植物生态学报 ›› 2013, Vol. 37 ›› Issue (2): 111-121.DOI: 10.3724/SP.J.1258.2013.00012
王荣荣1,2, 夏江宝2,*(), 杨吉华1, 赵艳云2,3, 刘京涛2, 孙景宽2,3
收稿日期:
2012-11-13
接受日期:
2012-12-19
出版日期:
2013-11-13
发布日期:
2013-01-31
通讯作者:
夏江宝
作者简介:
* (E-mail: xiajb@163.com)基金资助:
WANG Rong-Rong1,2, XIA Jiang-Bao2,*(), YANG Ji-Hua1, ZHAO Yan-Yun2,3, LIU Jing-Tao2, SUN Jing-Kuan2,3
Received:
2012-11-13
Accepted:
2012-12-19
Online:
2013-11-13
Published:
2013-01-31
Contact:
XIA Jiang-Bao
摘要:
以黄河三角洲贝壳堤岛3年生杠柳(Periploca sepium)苗木为试验材料, 模拟设置贝壳砂生境下的4种水分梯度, 利用CIRAS-2型光合作用系统测定杠柳叶片在不同干旱胁迫下的光合作用光响应过程, 采用4种光响应模型进行拟合分析, 以比较贝壳砂生境干旱胁迫下适宜的光响应模型, 探讨最佳光响应模型参数对干旱胁迫的适应规律。结果表明: 4种模型对杠柳叶片光合作用光响应过程拟合效果的优劣顺序为: 直角双曲线修正模型>非直角双曲线模型>指数模型>直角双曲线模型, 后3种模型均为没有极值的函数, 故不能很好地拟合光响应曲线光抑制过程, 并不能直接求解最大净光合速率(Pnmax)和光饱和点(LSP)。光响应参数拟合效果最佳表现为: 非直角双曲线模型的暗呼吸速率(Rd), 直角双曲线模型的光补偿点(LCP), 直角双曲线修正模型的Pnmax和LSP。4种光响应模型对干旱胁迫具有不同的适应性, 直角双曲线修正模型适应各种水分条件, 直角双曲线模型和指数模型较适合轻度干旱胁迫条件, 非直角双曲线模型较适合重度干旱胁迫条件。随干旱胁迫的加剧, 光响应参数表观量子效率(AQY)、Rd和LCP先升高后下降, 净光合速率(Pn)、Pnmax和LSP逐渐下降。轻度、中度和重度干旱胁迫下, LSP分别比对照下降5.2%、16.3%和34.5%, Pnmax分别比对照下降17.8%、39.0%和59.0%。水分充足条件下, 杠柳叶片光能利用最强, 光照生态幅最宽; 重度干旱胁迫下, 杠柳叶片表现出明显的光饱和、光抑制现象, 光能利用减弱, 光合能力受到较大限制。
王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽. 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较. 植物生态学报, 2013, 37(2): 111-121. DOI: 10.3724/SP.J.1258.2013.00012
WANG Rong-Rong, XIA Jiang-Bao, YANG Ji-Hua, ZHAO Yan-Yun, LIU Jing-Tao, SUN Jing-Kuan. Comparison of light response models of photosynthesis in leaves of Periploca sepium under drought stress in sand habitat formed from seashells. Chinese Journal of Plant Ecology, 2013, 37(2): 111-121. DOI: 10.3724/SP.J.1258.2013.00012
图1 干旱胁迫下杠柳叶片净光合速率的光响应曲线。
Fig. 1 Net photosynthetic rate (Pn)-light response curves of Periploca sepium leaf under drought stresses. PAR, photosynthetically active radiation; Wr, relative soil water content.
图2 杠柳叶片净光合速率光响应的实测点与模型拟合曲线(平均值±标准误差)。CK, 对照; T1, 轻度干旱胁迫; T2, 中度干旱胁迫; T3, 重度干旱胁迫。
Fig. 2 Measured points and fitting curves of net photosynthetic rate (Pn)-light responses of Periploca sepium leaf (mean ± SE). CK, control; PAR, photosynthetically active radiation; T1, light drought stress; T2, moderate drought stress; T3, severe drought stress.
