植物生态学报 ›› 2022, Vol. 46 ›› Issue (12): 1497-1507.DOI: 10.17521/cjpe.2021.0390
所属专题: 全球变化与生态系统; 生态系统碳水能量通量; 土壤呼吸
• 中国典型生态脆弱区碳水通量过程研究专题论文 • 上一篇 下一篇
收稿日期:
2021-11-01
接受日期:
2022-03-11
出版日期:
2022-12-20
发布日期:
2023-01-13
作者简介:
第一联系人:*同等贡献 (Yang M, yangmeng@igsnrr.ac.cn; Yu GR, yugr@igsnrr.ac.cn)
基金资助:
Received:
2021-11-01
Accepted:
2022-03-11
Online:
2022-12-20
Published:
2023-01-13
About author:
First author contact:*Contributed equally to this work (Yang M, yangmeng@igsnrr.ac.cn; Yu GR, yugr@igsnrr.ac.cn)
Supported by:
摘要:
干旱半干旱区是一类典型的生态脆弱区, 同时又对全球变暖具有重要影响。其土壤以氧化型土壤为主, 被认为是重要的CH4汇, 然而研究发现随着土壤吸收CH4速率的升高, 排放CO2的速率也升高。为验证该消长现象是否广泛存在以及是否发生于特定环境条件下, 该研究基于中国干旱半干旱地区的土壤温室气体通量与相关环境数据整合, 首次开展了多站点的土壤CO2与土壤CH4通量季节变化耦联与日变化耦联分析。结果显示, 土壤CO2与土壤CH4通量间存在协同(正相关)、消长(负相关)及随机(不相关) 3种模式, 其中随机变化的比例更高, 季节尺度与日尺度上分别占比83%与54%。相对于水分和植被状况, 温度与通量间相关性的关系更强, 呈现为随气温升高通量间相关性下降的二次函数关系。季节尺度上, 采样期间平均气温对通量间相关关系的判别准确率为92%, 通量间耦联解耦的气温阈值为12.5 ℃; 日尺度上, 日气温差对通量间相关关系的判别准确率为79%, 通量间耦联解耦的温度阈值为15.2 ℃。此外, 日尺度上土壤为吸收CH4状态时, 土壤CH4与土壤CO2通量之间并非呈现为负相关关系, 而更多呈现为正相关关系, 这一现象难以仅用温度进行解释, 我们推测土壤呼吸和CH4氧化在竞争O2过程中形成了不对等的耦联关系, 即土壤呼吸可通过消耗O2抑制CH4氧化, 从而出现土壤CO2排放增加而CH4吸收降低的现象。该研究表明, 土壤CO2和CH4通量间可能存在温度调控嵌套O2竞争调控的耦联解耦机制, 气候变暖可能导致两种通量在更广的空间上以及更长的时间上发生解耦, 增加区域碳循环的复杂性以及碳通量评估的不确定性。
杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应. 植物生态学报, 2022, 46(12): 1497-1507. DOI: 10.17521/cjpe.2021.0390
YANG Meng, YU Gui-Rui. Coupling-decoupling of soil CO2 and CH4 fluxes and their responses to temperature in arid and semi-arid regions of China. Chinese Journal of Plant Ecology, 2022, 46(12): 1497-1507. DOI: 10.17521/cjpe.2021.0390
图1 中国干旱半干旱区土壤CO2、CH4通量及其比值。箱须图中箱体下边界和上边界分别表示第一四分位数(Q1)和第三四分位数(Q3), 箱体中的横线为中值; 须的两端为Q1 - 1.5IQR(四分位数差)和Q3 + 1.5IQR; 点为离群值。
Fig. 1 Soil CO2 flux, CH4 flux and their ratio of arid and semi-arid region in China. Boxplots show 25th (Q1) and 75th (Q3) percentiles, and the horizontal lines within the boxes are the median; the whiskers are Q1 - 1.5IQR (interquartile range) and Q3 + 1.5IQR; dotes are outlier values.
