植物生态学报 ›› 2022, Vol. 46 ›› Issue (12): 1461-1472.DOI: 10.17521/cjpe.2021.0426
所属专题: 生态遥感及应用; 光合作用; 生态系统碳水能量通量
• 中国典型生态脆弱区碳水通量过程研究专题论文 • 上一篇 下一篇
林雍1,2, 陈智1,2,3,*(), 杨萌1,2, 陈世苹2,4, 高艳红5, 刘冉2,6, 郝彦宾2, 辛晓平7, 周莉8, 于贵瑞1,2,3
收稿日期:
2021-11-20
接受日期:
2022-03-11
出版日期:
2022-12-20
发布日期:
2023-01-13
通讯作者:
*陈智(基金资助:
LIN Yong1,2, CHEN Zhi1,2,3,*(), YANG Meng1,2, CHEN Shi-Ping2,4, GAO Yan-Hong5, LIU Ran2,6, HAO Yan-Bin2, XIN Xiao-Ping7, ZHOU Li8, YU Gui-Rui1,2,3
Received:
2021-11-20
Accepted:
2022-03-11
Online:
2022-12-20
Published:
2023-01-13
Contact:
*CHEN Zhi(Supported by:
摘要:
生态系统光合参数是表征生态系统光合作用特征和强度的重要指标, 是生态系统模型模拟与遥感反演中的重要生理参数。该研究基于中国干旱半干旱区的涡度相关碳通量观测数据, 采用直角双曲线方程拟合生态系统表观量子效率(α)和最大光合速率(Pmax), 综合分析了干旱半干旱区生态系统光合参数的时空变异及其影响因素。研究表明: 生态系统光合参数在干旱半干旱区存在着明显的时空变异, 从荒漠、荒漠草原、典型草原到草甸草原光合参数有逐渐增大的趋势。降水量是影响光合参数空间变异的主导环境因子, 其同时影响叶面积指数的空间变异, 两者共同决定光合参数的空间变异。α与Pmax均随着降水量的增加而增大, 而α与气温有显著的负相关关系, 辐射对光合参数空间变异的影响则不显著。生长季α与Pmax总体呈先增加后降低的趋势, 但不同植被类型的月际变异性和峰值出现的时间不同, 草甸草原的光合参数具有最大的月际变异性。α的月际动态主要受温度和辐射的调控, 而Pmax在荒漠和荒漠草原受温度和辐射调控, 在典型草原和草甸草原则主要受土壤含水量的调控。干旱半干旱区生态系统α为0.000 47-0.002 12 mg·μmol-1, Pmax为0.11-0.78 mg·m-2·s-1, 同其他草地生态系统相比处于较低的水平, 高温和低土壤水分供给是制约干旱半干旱区光合参数的主要因素。
林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素. 植物生态学报, 2022, 46(12): 1461-1472. DOI: 10.17521/cjpe.2021.0426
LIN Yong, CHEN Zhi, YANG Meng, CHEN Shi-Ping, GAO Yan-Hong, LIU Ran, HAO Yan-Bin, XIN Xiao-Ping, ZHOU Li, YU Gui-Rui. Temporal and spatial variations of ecosystem photosynthetic parameters in arid and semi-arid areas of China and its influencing factors. Chinese Journal of Plant Ecology, 2022, 46(12): 1461-1472. DOI: 10.17521/cjpe.2021.0426
站点 Site | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 年平均气温 Mean annual air temperature (℃) | 年降水量 Mean annual precipitation (mm) | 平均叶面积指数 Average leaf area index | 植被类型 Vegetation type | 通量观测时间 Flux observation time |
---|---|---|---|---|---|---|---|---|
沙坡头 SP | 37.47° | 105.00° | 1 340 | 7.8 | 186 | 0.21 | 荒漠 Desert | 2017, 2018 |
阜康 FK | 44.71° | 88.48° | 590 | 8.8 | 140 | 0.21 | 2017 | |
达尔罕茂明安联合旗 DM | 41.64° | 110.33° | 1 402 | 2.8 | 302 | 0.68 | 荒漠草原 Desert grassland | 2012 |
四子王旗 SZ | 41.78° | 111.90° | 1 442 | 3.2 | 280 | 0.66 | 2013 | |
西乌珠穆沁旗 XW | 44.36° | 117.58° | 1 135 | 2.3 | 330 | 1.06 | 典型草原 Typical grassland | 2017, 2018 |
多伦 DL | 42.05° | 116.28° | 1 322 | 3.4 | 385 | 1.19 | 2015, 2017 | |
内蒙古 NM | 43.55° | 116.68° | 1 250 | 2.5 | 350 | 0.80 | 2014 | |
锡林浩特 XH | 43.55° | 116.67° | 1 254 | 2.5 | 350 | 0.69 | 2014, 2019 | |
呼伦贝尔 HL | 49.35° | 120.12° | 667 | -0.7 | 400 | 1.68 | 草甸草原 Meadow grassland | 2019 |
表1 干旱半干旱区通量观测站点信息