光响应模型 Light response model | 干旱处理Drought treatment | 光响应参数 Light response parameter | R2 | |||
---|---|---|---|---|---|---|
暗呼吸速率 Rd (μmol·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 最大净光合速率Pnmax (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) | |||
实测值 Measured value | CK | 1.49 | 32 | 22.53 | 1700 | - |
T1 | 2.04 | 42 | 18.59 | 1600 | - | |
T2 | 1.90 | 59 | 13.54 | 1300 | - | |
T3 | 1.43 | 49 | 9.16 | 1000 | - | |
直角双曲线模型 Rectangular hyperbola model | CK | 2.77 | 31 | 30.00 | 338 | 0.989 |
T1 | 3.94 | 43 | 26.10 | 276 | 0.992 | |
T2 | 3.61 | 54 | 20.07 | 292 | 0.978 | |
T3 | 3.19 | 44 | 13.17 | 170 | 0.947 | |
非直角双曲线模型 Non-rectangular hyperbola model | CK | 1.37 | 23 | 30.00 | 532 | 0.999 |
T1 | 2.08 | 28 | 30.00 | 433 | 0.999 | |
T2 | 1.96 | 51 | 17.77 | 506 | 0.998 | |
T3 | 1.38 | 46 | 10.50 | 396 | 0.988 | |
指数模型 Exponential model | CK | 2.48 | 35 | 25.21 | 874 | 0.999 |
T1 | 2.73 | 39 | 21.26 | 648 | 1.000 | |
T2 | 2.87 | 52 | 16.46 | 541 | 0.995 | |
T3 | 2.32 | 43 | 11.05 | 329 | 0.981 | |
直角双曲线修正模型 Modified rectangular hyperbola model | CK | 2.52 | 36 | 22.58 | 1556 | 0.999 |
T1 | 2.97 | 42 | 18.57 | 1475 | 1.000 | |
T2 | 2.68 | 56 | 13.77 | 1302 | 0.998 | |
T3 | 2.15 | 47 | 9.26 | 1019 | 0.998 |
表1 杠柳叶片Pn光响应参数实测值与模型拟合值
Table 1 Measured values of net photosynthetic rate-light response parameters of Periploca sepium leaf and the results fitted by four models
光响应模型 Light response model | 干旱处理Drought treatment | 光响应参数 Light response parameter | R2 | |||
---|---|---|---|---|---|---|
暗呼吸速率 Rd (μmol·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 最大净光合速率Pnmax (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) | |||
实测值 Measured value | CK | 1.49 | 32 | 22.53 | 1700 | - |
T1 | 2.04 | 42 | 18.59 | 1600 | - | |
T2 | 1.90 | 59 | 13.54 | 1300 | - | |
T3 | 1.43 | 49 | 9.16 | 1000 | - | |
直角双曲线模型 Rectangular hyperbola model | CK | 2.77 | 31 | 30.00 | 338 | 0.989 |
T1 | 3.94 | 43 | 26.10 | 276 | 0.992 | |
T2 | 3.61 | 54 | 20.07 | 292 | 0.978 | |
T3 | 3.19 | 44 | 13.17 | 170 | 0.947 | |
非直角双曲线模型 Non-rectangular hyperbola model | CK | 1.37 | 23 | 30.00 | 532 | 0.999 |
T1 | 2.08 | 28 | 30.00 | 433 | 0.999 | |
T2 | 1.96 | 51 | 17.77 | 506 | 0.998 | |
T3 | 1.38 | 46 | 10.50 | 396 | 0.988 | |
指数模型 Exponential model | CK | 2.48 | 35 | 25.21 | 874 | 0.999 |
T1 | 2.73 | 39 | 21.26 | 648 | 1.000 | |
T2 | 2.87 | 52 | 16.46 | 541 | 0.995 | |
T3 | 2.32 | 43 | 11.05 | 329 | 0.981 | |
直角双曲线修正模型 Modified rectangular hyperbola model | CK | 2.52 | 36 | 22.58 | 1556 | 0.999 |
T1 | 2.97 | 42 | 18.57 | 1475 | 1.000 | |
T2 | 2.68 | 56 | 13.77 | 1302 | 0.998 | |
