植物生态学报 ›› 2017, Vol. 41 ›› Issue (7): 761-769.DOI: 10.17521/cjpe.2016.0188
收稿日期:
2016-05-31
接受日期:
2017-04-06
出版日期:
2017-07-10
发布日期:
2017-08-21
通讯作者:
赵成章
作者简介:
* 通信作者Author for correspondence (E-mail:
基金资助:
Ting XU, Cheng-Zhang ZHAO*(), Ling HAN, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG
Received:
2016-05-31
Accepted:
2017-04-06
Online:
2017-07-10
Published:
2017-08-21
Contact:
Cheng-Zhang ZHAO
About author:
KANG Jing-yao(1991-), E-mail:
摘要:
植物叶脉密度与水分利用效率(WUE)的关联性影响着植物水分的供需平衡, 为验证植物进化过程中形成的生态适应策略提供了适用性理论依据。该文选择张掖市黑河干流边缘的洪泛平原湿地为实验地, 以河岸为起点沿平行河岸线的方向依次设置近水区(样地I)、中水区(样地II)和远水区(样地III) 3个水分梯度样地, 结合相关分析和标准化主轴分析, 研究了水分影响下旱柳(Salix matsudana)叶脉密度与WUE之间的关系。结果表明: 随着土壤含水量减少, 旱柳林的高度和郁闭度均持续降低, 旱柳叶片的叶脉密度、WUE、净光合速率、蒸腾速率、光合有效辐射和饱和水汽压差逐渐增加, 比叶面积、气孔导度和胞间CO2浓度逐渐减小; 不同土壤含水量样地旱柳叶脉密度与WUE间的相关性存在差异(p < 0.05), 在样地I和样地III, 叶脉密度与WUE呈极显著正相关关系(p < 0.01); 在样地II, 两者之间呈显著正相关关系(p < 0.05); 样地I叶脉密度与WUE的相关系数显著小于1, 样地II和样地III叶脉密度与WUE的相关系数显著大于1 (p < 0.05)。旱柳植株通过合理调整叶脉密度与WUE间的资源配置, 即增加叶脉密度的同时提高叶片的WUE, 以补偿水分梯度上的不利因素对种群正常的生理活动带来的影响, 反映了该物种在异质生境中具有较强的叶片性状可塑性, 从而有利于其适应特殊的湿地生境。
徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系. 植物生态学报, 2017, 41(7): 761-769. DOI: 10.17521/cjpe.2016.0188
Ting XU, Cheng-Zhang ZHAO, Ling HAN, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG. Correlation between vein density and water use efficiency of Salix matsudana in Zhangye Wetland, China. Chinese Journal of Plant Ecology, 2017, 41(7): 761-769. DOI: 10.17521/cjpe.2016.0188
样地 Plot | 土壤含水量 Soil moisture (%) | 群落特征 Community characteristics | |
---|---|---|---|
高度 Height (cm) | 郁闭度 Crown density (%) | ||
I | 69.23 ± 3.55a | 636.96 ± 27.63a | 91.21 ± 4.56a |
II | 48.38 ± 2.46b | 589.25 ± 17.28b | 75.69 ± 3.78b |
III | 35.27 ± 1.76c | 502.34 ± 26.76c | 37.26 ± 1.86c |
表1 不同水分样地的主要特征(平均值±标准误差, n = 60)
Table 1 Main characteristics of plots in different water plots (mean ± SE, n = 60)
样地 Plot | 土壤含水量 Soil moisture (%) | 群落特征 Community characteristics | |
---|---|---|---|
高度 Height (cm) | 郁闭度 Crown density (%) | ||
I | 69.23 ± 3.55a | 636.96 ± 27.63a | 91.21 ± 4.56a |
II | 48.38 ± 2.46b | 589.25 ± 17.28b | 75.69 ± 3.78b |
III | 35.27 ± 1.76c | 502.34 ± 26.76c | 37.26 ± 1.86c |
图1 不同样地旱柳叶性状特征及水分利用效率(WUE)的变化(平均值±标准误差, n = 60)。不同小写字母表示相同构件在不同样地差异显著(p < 0.05)。
Fig. 1 Change among leaf traits and water use efficiency (WUE) of Salix matsudana in different plots (mean ± SE, n = 60). Different lowercase letters indicate significant differences of different plots for identical module (p < 0.05).