Table 1 Information of flux observation stations in arid and semi-arid areas
站点 Site | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 年平均气温 Mean annual air temperature (℃) | 年降水量 Mean annual precipitation (mm) | 平均叶面积指数 Average leaf area index | 植被类型 Vegetation type | 通量观测时间 Flux observation time |
---|---|---|---|---|---|---|---|---|
沙坡头 SP | 37.47° | 105.00° | 1 340 | 7.8 | 186 | 0.21 | 荒漠 Desert | 2017, 2018 |
阜康 FK | 44.71° | 88.48° | 590 | 8.8 | 140 | 0.21 | 2017 | |
达尔罕茂明安联合旗 DM | 41.64° | 110.33° | 1 402 | 2.8 | 302 | 0.68 | 荒漠草原 Desert grassland | 2012 |
四子王旗 SZ | 41.78° | 111.90° | 1 442 | 3.2 | 280 | 0.66 | 2013 | |
西乌珠穆沁旗 XW | 44.36° | 117.58° | 1 135 | 2.3 | 330 | 1.06 | 典型草原 Typical grassland | 2017, 2018 |
多伦 DL | 42.05° | 116.28° | 1 322 | 3.4 | 385 | 1.19 | 2015, 2017 | |
内蒙古 NM | 43.55° | 116.68° | 1 250 | 2.5 | 350 | 0.80 | 2014 | |
锡林浩特 XH | 43.55° | 116.67° | 1 254 | 2.5 | 350 | 0.69 | 2014, 2019 | |
呼伦贝尔 HL | 49.35° | 120.12° | 667 | -0.7 | 400 | 1.68 | 草甸草原 Meadow grassland | 2019 |
图2 干旱半干旱区生态系统表观量子效率(α)(A)和最大光合速率(Pmax)(B)的空间变异(平均值±标准误)(α = 0.000 47-0.002 12 mg·μmol-1, Pmax = 0.11-0.78 mg·m-2·s-1)。站点同表1。
Fig. 2 Spatial variation of ecosystem apparent quantum yield (α)(A) and maximum photosynthetic rate (Pmax)(B) in arid and semi-arid area (mean ± SE)(α = 0.000 47-0.002 12 mg·μmol-1, Pmax = 0.11-0.78 mg·m-2·s-1). The sites see Table 1.
图3 干旱半干旱区不同站点生长季生态系统表观量子效率(α)与最大光合速率(Pmax)的相关性。
Fig. 3 Correlation between ecosystem apparent quantum yield (α) and maximum photosynthetic rate (Pmax) of different sites in arid and semi-arid areas in growing seasons.
图4 中国干旱半干旱区不同植被类型表观量子效率(α)与最大光合速率(Pmax)的5日(A, C)与月(B, D)平均动态变化。
Fig. 4 Five-day (A, C) and monthly (B, D) average time dynamics of apparent quantum yield (α) and maximum photosynthetic rate (Pmax) of different vegetation types in arid and semi-arid areas of China.
图5 干旱半干旱区生态系统光合参数与影响因子的相关性。α, 表观量子效率; LAI, 生长季平均叶面积指数; Pmax, 最大光合速率; PAR, 生长季平均光合有效辐射; Precipitation, 生长季累积降水量; Rn, 生长季平均净辐射; SWC, 生长季平均土壤含水量; Ta, 生长季平均气温; Ts, 生长季平均土壤温度。
Fig. 5 Correlation between ecosystem light response parameters and environmental factors in arid and semi-arid areas. α, apparent quantum yield; LAI, average leaf area index in the growing season; Pmax, maximum photosynthetic rate; PAR, average photosynthetic effective radiation in the growing season; Precipitation, cumulative precipitation in the growing season; Rn, average net radiation in the growing season; SWC, average soil water content in the growing season; Ta, average air temperature in the growing season; Ts, average soil temperature in the growing season.