T3 | 2.15 | 47 | 9.26 | 1019 | 0.998 |
光合模型 Light response model | 干旱处理Drought treatment | 相对误差 RE | |||
---|---|---|---|---|---|
暗呼吸速率 Rd | 光补偿点 LCP | 最大净光合速率 Pnmax | 光饱和点 LSP | ||
直角双曲线模型 Rectangular hyperbola model | CK | 0.860 | 0.007 | 0.332 | 0.801 |
T1 | 0.931 | 0.023 | 0.404 | 0.828 | |
T2 | 0.898 | 0.086 | 0.482 | 0.775 | |
T3 | 1.224 | 0.114 | 0.438 | 0.830 | |
非直角双曲线模型 Non-rectangular hyperbola model | CK | 0.079 | 0.263 | 0.332 | 0.687 |
T1 | 0.016 | 0.319 | 0.614 | 0.729 | |
T2 | 0.030 | 0.148 | 0.312 | 0.611 | |
T3 | 0.037 | 0.066 | 0.146 | 0.604 | |
指数模型 Exponential model | CK | 0.669 | 0.121 | 0.119 | 0.486 |
T1 | 0.337 | 0.064 | 0.143 | 0.595 | |
T2 | 0.508 | 0.122 | 0.215 | 0.584 | |
T3 | 0.621 | 0.129 | 0.207 | 0.671 | |
直角双曲线修正模型 Modified rectangular hyperbola model | CK | 0.695 | 0.152 | 0.002 | 0.085 |
T1 | 0.456 | 0.001 | 0.001 | 0.078 | |
T2 | 0.413 | 0.058 | 0.017 | 0.001 | |
T3 | 0.503 | 0.047 | 0.011 | 0.019 |
表2 杠柳叶片Pn光响应参数的模型拟合值与实测值的相对误差
Table 2 Relative errors of measured and fitted values of net photosynthetic rate-light response parameters of Periploca sepium leaf
光合模型 Light response model | 干旱处理Drought treatment | 相对误差 RE | |||
---|---|---|---|---|---|
暗呼吸速率 Rd | 光补偿点 LCP | 最大净光合速率 Pnmax | 光饱和点 LSP | ||
直角双曲线模型 Rectangular hyperbola model | CK | 0.860 | 0.007 | 0.332 | 0.801 |
T1 | 0.931 | 0.023 | 0.404 | 0.828 | |
T2 | 0.898 | 0.086 | 0.482 | 0.775 | |
T3 | 1.224 | 0.114 | 0.438 | 0.830 | |
非直角双曲线模型 Non-rectangular hyperbola model | CK | 0.079 | 0.263 | 0.332 | 0.687 |
T1 | 0.016 | 0.319 | 0.614 | 0.729 | |
T2 | 0.030 | 0.148 | 0.312 | 0.611 | |
T3 | 0.037 | 0.066 | 0.146 | 0.604 | |
指数模型 Exponential model | CK | 0.669 | 0.121 | 0.119 | 0.486 |
T1 | 0.337 | 0.064 | 0.143 | 0.595 | |
T2 | 0.508 | 0.122 | 0.215 | 0.584 | |
T3 | 0.621 | 0.129 | 0.207 | 0.671 | |
直角双曲线修正模型 Modified rectangular hyperbola model | CK | 0.695 | 0.152 | 0.002 | 0.085 |
T1 | 0.456 | 0.001 | 0.001 | 0.078 | |
T2 | 0.413 | 0.058 | 0.017 | 0.001 | |
T3 | 0.503 | 0.047 | 0.011 | 0.019 |
图3 杠柳叶片的3个表观量子效率参数对干旱胁迫的响应(平均值±标准误差)。相同参数间的不同小写字母表示差异显著(p < 0.05)。Φ0, 内禀量子效率; Φc, 光补偿点处的量子效率; Φc0, 光补偿点与暗呼吸速率处连线的斜率。CK, 对照; T1, 轻度干旱胁迫; T2, 中度干旱胁迫; T3, 重度干旱胁迫。
Fig. 3 Response of three apparent quantum yield parameters of Periploca sepium leaf to drought stresses (mean ± SE). Φ0, intrinsic quantum yield; Φc, quantum yield at light compensation point (LCP); Φc0, absolute values of slope between photosynthetically active radiation (PAR) = 0 and PAR = LCP. CK, control; PAR, photosynthetically active radiation; T1, light drought stress; T2, moderate drought stress; T3, severe drought stress.