图2 中国干旱半干旱地区土壤CO2通量与土壤CH4通量间3种相关关系的比例。A, B, 季节尺度通量间相关性。C, D, 日尺度通量间相关性。A和C的内圈表示土壤吸收和排放CH4的样本占总样本量的比例; B和D的内圈表示各生态系统类型的样本占总样本量的比例; 外圈均为土壤CO2通量与CH4通量不同相关关系的样本占总样本量的比例; 同一扇形区的内圈和外圈为对应关系。
Fig. 2 Proportions of the three correlations between soil CO2 and CH4 flux of arid and semi-arid regions in China. A, B, Flux correlations on seasonal scale. C, D, Flux correlations on daily scale. Inner slices of A and C denote the proportions of CH4 emission and CH4 absorption in the total sample size; inner slices of B and D denote the proportions of samples from different ecosystem types in the total sample size; outer slices denote the proportions of samples with different correlations between soil CO2 and CH4 flux in the total sample size; the inner slices correspond to the outer slices of the same sector.
图3 季节尺度上土壤CO2通量与土壤CH4通量间相关性与气温、水分及归一化植被指数(NDVI)的关系(平均值±标准误)。MAP, 年降水量; MAT, 年平均气温; MSP, 采样期平均降水速率; MST, 采样期平均气温。
Fig. 3 Relationships between air temperature, moisture, normalized difference vegetation index (NDVI) and correlations between soil CO2 and CH4 flux on seasonal scale (mean ± SE). MAP, mean annual precipitation; MAT, mean annual air temperature; MSP, mean seasonal precipitation; MST, mean seasonal air temperature.
图4 季节尺度上采样期平均气温(MST)对通量间相关性的决策表现。A、B、C分别为MST < 12.5 ℃时, 土壤CO2通量及土壤CH4通量同时与气温显著相关的样点数量与不显著相关样点数量的比例、土壤CO2通量与气温显著相关样点数量与不相关样点数量的比例、土壤CH4通量与气温显著相关样点数量与不显著相关样点数量的比例。D、E、F分别为MST ≥ 12.5 ℃时的3种比例。百分数表示当前结点的样本量占总样本量的比例; 3个小数从左至右分别代表划分至当前结点中实际为负相关、不相关、正相关关系的样本比例。
Fig. 4 Performance of using mean air temperature of sampling season (MST) to determine correlations between the two types of fluxes. A, B, and C are when MST was lower than 12.5 °C, the proportion of soil CO2 and CH4 flux simultaneously significantly correlated with air temperature, the proportion of soil CO2 significantly correlated with air temperature, and the proportion of soil CH4 flux significantly correlated with air temperature, respectively. D, E, and F are the three types of proportions when MST was not lower than 12.5 °C. Percentages are the proportion of the current node sample size to the total sample size. Three decimals from left to right are the sample proportions of actual negative correlation, unsignificant correlation and positive correlation which were divided into that node.
图5 日尺度上土壤CO2通量与土壤CH4通量间相关性与气温和水分的关系(平均值±标准误)。DTD, 日气温差; MDP, 采样日平均降水速率; MDT, 采样日平均气温。
Fig. 5 Relationships between air temperature, moisture and correlations between soil CO2 and CH4 flux on daily scale (mean ± SE). DTD, daily air temperature difference of the observing day; MDP, mean precipitation of the observing day; MDT, mean air temperature of the observing day.
图6 日尺度上日气温差(DTD)对通量间相关性的决策表现。百分数表示当前节点样本量占总样本量的比例; 3个小数从左至右分别代表划分至当前节点中实际为负相关、不相关、正相关关系的样本比例。
Fig. 6 Performance of using diurnal air temperature difference (DTD) to determine correlations between the two types of fluxes. Percentages are the proportion of the current node sample size to the total sample size. Three decimals from left to right are the sample proportions of actual negative correlation, unsignificant correlation and positive correlation which were divided into that node.
[1] |
Chen J, Luo Y, Xia J, Shi Z, Jiang L, Niu S, Zhou X, Cao J (2016). Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agricultural and Forest Meteorology, 220, 21-29.