植被类型 Vegetation type | 站点 Site | α主要影响因素 Main influencing factors of α | 相关性 Correlation | Pmax主要影响因素 Main influencing factors of Pmax | 相关性 Correlation |
---|---|---|---|---|---|
荒漠 Desert | FK | Rn PAR | + - | Rn | + |
SP | Rn | + | Ts PAR | - - | |
荒漠草原 Desert grassland | DM | Ts | + | Ta | + |
SZ | Ts | + | Rn PAR | + - | |
典型草原 Typical grassland | XW | Ta | + | SWC | + |
DL | PAR | + | SWC | + | |
NM | Ts | + | SWC | + | |
XH | Ta Ts | + + | SWC | + | |
草甸草原 Meadow grassland | HL | Ta | + | SWC | + |
表2 干旱半干旱区生态系统光合参数月际动态的环境影响因子
Table 2 Influence factors of monthly dynamics of ecosystem photosynthetic parameters in arid and semi-arid areas
植被类型 Vegetation type | 站点 Site | α主要影响因素 Main influencing factors of α | 相关性 Correlation | Pmax主要影响因素 Main influencing factors of Pmax | 相关性 Correlation |
---|---|---|---|---|---|
荒漠 Desert | FK | Rn PAR | + - | Rn | + |
SP | Rn | + | Ts PAR | - - | |
荒漠草原 Desert grassland | DM | Ts | + | Ta | + |
SZ | Ts | + | Rn PAR | + - | |
典型草原 Typical grassland | XW | Ta | + | SWC | + |
DL | PAR | + | SWC | + | |
NM | Ts | + | SWC | + | |
XH | Ta Ts | + + | SWC | + | |
草甸草原 Meadow grassland | HL | Ta | + | SWC | + |
图6 干旱半干旱区生态系统表观量子效率(α)(A)与最大光合速率(Pmax)(B)影响因子的通径分析。红色箭头表示因子间有正相关关系, 蓝色箭头表示因子间有负相关关系(*, p < 0.1; **, p < 0.01), 虚线表示因子间相关性不显著; 数字表示影响因子间的标准化回归系数, 系数绝对值越高, 因子间相关性越大。CFI, 相对拟合指数; RMSEA, 近似均方根误差。
Fig. 6 Path analysis of influencing factors of ecosystem apparent quantum yield (α)(A) and maximum photosynthetic rate (Pmax)(B) in arid and semi-arid areas. The red arrow indicates that there is a positive correlation between factors, and the blue arrow indicates that there is a negative correlation between factors (*, p < 0.1; **, p < 0.01), the dotted arrow indicates that the correlation between factors is not significant; the number represents the standardized regression coefficient between influencing factors. The higher the absolute value of the coefficient, the greater the correlation between factors. LAI, leaf area index; Rn, average net radiation; SWC, average soil water content; Ta, average air temperature; Ts, average soil temperature. CFI, comparative fit index; RMSEA, root mean square error of approximation.
[1] |
Anderson DE, Verma SB, Rosenberg NJ (1984). Eddy correlation measurements of CO2, latent heat, and sensible heat fluxes over a crop surface. Boundary-Layer Meteorology, 29, 263-272.
DOI URL |
[2] |
Baldocchi D (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere: the state and future of the eddy covariance method. Global Change Biology, 20, 3600-3609.
DOI PMID |
[3] |
Baldocchi DD, Hincks BB, Meyers TP (1988). Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69, 1331-1340.
DOI URL |
[4] |
Barr JG, Engel V, Fuentes JD, Fuller DO, Kwon H (2013). Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance. Biogeosciences, 10, 2145-2158.
DOI URL |
[5] |
Chen TX, van der Werf GR, Dolman AJ, Groenendijk M (2011). Evaluation of cropland maximum light use efficiency using eddy flux measurements in North America and Europe. Geophysical Research Letters, 38, L14707. DOI: 10.1029/2011GL047533.
DOI |
[6] |
Dugas WA, Heuer ML, Mayeux HS (1999). Carbon dioxide fluxes over bermudagrass, native prairie and sorghum. Agricultural and Forest Meteorology, 93, 121-139.
DOI URL |
[7] |
Ehleringer J, Pearcy RW (1983). Variation in quantum yield for CO2uptake among C3 and C4. Plant Physiology, 73, 555-559.