[1] | An YY, Liang ZS, Han RL, Liu GB (2007). Effects of soil drought on seedling growth and water metabolism of three common shrubs in Loess Plateau, Northwest China. Frontiers of Foresty in China, 2, 410-416. |
[2] | An YY, Liang ZS, Hao WF (2011). Growth and physiological responses of the Periploca sepium Bunge seedlings to drought stress. Acta Ecologica Sinica, 31, 716-725. (in Chinese with English abstract) |
[ 安玉艳, 梁宗锁, 郝文芳 (2011). 杠柳幼苗对不同强度干旱胁迫的生长与生理响应. 生态学报, 31, 716-725.] | |
[3] |
Aspinwall MJ, King JS, McKeand SE, Domec JC, Whitehead D (2011). Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation. Tree Physiology, 31, 78-91.
DOI URL |
[4] | Bamba T, Sando T, Miyabashira A, Gyokusen K, Nakazawa Y, Su Y, Fukusaki E, Kobayashhi A (2007). Periploca sepium Bunge as a model plant for rubber biosynthesis study. Zeitschrift Fur Naturforschung C, 62, 579-582. |
[5] | Chen J, Zhang GC, Zhang SY, Wang MJ (2008). Response processes of Aralia elata photosynthesis and transpiration to light and soil moisture. Chinese Journal of Applied Ecology, 32, 1471-1480. (in Chinese with English abstract) |
[ 陈建, 张光灿, 张淑勇, 王梦军 (2008). 辽东楤木光合和蒸腾作用对光照和土壤水分的响应过程. 应用生态学报, 32, 1471-1480.] | |
[6] | Chen ZC, Wang RR, Wang ZW, Yang JH, Wang HT, Geng B, Zhang YT (2012). Light response of photosynthesis of Koelreuteria paniculata Laxm. under different soil water conditions. Science of Soil and Water Conservation, 10(3), 105-110. (in Chinese with English abstract) |
[ 陈志成, 王荣荣, 王志伟, 杨吉华, 王华田, 耿兵, 张永涛 (2012). 不同土壤水分条件下栾树光合作用的光响应. 中国水土保持科学, 10(3), 105-110.] | |
[7] | Chen ZY, Peng ZS, Yang J, Chen WY, Ouyang ZM (2011). A mathematical model for describing light-response curves in Nicotiana tabacum L. Photosynthetica, 49, 467-471. |
[8] | Duan AG, Zhang JG (2009). Selection of models of photosynthesis in response to irradiance and definition of attribute of weak light. Forest Research, 22, 765-771. (in Chinese with English abstract) |
[ 段爱国, 张建国 (2009). 光合作用光响应曲线模型选择及低光强属性界定. 林业科学研究, 22, 765-771.] | |
[9] | Han G, Zhao Z (2010). Light response characteristics of photosynthesis of four xerophilous shrubs under different soil moistures. Acta Ecologica Sinica, 30, 4019-4026. (in Chinese with English abstract) |
[ 韩刚, 赵忠 (2010). 不同土壤水分下4种沙生灌木的光合光响应特性. 生态学报, 30, 4019-4026.] | |
[10] |