DOI URL |
[2] |
Cherkinsky A, Brecheisen Z, Richter D (2018). Carbon and oxygen isotope composition in soil carbon dioxide and free oxygen within deep ultisols at the Calhoun CZO, south Carolina, USA. Radiocarbon, 60, 1357-1366.
DOI URL |
[3] | Dang XS, Cheng SL, Fang HJ, Yu GR, Han SJ, Zhang JH, Wang M, Wang YS, Xu MJ, Li LS, Wang L (2015). The controlling factors and coupling of soil CO2, CH4 and N2O fluxes in a temperate needle-broadleaved mixed forest. Acta Ecologica Sinica, 35, 6530-6540. |
[ 党旭升, 程淑兰, 方华军, 于贵瑞, 韩士杰, 张军辉, 王淼, 王永生, 徐敏杰, 李林森, 王磊 (2015). 温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系. 生态学报, 35, 6530-6540.] | |
[4] |
Dong JW, Yang JL (2018). The temporally smoothed GIMMS NDVI dataset (8 km, 15-day) from 1982-2015. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences. [2021-07-10]. DOI: 10.12237/casearth.5c19a5660600cf2a3c557ad2.
DOI |
[ 董金玮, 杨吉林 (2018). 1982-2015年全球8 km GIMMS平滑NDVI数据集. 中国科学院地理科学与资源研究所. [2021-07-10]. DOI: 10.12237/casearth.5c19a5660600cf2a3c557ad2.]
DOI |
|
[5] | Dong YS, Qi YC, Liu JY, Geng YB, Domroes M, Yang XH, Liu LX (2005). Variation characteristics of soil respiration flux in four grassland communities with different precipitation intensities. Chinese Science Bulletin, 50, 473-480. |
[ 董云社, 齐玉春, 刘纪远, 耿元波, Domroes M, 杨小红, 刘立新 (2005). 不同降水强度4种草地群落土壤呼吸通量变化特征. 科学通报, 50, 473-480.] | |
[6] | Fang HJ, Cheng SL, Yu GR, Wang YS, Xu MJ, Dang XS, Li LS, Wang L (2014). Microbial mechanisms responsible for the effects of atmospheric nitrogen deposition on methane uptake and nitrous oxide emission in forest soils: a review. Acta Ecologica Sinica, 34, 4799-4806. |
[ 方华军, 程淑兰, 于贵瑞, 王永生, 徐敏杰, 党旭升, 李林森, 王磊 (2014). 大气氮沉降对森林土壤甲烷吸收和氧化亚氮排放的影响及其微生物学机制. 生态学报, 34, 4799-4806.] | |
[7] |
Fang HJ, Yu GR, Cheng SL, Zhu TH, Wang YS, Yan JH, Wang M, Cao M, Zhou M (2010). Effects of multiple environmental factors on CO2 emission and CH4 uptake from old-growth forest soils. Biogeosciences, 7, 395-407.
DOI URL |
[8] |
Feng W, Zhang YQ, Jia X, Wu B, Zha TS, Qin SG, Wang B, Shao CX, Liu JB, Fa KY (2014). Impact of environmental factors and biological soil crust types on soil respiration in a desert ecosystem. PLOS ONE, 9, e102954. DOI: 10.1371/journal.pone.0102954.
DOI URL |
[9] |
Gampe D, Zscheischler J, Reichstein M, OʼSullivan M, Smith WK, Sitch S, Buermann W (2021). Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nature Climate Change, 11, 772-779.
DOI |
[10] | Gaur MK, Squires VR (2018). Geographic extent and characteristics of the world’s arid zones and their peoples// Gaur MK, Squires VR. Climate Variability Impacts on Land Use and Livelihoods in Drylands. Springer, Cham, Switzerland. 3-20. |
[11] |
Ginting D, Kessavalou A, Eghball B, Doran JW (2003). Greenhouse gas emissions and soil indicators four years after manure and compost applications. Journal of Environmental Quality, 32, 23-32.