DOI PMID |
[8] |
Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, et al. (2001). Gap filling str for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107, 43-69.
DOI URL |
[9] |
Gilmanov TG, Aires L, Barcza Z, Baron VS, Belelli L, Beringer J, Billesbach D, Bonal D, Bradford J, Ceschia E, Cook D, Corradi C, Frank A, Gianelle D, Gimeno C, et al. (2010). Productivity, respiration, and light-response parameters of world grassland and agroecosystems derived from flux-tower measurements. Rangeland Ecology & Management, 63, 16-39.
DOI URL |
[10] | Hao YB (2006). Characteristics of Net Ecosystem Exchange of Carbon Dioxide and Their Driving Factors over a Fenced Leymus chinensis Steppe in Inner Mongolia. PhD dissertation, Graduate School of the Chinese Academy of Sciences, Beijing. |
[ 郝彦宾 (2006). 内蒙古羊草草原碳通量观测及其驱动机制分析. 博士学位论文, 中国科学院研究生院, 北京.] | |
[11] |
Hunt JE, Kelliher FM, McSeveny TM, Byers JN (2002). Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agricultural and Forest Meteorology, 111, 65-82.
DOI URL |
[12] | Ji JJ, Huang M, Liu Q (2005). Modeling studies of response mechanism of steppe productivity to climate change in middle latitude semiarid regions in China. Acta Meteorologica Sinica, 63, 257-266. |
[ 季劲钧, 黄玫, 刘青 (2005). 气候变化对中国中纬度半干旱草原生产力影响机理的模拟研究. 气象学报, 63, 257-266.] | |
[13] | Jones HJ (1983). Plant and Microclimate: a Quantitative Approach to Environmental Plant Physiology. Cambridge University Press, Cambridge, UK. |
[14] |
Kim J, Verma SB (1990). Carbon dioxide exchange in a temperate grassland ecosystem. Boundary-Layer Meteorology, 52, 135-149.
DOI URL |
[15] | Leuning R (2002). Temperature dependence of two parameters in a photosynthesis model. Plant, Cell & Environment, 25, 1205-1210. |
[16] |
Li M, Sun HQ, Su ZC (2021). Research progress in dry/wet climate variation in Northwest China. Geographical Research, 40, 1180-1194.
DOI |
[ 李明, 孙洪泉, 苏志诚 (2021). 中国西北气候干湿变化研究进展. 地理研究, 40, 1180-1194.]
DOI |
|
[17] | Li Q, Wang YL, Hu ZH, Xue HX, Li J (2010). Research progress on carbon flux of grassland ecosystem based on the eddy covariance method in China. Pratacultural Science, 27(12), 38-44. |
[ 李琪, 王云龙, 胡正华, 薛红喜, 李洁 (2010). 基于涡度相关法的中国草地生态系统碳通量研究进展. 草业科学, 27(12), 38-44.] | |
[18] |
Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323.
DOI URL |
[19] | Lü XM, Wang YH, Zhou GS, Xu ZZ, Chen J, Tan LP, Liu T (2015). Interactive effects of changing precipitation and elevated temperatures on plant biomass and its allocation of Stipa breviflora. Acta Ecologica Sinica, 35, 752-760. |
[ 吕晓敏, 王玉辉, 周广胜, 许振柱, 陈军, 谭丽萍, 刘涛 (2015). 温度与降水协同作用对短花针茅生物量及其分配的影响. 生态学报, 35, 752-760.] | |
[20] |
Luo YQ, Hui DF, Cheng WX, Coleman JS, Johnson DW, Sims DA. (2000). Canopy quantum yield in a mesocosm study. Agricultural and Forest Meteorology, 100, 35-48.