Jiang H, Zhou GY, Huang YH, Liu SZ, Tang XL (2011). Photosynthetic characteristics of canopy-dwelling vines in lower subtropical evergreen broad-leaved forest and response to environmental factors. Chinese Journal of Plant Ecology, 35, 567-576. (in Chinese with English abstract)
DOI URL |
[ 江浩, 周国逸, 黄钰辉, 刘世忠, 唐旭利 (2011). 南亚热带常绿阔叶林林冠不同部位藤本植物的光合生理特征及其对环境因子的适应. 植物生态学报, 35, 567-576.] | |
[11] | Lang Y, Zhang GC, Zhang ZK, Liu SS, Liu DH, Hu XL (2011). Light response of photosynthesis and its simulation in leaves of Prunus sibirica L. under different soil water conditions. Acta Ecologica Sinica, 31, 4499-4509. (in Chinese with English abstract) |
[ 郎莹, 张光灿, 张征坤, 刘顺生, 刘德虎, 胡小兰 (2011). 不同土壤水分下山杏光合作用光响应过程及其模拟. 生态学报, 31, 4499-4509.] | |
[12] |
Lewis JD, Olszyk D, Tingey DT (1999). Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO2 and temperature. Tree Physiology, 19, 243-252.
DOI URL |
[13] | Li YX, Yang ZQ, Zhang FC (2011). Applicability of different photosynthesis models for winter wheat in the Lower Yangtze River . Chinese Journal of Agrometeorology, 32, 588-592. (in Chinese with English abstract) |
[ 李永秀, 杨再强, 张富存 (2011). 光合作用模型在长江下游冬麦区的适用性研究. 中国农业气象, 32, 588-592.] | |
[14] |
Liu SL, Ma MD, Pan YZ, Wei LL, He CX, Yang KM (2012). Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species. Chinese Journal of Plant Ecology, 36, 1062-1074. (in Chinese with English abstract)
DOI URL |
[ 刘柿良, 马明东, 潘远智, 魏刘利, 何成相, 杨开茂 (2012). 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响. 植物生态学报, 36, 1062-1074.] | |
[15] | Lu PL, Yu Q, Luo Y, Liu JD (2001). Light-response curves fitting of photosynthesis in winter wheat. Chinese Journal of Agrometeorology, 22(2), 12-14. (in Chinese with English abstract) |
[ 陆佩玲, 于强, 罗毅, 刘建栋 (2001). 冬小麦光合作用的光响应曲线的拟合. 中国农业气象, 22(2), 12-14.] | |
[16] |
Misra A, Tyler G (1999). Influence of soil moisture on soil solution chemistry and concentrations of minerals in the calcicoles Phleum phleoides and Veronica spicata grown on a limestone soil. Annals of Botany, 84, 401-410.
DOI URL |
[17] |
Prado CHBA, Moraes JD (1997). Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field condition. Photosynthetica, 33, 103-112.
DOI URL |
[18] |
Tartachnyk II, Blanke MM (2004). Effect of delayed fruit harvest on photosynthesis, transpiration and nutrient remobilization of apple leaves. New Phytologist, 164, 441-450.