PMID |
[12] |
Hu A, Nie YX, Yu GR, Han CH, He JH, He NP, Liu SR, Deng J, Shen WJ, Zhang GX (2019). Diurnal temperature variation and plants drive latitudinal patterns in seasonal dynamics of soil microbial community. Frontiers in Microbiology, 10, 674. DOI: 10.3389/fmicb.2019.00674.
DOI PMID |
[13] | Huang J, Guan X, Ji F (2012). Enhanced cold-season warming in semi-arid regions. Atmospheric Chemistry and Physics, 12, 5391-5398. |
[14] |
Huang JP, Ma JR, Guan XD, Li Y, He YL (2019). Progress in semi-arid climate change studies in China. Advances in Atmospheric Sciences, 36, 922-937.
DOI |
[15] | IPCC (2021). Summary for policymakers//Masson-Delmotte VP, Pirani ZA, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, et al. Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[16] |
Jeong SH, Eom JY, Park JY, Lee JH, Lee JS (2018). Characteristics of accumulated soil carbon and soil respiration in temperate deciduous forest and alpine pastureland. Journal of Ecology and Environment, 42, 3. DOI: 10.1186/s41610-018-0063-6.
DOI |
[17] |
Larionova AA, Yevdokimov IV, Bykhovets SS (2007). Temperature response of soil respiration is dependent on concentration of readily decomposable C. Biogeosciences, 4, 1073-1081.
DOI URL |
[18] |
Maier M, Cordes M, Osterholt L (2021). Soil respiration and CH4 consumption covary on the plot scale. Geoderma, 382, 114702. DOI: 10.1016/j.geoderma.2020.114702.
DOI URL |
[19] |
Maier M, Paulus S, Nicolai C, Stutz KP, Nauer PA (2017). Drivers of plot-scale variability of CH4 consumption in a well-aerated pine forest soil. Forests, 8, 193. DOI: 10.3390/f8060193.
DOI URL |
[20] |
Qin Z, Deng X, Griscom B, Huang Y, Li T, Smith P, Yuan W, Zhang W (2021). Natural climate solutions for China: the last mile to carbon neutrality. Advances in Atmospheric Sciences, 38, 889-895.
DOI |
[21] | Reddy KR, DeLaune RD (2008). Biogeochemistry of Wetlands: Science and Applications. CRC Press, Boca Raton, USA. 185. |
[22] |
Ruehr NK, Knohl A, Buchmann N (2010). Environmental variables controlling soil respiration on diurnal, seasonal and annual time-scales in a mixed mountain forest in Switzerland. Biogeochemistry, 98, 153-170.
DOI URL |
[23] |
Sha L, Teramoto M, Noh NJ, Hashimoto S, Yang M, Sanwangsri M, Liang N (2021). Soil carbon flux research in the Asian region: review and future perspectives. Journal of Agricultural Meteorology, 77, 24-51.
DOI URL |
[24] | Tang XL, Zhao X, Bai YF, Tang ZY, Wang WT, Zhao YC, Wan HW, Xie ZQ, Shi XZ, Wu BF, Wang GX, Yan JH, Ma KP, Du S, Li SG, et al. (2018). Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America, 115, 4021-4026. |
[25] |
van Bodegom P, Stams F, Mollema L, Boeke S, Leffelaar P (2001). Methane oxidation and the competition for oxygen in the rice rhizosphere. Applied and Environmental Microbiology, 67, 3586-3597.
PMID |
[26] |
van den Pol-van Dasselaar A, van Beusichem ML, Oenema O (1998). Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils. Plant and Soil, 204, 213-222.
DOI URL |
[27] |
Wang YF, Chen H, Zhu QA, Peng CH, Wu N, Yang G, Zhu D, Tian JQ, Tian LX, Kang XM, He YX, Gao YH, Zhao XQ (2014). Soil methane uptake by grasslands and forests in China. Soil Biology & Biochemistry, 74, 70-81.
DOI URL |
[28] |
Wood TE, Detto M, Silver WL (2013). Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest. PLOS ONE, 8, e80965. DOI: 10.1371/journal.pone.0080965.