DOI URL |
[21] | Ran JJ (2014). The Spatial and Temporal Characteristics of Temperature and Precipitation in Arid and Semi-arid Regions of China. Master degree dissertation, Lanzhou University, Lanzhou. |
[ 冉津江 (2014). 我国干旱半干旱区温度和降水的时空分布特征. 硕士学位论文, 兰州大学, 兰州.] | |
[22] | Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995). CO2 fluxes over plant canopies and solar radiation: a review. Advances in Ecological Research, 26, 1-68. |
[23] | Schulze ED, Caldwell MM (1995). Ecophysiology of Photosynthesis. Springer, Berlin. |
[24] | Shi YF, Shen YP, Li DL, Zhang GW, Ding YJ, Hu RJ, Kang ES (2003). Discussion on the present climate change from warm-dry to warm wet in northwest China. Quaternary Sciences, 23, 152-164. |
[ 施雅风, 沈永平, 李栋梁, 张国威, 丁永健, 胡汝骥, 康尔泗 (2003). 中国西北气候由暖干向暖湿转型的特征和趋势探讨. 第四纪研究, 23, 152-164.] | |
[25] |
Verma SB, Baldocchi DD, Anderson DE, Matt DR, Clement RJ (1986). Eddy fluxes of CO2, water vapor and sensible heat over a deciduous forest. Boundary-Layer Meteorology, 36, 71-91.
DOI URL |
[26] |
Wang HS, Jia GS, Fu CB, Feng JM, Zhao TB, Ma ZG (2010). Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling. Remote Sensing of Environment, 114, 2248-2258.
DOI URL |
[27] | Wang HT, Zeng FJ, Zhang B, Li SJ, Gao HH, Lu JR (2015). Light response of Tamarix ramasissima Ledeb. physiological parameters under different cropping patterns. Arid Land Geography, 38, 753-762. |
[ 王会提, 曾凡江, 张波, 李尝君, 高欢欢, 鲁建荣 (2015). 不同种植方式下柽柳光合生理参数光响应特性研究. 干旱区地理, 38, 753-762.] | |
[28] | Wang HZ, Han L, Xu YL, Niu JL, Yu J (2017). Simulated photosynthetic responses of Populus euphratica during drought stress using light-response models. Acta Ecologica Sinica, 37, 2315-2324. |
[ 王海珍, 韩路, 徐雅丽, 牛建龙, 于军 (2017). 干旱胁迫下胡杨光合光响应过程模拟与模型比较. 生态学报, 37, 2315-2324.] | |
[29] |
Wang XY, Li YL, Zhao XY, Mao W, Cui D, Qu H, Lian J, Luo YQ (2012). Responses of soil respiration to different environment factors in semi-arid and arid areas. Acta Ecologica Sinica, 32, 4890-4901.
DOI URL |
[ 王新源, 李玉霖, 赵学勇, 毛伟, 崔夺, 曲浩, 连杰, 罗永清 (2012). 干旱半干旱区不同环境因素对土壤呼吸影响研究进展. 生态学报, 32, 4890-4901.] | |
[30] | Xi Y (2012). Study on Photosynthetic Physiological Characteristics of Dominant Plants in Typical Grassland of Inner Mongolia Under the Background of Climate Change. Master degree dissertation, Minzu University of China, Beijing. |
[ 席溢 (2012). 气候变化背景下内蒙古典型草原优势植物光合生理特征研究. 硕士学位论文, 中央民族大学, 北京.] | |
[31] |
Xiao Z, Liang S, Jiang B (2017). Evaluation of four long time-series global leaf area index products. Agricultural and Forest Meteorology, 246, 218-230.
DOI URL |
[32] | Xu LL, Zhang XZ, Shi PL, Yu GR (2004). Determination of apparent quantum yield and apparent maximum photosynthetic rate of alpine meadow ecosystem in Qinghai Tibet Plateau. Science in China Series D: Earth Sciences, 34, 125-130. |
[ 徐玲玲, 张宪洲, 石培礼, 于贵瑞 (2004). 青藏高原高寒草甸生态系统表观量子产额和表观最大光合速率的确定. 中国科学(D辑: 地球科学), 34, 125-130.] | |
[33] | Yan YL, Zhang LX, Wan ZQ, Gu R, Su LD, Yang J, Gao QZ (2016). Effects of simulated warming and precipitation enhancement on photosynthesis of Stipa krylovii. Acta Prataculturae Sinica, 25, 240-250. |
[ 闫玉龙, 张立欣, 万志强, 谷蕊, 苏力德, 杨劼, 高清竹 (2016). 模拟增温与增雨对克氏针茅光合作用的影响. 草业学报, 25, 240-250.] | |
[34] |
Yu GR, Wen XF, Sun XM, Tanner BD, Lee X, Chen JY (2006). Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology, 137, 125-137.
DOI URL |
[35] |
Yu GR, Zhang LM, Sun XM, Fu YL, Wen XF, Wang QF, Li SG, Ren CY, Song X, Liu YF, Han SJ, Yan JH (2008). Environmental controls over carbon exchange of three forest ecosystems in eastern China. Global Change Biology, 14, 2555-2571.