DOI URL |
[19] | Thornley JHM (1976). Mathematical Models in Plant Physiology. Academic Press, London. 86-110. |
[20] | Wang SJ, Huang DZ, Yan HX, Xu XH, Ma XC (2011). Applicability of four empirical models on photosynthesis light response of Populus szechuanica Schneid. Journal of Beihua University (Natural Science), 12, 208-212. (in Chinese with English abstract) |
[ 王圣杰, 黄大庄, 闫海霞, 徐学华, 马向超 (2011). 4种经验模型在藏川杨光响应研究中的适用性. 北华大学学报(自然科学版), 12, 208-212.] | |
[21] | Xia JB, Tian JY, Zhang GC, Li T (2009). Photosynthetic and physiological characteristics of three shrubs species in Shell Islands of Yellow River Delta. Acta Botanica Boreali-Occidentalia Sinica, 29, 1452-1459. (in Chinese with English abstract) |
[ 夏江宝, 田家怡, 张光灿, 李田 (2009). 黄河三角洲贝壳堤岛3种灌木光合生理特征研究. 西北植物学报, 29, 1452-1459.] | |
[22] |
Xia JB, Zhang GC, Liu X, Sun JK (2011). Threshold effects of photosynthetic and physiological parameters in Prunus sibirica to soil moisture and light intensity. Chinese Journal of Plant Ecology, 35, 322-329. (in Chinese with English abstract)
DOI URL |
[ 夏江宝, 张光灿, 刘霞, 孙景宽 (2011). 山杏叶片光合生理参数对土壤水分和光照强度的阈值效应. 植物生态学报, 35, 322-329.] | |
[23] | Xia JB, Zhang SY, Zhang GC, Xie WJ, Lu ZH (2011). Critical responses of photosynthetic efficiency in Campsis radicans (L.) Seem to soil water and light intensities. African Journal of Biotechnology, 10, 17748-17754. |
[24] |
Xie WJ, Zhao YY, Zhang ZD, Liu Q, Xia JB, Sun JK, Tian JY, Sun TQ (2012). Shell sand properties and vegetative distribution on shell ridges of the Southwestern Coast of Bohai Bay. Environmental Earth Sciences, 67, 1357-1362.
DOI URL |
[25] | Xu DQ (2002). Efficiency of Photosynthesis. Shanghai Science and Technology Press, Shanghai. 13-15, 33. (in Chinese) |
[ 许大全 (2002). 光合作用效率. 上海科学技术出版社, 上海. 13-15, 33.] | |
[26] | Yang CH, Wang YY, Zhou ZF, Zhang GC (2006). Response of gas exchange parameters of Periploca sepium Bunge to soil water content in Loess Plateau. Forest Research, 19, 231-234. (in Chinese with English abstract) |
[ 杨朝瀚, 王艳云, 周泽福, 张光灿 (2006). 黄土丘陵区杠柳叶片气体交换过程对土壤水分的响应. 林业科学研究, 19, 231-234.] | |
[27] | Ye ZP (2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45, 637-640. |
[28] | Ye ZP (2010). A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 34, 727-740. (in Chinese with English abstract) |
[ 叶子飘 (2010). 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 34, 727-740.] | |
[29] | Ye ZP, Kang HJ (2012). Study on biological significance of coefficients in modified model of photosynthesis- irradiance. Journal of Yangzhou University (Agricultural and Life Science Edition), 33(2), 51-57. (in Chinese with English abstract) |
[ 叶子飘, 康华靖 (2012). 植物光响应修正模型中系数的生物学意义研究. 扬州大学学报(农业与生命科学版), 33(2), 51-57.] | |
[30] | Ye ZP, Wang JL (2009). Study on Kok effect of rice based on the modified model of light-response of photosynthesis. Journal of Yangzhou University (Agricultural and Life Science Edition), 30(3), 5-10. (in Chinese with English abstract) |