DOI URL |
[29] | Wu JG, Zhou QF (2016). Soil CO2, CH4 and N2O fluxes from alpine meadows on the plateau of southern Qinghai Province during snow cover period and growing seasons. Environmental Science, 37, 2914-2923. |
[ 吴建国, 周巧富 (2016). 青海南部高原积雪期与生长季高寒草甸土壤CO2、CH4和N2O通量的观测. 环境科学, 37, 2914-2923.] | |
[30] |
Wu X, Yao Z, Brüeggemann N, Shen ZY, Wolf B, Dannenmann M, Zheng X, Butterbach-Bahl K (2010). Effects of soil moisture and temperature on CO2 and CH4 soil-atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China. Soil Biology & Biochemistry, 42, 773-787.
DOI URL |
[31] |
Yang K, He J (2019). China meteorological forcing dataset (1979-2018). National Tibetan Plateau Data Center. [2021-07-10]. DOI: 10.11888/AtmosphericPhysics.tpe.249369.file.
DOI |
[32] |
Yang M, Yu GR, He NP, Grace J, Wang QF, Zhou Y (2019). A method for estimating annual cumulative soil/ecosystem respiration and CH4 flux from sporadic data collected using the chamber method. Atmosphere, 10, 623. DOI: 10.3390/atmos10100623.
DOI URL |
[33] | Yu GR, Gao Y, Wang QF, Liu SR, Shen WJ (2013). Discussion on the key processes of carbon-nitrogen-water coupling cycles and biological regulation mechanisms in terrestrial ecosystem. Chinese Journal of Eco-Agriculture, 21, 1-13. |
[ 于贵瑞, 高扬, 王秋凤, 刘世荣, 申卫军 (2013). 陆地生态系统碳氮水循环的关键耦合过程及其生物调控机制探讨. 中国生态农业学报, 21, 1-13.] | |
[34] | Yu GR, Li XR, Zhao N, He NP, Wang QF (2014). Theoretical linkage betwenn ecological stoichiometry with the coupled cycle of carbon, nitrogen and water in terrestrial ecosystems. Quaternary Sciences, 34, 881-890. |
[ 于贵瑞, 李轩然, 赵宁, 何念鹏, 王秋凤 (2014). 生态化学计量学在陆地生态系统碳-氮-水耦合循环理论体系中作用初探. 第四纪研究, 34, 881-890.] | |
[35] |
Yu LJ, Huang Y, Zhang W, Li TT, Sun WJ (2017). Methane uptake in global forest and grassland soils from 1981 to 2010. Science of the Total Environment, 607-608, 1163-1172.
DOI URL |
[36] |
Zhang LH, Huo YW, Guo DF, Wang QB, Bao Y, Li LH (2014). Effects of multi-nutrient additions on GHG fluxes in a temperate grassland of northern China. Ecosystems, 17, 657-672.
DOI URL |
[37] | Zheng D (2015). General Introduction to Chinese Physical Geography. Science Press, Beijing. 76. |
[ 郑度 (2015). 中国自然地理总论. 科学出版社, 北京. 76.] | |
[38] | Zhou P, Liu GB, Xue S (2009). Review of soil respiration and the impact factors on grassland ecosystem. Acta Prataculturae Sinica, 18, 184-193. |
[ 周萍, 刘国彬, 薛萐 (2009). 草地生态系统土壤呼吸及其影响因素研究进展. 草业学报, 18, 184-193.] | |
[39] |
Zhu D, Wu N, Bhattarai N, Oli KP, Chen H, Rawat GS, Rashid I, Dhakal M, Joshi S, Tian J, Zhu Q, Chaudhary S, Tshering K (2021). Methane emissions respond to soil temperature in convergent patterns but divergent sensitivities across wetlands along altitude. Global Change Biology, 27, 941-955.
DOI PMID |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[3] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[4] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[5] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[6] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[7] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[8] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[9] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[10] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[11] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[12] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[13] | 张小燕, WEE Kim Shan Alison, KAJITA Tadashi, 曹坤芳. 种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传[J]. 植物生态学报, 2021, 45(11): 1241-1250. |
[14] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[15] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19