DOI URL |
[36] |
Zhang DQ, Zhang L, Yang J, Feng GL (2010). The impact of temperature and precipitation variation on drought in China in last 50 years. Acta Physica Sinica, 59, 655-663.
DOI URL |
[ 章大全, 张璐, 杨杰, 封国林 (2010). 近50年中国降水及温度变化在干旱形成中的影响. 物理学报, 59, 655-663.] | |
[37] | Zhang FW, Li YN, Li HQ, Wang QX, Du MY, Zhao L, Wang SP (2007). The comparative study of the apparent quantum yield and maximum photosynthesis rates of 3 typical vegetation types on Qinghai-Tibetan Plateau. Acta Agrestia Sinica, 15, 442-448. |
[ 张法伟, 李英年, 李红琴, 王勤学, 杜明远, 赵亮, 汪诗平 (2007). 青藏高原3种主要植被类型的表观量子效率和最大光合速率的比较. 草地学报, 15, 442-448.]
DOI |
|
[38] |
Zhang LM, Cao PY, Zhu YP, Li QK, Zhang JH, Wang XL, Dai GH, Li JG (2015). Dynamics and regulations of ecosystem light use efficiency in a broad-leaved Korean pine mixed forest, Changbai Mountain. Chinese Journal of Plant Ecology, 39, 1156-1165.
DOI URL |
[ 张雷明, 曹沛雨, 朱亚平, 李庆康, 张军辉, 王晓凌, 戴冠华, 李金功 (2015). 长白山阔叶红松林生态系统光能利用率的动态变化及其主控因子. 植物生态学报, 39, 1156-1165.]
DOI |
|
[39] |
Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Fu YL, Li QK, Li ZQ, Liu YF, Guan DX, Yan JH (2006). Seasonal variations of ecosystem apparent quantum yield (α) and maximum photosynthesis rate (Pmax) of different forest ecosystems in China. Agricultural and Forest Meteorology, 137, 176-187.
DOI URL |
[40] | Zhou LG, Song QH, Zhang YP, Fei XH, Deng Y, Wu CS, Zhou RW, Lin YX, Deng XB, Chen AG, Li PG (2017). Comparison of net ecosystem exchange light-response curve fitted parameters at four types of forest ecosystems. Chinese Journal of Ecology, 36, 1815-1824. |
[ 周立国, 宋清海, 张一平, 费学海, 邓云, 武传胜, 周瑞伍, 林友兴, 邓晓保, 陈爱国, 李培广 (2017). 4种森林生态系统光合作用光响应参数特征的比较. 生态学杂志, 36, 1815-1824.] |
[1] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[2] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[3] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[4] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[5] | 李红琴, 张亚茹, 张法伟, 马文婧, 罗方林, 王春雨, 杨永胜, 张雷明, 李英年. 增强回归树模型在青藏高原高寒灌丛通量数据插补中的应用[J]. 植物生态学报, 2022, 46(12): 1437-1447. |
[6] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[7] | 陈世苹, 游翠海, 胡中民, 陈智, 张雷明, 王秋凤. 涡度相关技术及其在陆地生态系统通量研究中的应用[J]. 植物生态学报, 2020, 44(4): 291-304. |
[8] | 李义博, 宋贺, 周莉, 许振柱, 周广胜. C4植物玉米的光合-光响应曲线模拟研究[J]. 植物生态学报, 2017, 41(12): 1289-1300. |
[9] | 刘玉冰, 李新荣, 李蒙蒙, 刘丹, 张雯莉. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征[J]. 植物生态学报, 2016, 40(11): 1189-1207. |
[10] | 王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽. 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较[J]. 植物生态学报, 2013, 37(2): 111-121. |
[11] | 王慧, 周广胜, 蒋延玲, 石耀辉, 许振柱. 降水与CO2浓度协同作用对短花针茅光合特性的 影响[J]. 植物生态学报, 2012, 36(7): 597-606. |
[12] | 叶子飘, 于强. 光合作用光响应模型的比较[J]. 植物生态学报, 2008, 32(6): 1356-1361. |
[13] | 孙谷畴, 赵平, 曾小平, 彭少麟. 不同光强下焕镛木和观光木的光合参数变化[J]. 植物生态学报, 2002, 26(3): 355-362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19