Han SJ (2014). How recent climate change influences water use efficiency in East Asia. Theoretical and Applied Climatology, 116, 359-370.
DOI URL |
[45] | Zhang JY, Liu JF, Jin JL, Ma T, Wang GQ, Liu HW, Min X, Wang H, Lin J, Bao ZX, Liu CS (2019). Evolution and trend of water resources in Qinghai-Tibet Plateau. Bulletin of Chinese Academy of Sciences, 34, 1264-1273. |
[ 张建云, 刘九夫, 金君良, 马涛, 王国庆, 刘宏伟, 闵星, 王欢, 林锦, 鲍振鑫, 刘翠善 (2019). 青藏高原水资源演变与趋势分析. 中国科学院院刊, 34, 1264-1273.] | |
[46] |
Zhang YJ, Zhu YX, Li JX, Chen Y (2019). Current status and future directions of the Tibetan Plateau ecosystem research. Science Bulletin, 64, 428-430.
DOI PMID |
[47] |
Zhang YL, Li BY, Zheng D (2002). A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 21, 1-8.
DOI |
[ 张镱锂, 李炳元, 郑度 (2002). 论青藏高原范围与面积. 地理研究, 21, 1-8.] | |
[48] |
Zhao JX, Feng HZ, Xu TR, Xiao JF, Guerrieri R, Liu SM, Wu XC, He XL, He XP (2021). Physiological and environmental control on ecosystem water use efficiency in response to drought across the northern hemisphere. Science of the Total Environment, 758, 143599. DOI: 10.1016/j.scitotenv.2020.143599.
DOI URL |
[49] |
Zheng H, Lin H, Zhou WJ, Bao H, Zhu XJ, Jin Z, Song Y, Wang YQ, Liu WZ, Tang YK (2019). Revegetation has increased ecosystem water-use efficiency during 2000- 2014 in the Chinese Loess Plateau: evidence from satellite data. Ecological Indicators, 102, 507-518.
DOI |
[50] |
Zheng Y, Shen RQ, Wang YW, Li XQ, Liu SG, Liang SL, Chen JM, Ju WM, Zhang L, Yuan WP (2020a). Improved estimate of global gross primary production for reproducing its long-term variation, 1982-2017. Earth System Science Data, 12, 2725-2746.
DOI URL |
[51] |
Zheng ZT, Zhu WQ, Chen GS, Jiang N, Fan DQ, Zhang DH (2016). Continuous but diverse advancement of spring- summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 223, 194-202.
DOI URL |
[52] |
Zheng ZT, Zhu WQ, Zhang YJ (2020b). Seasonally and spatially varied controls of climatic factors on net primary productivity in alpine grasslands on the Tibetan Plateau. Global Ecology and Conservation, 21, e00814. DOI: 10.1016/j.gecco.2019.e00814.
DOI URL |
[53] |
Zhou X, Sun PS, Zhang MF, Liu SR (2020). Spatio-temporal characteristics of vegetation water use efficiency and their relationships with climatic factors in alpine and subalpine area of southwestern China. Chinese Journal of Plant Ecology, 44, 628-641.
DOI URL |
[ 周雄, 孙鹏森, 张明芳, 刘世荣 (2020). 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系. 植物生态学报, 44, 628-641.]
DOI |
|
[54] |
Zhu XJ, Yu GR, Wang QF, Hu ZM, Zheng H, Li SG, Sun XM, Zhang YP, Yan JH, Wang HM, Zhao FH, Zhang JH, Shi PL, Li YN, Zhao L, Zhang FW, Hao YB (2015). Spatial variability of water use efficiency in Chinaʼs terrestrial ecosystems. Global and Planetary Change, 129, 37-44.
DOI URL |
[1] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[4] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[5] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[6] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[7] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[8] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[9] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[10] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[11] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[12] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[13] | 王国宏, 郭柯, 谢宗强, 唐志尧, 蒋延玲, 方精云. 《中国植被志》研编规范的若干说明、补充与修订[J]. 植物生态学报, 2022, 46(3): 368-372. |
[14] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[15] | 王晶苑, 魏杰, 温学发. 土壤CO2通量梯度观测技术和方法的理论、假设与应用进展[J]. 植物生态学报, 2022, 46(12): 1523-1536. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19