[ 叶子飘, 王建林 (2009). 基于植物光响应修正模型的水稻Kok效应研究. 扬州大学学报(农业与生命科学版), 30(3), 5-10.] | |
[31] | Ye ZP, Yu Q (2008). Comparison of new and several classical models of photosynthesis in response to irradiance. Journal of Plant Ecology (Chinese Version), 32, 1356-1361. (in Chinese with English abstract) |
[ 叶子飘, 于强 (2008). 光合作用光响应模型的比较. 植物生态学报, 32, 1356-1361.] | |
[32] | Yu Q, Zhang YQ, Liu YF, Shi PL (2004). Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes. Annals of Botany, 93, 435-441. |
[33] | Yun LY, Cao B (2007). The data fitting based on the optimized relative error. Statistics and Decision, ( 21), 15-16. (in Chinese) |
[ 云连英, 曹勃 (2007). 基于优化的相对误差意义下的数据拟合. 统计与决策, ( 21), 15-16.] | |
[34] | Zhang J, Gao WY, Wang J, Li XL (2012). Effects of sucrose concentration and exogenous hormones on growth and periplocin accumulation in adventitious roots of Periploca sepium Bunge. Acta Physiologiae Plantarum, 34, 1345-1351. |
[35] | Zhang LY, Wen GS, Wang SJ, Liu ZL (2011). Four light-response models to estimate photosynthesis of Phyllostachys pubescens. Journal of Zhejiang A & F University, 28, 187-193. (in Chinese with English abstract) |
[ 张利阳, 温国胜, 王圣杰, 刘兆玲 (2011). 毛竹光响应模型适用性分析. 浙江农林大学学报, 28, 187-193.] | |
[36] | Zhu YN, Zhang YS, Ji RP, Che YS, Gao XN (2012). Fitting light response curve of photosynthesis of maize under drought stress. Journal of Shenyang Agricultural University, 43, 3-7. (in Chinese with English abstract) |
[ 朱永宁, 张玉书, 纪瑞鹏, 车宇胜, 高西宁 (2012). 干旱胁迫下3种玉米光响应曲线模型的比较. 沈阳农业大学学报, 43, 3-7.] | |
[37] | Zu YG, Wei XX, Yu JH, Li DW, Pang HH, Tong L (2011). Response in the physiology and biochemistry of Korean pine (Pinus koraiensis) under supplementary UV-B radiation. Photosynthetica, 49, 448-458. |
[1] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[2] | 林雍 陈智 杨萌 陈世苹 高艳红 刘冉 郝彦宾 辛晓平 周莉 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[3] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
[4] | 李晋波, 姚楠, 赵英, 范庭, 张建国, 兰志龙, 易军, 司炳成. 不同放牧条件下锡林郭勒典型草原土壤水分分布特征及降水入渗估算[J]. 植物生态学报, 2018, 42(10): 1033-1042. |
[5] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[6] | 李义博, 宋贺, 周莉, 许振柱, 周广胜. C4植物玉米的光合-光响应曲线模拟研究[J]. 植物生态学报, 2017, 41(12): 1289-1300. |
[7] | 陈敏玲, 张兵伟, 任婷婷, 王姗姗, 陈世苹. 内蒙古半干旱草原土壤水分对降水格局变化的响应[J]. 植物生态学报, 2016, 40(7): 658-668. |
[8] | 司晓林, 王文银, 高小刚, 徐当会. 氮硅添加对高寒草甸垂穗披碱草叶片全氮含量及净光合速率的影响[J]. 植物生态学报, 2016, 40(12): 1238-1244. |
[9] | 孙鹏森, 刘宁, 刘世荣, 孙阁. 川西亚高山流域水碳平衡研究[J]. 植物生态学报, 2016, 40(10): 1037-1048. |
[10] | 唐海萍, 薛海丽, 房飞. 叶片和群落尺度净光合速率关系的探讨[J]. 植物生态学报, 2015, 39(9): 924-931. |
[11] | 张彬,朱建军,刘华民,潘庆民. 极端降水和极端干旱事件对草原生态系统的影响[J]. 植物生态学报, 2014, 38(9): 1008-1018. |
[12] | 熊育久,邱国玉,谢芳. 内蒙古太仆寺旗退耕草地植物种类变化与水分收支[J]. 植物生态学报, 2014, 38(5): 425-439. |
[13] | 夏江宝, 张淑勇, 赵自国, 赵艳云, 高源, 谷广义, 孙景宽. 贝壳堤岛旱柳光合效率的土壤水分临界效应及其阈值分级[J]. 植物生态学报, 2013, 37(9): 851-860. |
[14] | 刘苏峡, 邢博, 袁国富, 莫兴国, 林忠辉. 中国根层与表层土壤水分关系分析[J]. 植物生态学报, 2013, 37(1): 1-17. |
[15] | 王慧, 周广胜, 蒋延玲, 石耀辉, 许振柱. 降水与CO2浓度协同作用对短花针茅光合特性的 影响[J]. 植物生态学报, 2012, 36(7): 597-606. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19