样地 Plot | I | II | III |
---|---|---|---|
饱和水汽压差 VPD (kPa) | 0.25 ± 0.01c | 0.28 ± 0.01b | 0.32 ± 0.02a |
气孔导度 Gs (mol·m-2·s-1) | 1.77 ± 0.09a | 0.91 ± 0.05b | 0.32 ± 0.02c |
蒸腾速率 Tr (mmol·m-2·s-1) | 3.02 ± 0.15c | 5.26 ± 0.26b | 6.81 ± 0.34a |
净光合速率 Pn (μmol·m-2·s-1) | 3.69 ± 0.08c | 8.83 ± 0.34b | 16.63 ± 0.83a |
胞间CO2浓度 Ci (μmol·mol-1) | 0.31 ± 0.02a | 0.29 ± 0.02a | 0.27 ± 0.01a |
光合有效辐射 PAR (μmol·m-2·s-1) | 782.30 ± 39.12c | 1105.20 ± 55.26b | 1562.20 ± 78.12a |
表2 不同样地旱柳叶片光合特性(数值为平均值±标准误差, n = 60)
Table 2 Photosynthetic characteristics of Salix matsudana in different plots (mean ± SE, n = 60)
样地 Plot | I | II | III |
---|---|---|---|
饱和水汽压差 VPD (kPa) | 0.25 ± 0.01c | 0.28 ± 0.01b | 0.32 ± 0.02a |
气孔导度 Gs (mol·m-2·s-1) | 1.77 ± 0.09a | 0.91 ± 0.05b | 0.32 ± 0.02c |
蒸腾速率 Tr (mmol·m-2·s-1) | 3.02 ± 0.15c | 5.26 ± 0.26b | 6.81 ± 0.34a |
净光合速率 Pn (μmol·m-2·s-1) | 3.69 ± 0.08c | 8.83 ± 0.34b | 16.63 ± 0.83a |
胞间CO2浓度 Ci (μmol·mol-1) | 0.31 ± 0.02a | 0.29 ± 0.02a | 0.27 ± 0.01a |
光合有效辐射 PAR (μmol·m-2·s-1) | 782.30 ± 39.12c | 1105.20 ± 55.26b | 1562.20 ± 78.12a |
图2 不同样地旱柳叶脉密度与水分利用效率(WUE)的关系。A, 样地I; B, 样地II; C, 样地III。样地同表1。
Fig. 2 Relationship between vein density and water use efficiency (WUE) of Salix matsudana among different plots. A, Plot I; B, Plot II; C, Plot III. Plot see Table 1.
参数 Parameter | Tr | Pn | WUE |
---|---|---|---|
变异系数 Coefficient of variation (%) | 9.25% | 20.32% | 9.96% |
表3 旱柳叶片蒸腾速率(Tr)、净光合速率(Pn)及水分利用效率(WUE)的变化
Table 3 Variation of leaf transpiration rate (Tr), net photosynthetic rate (Pn) and water use efficiency (WUE) for Salix matsudana
参数 Parameter | Tr | Pn | WUE |
---|---|---|---|
变异系数 Coefficient of variation (%) | 9.25% | 20.32% | 9.96% |
[1] | Aiba M, Takafumi H, Hiura T (2012). Interspecific differences in determinants of plant species distribution and the relationships with functional traits.Journal of Ecology, 100, 950-957. |
[2] | Berlyn GP, Miksche JP (1976). Botanical Microtechnique and Cytochemistry. Iowa State University Press, Ames, USA. |
[3] | Blonder B, Violle C, Bentley LP, Enquist BJ (2010). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91-100. |
[4] | Brodribb TJ, Feild TS (2010). Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification.Ecology Letters, 13, 175-183. |
[5] | Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees.New Phytologist, 192, 437-448. |
[6] | Carins-Murphy MR, Jordan GJ, Brodribb TJ (2014). Acclimation to humidity modifies the link between leaf size and the density of veins and stomata.Plant, Cell & Environment, 37, 124-131. |
[7] | Dang JJ, Zhao CZ, Dong XG, Yang Q, Zha GD (2014). Response of Kobresia tibetica and Kobresia humilis population spatial pattern to soil moisture.Chinese Journal of Ecology, 33, 1734-1740. (in Chinese with English abstract)[党晶晶, 赵成章, 董小刚, 杨泉, 查高德 (2014). 藏嵩草和矮嵩草种群空间分布格局对水分的响应. 生态学杂志, 33, 1734-1740.] |
[8] | Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, deTorres-Espuny L, Falczuk V, Guerrero- Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004). The plant traits that drive ecosystems: Evidence from three continents.Journal of Vegetation Science, 15, 295-304. |
[9] | Eschera P, Peukea AD, Bannisterb P, Finkc S, Hartungd W, Jiange F, Rennenberg H (2008). Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album (L.): Effect of abscisic acid (ABA) in the xylem sap of its host (Populus × euamericana).Plant Physiology and Biochemistry, 46, 64-70. |
[10] | Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, Tomàs M, Niinemets Ü (2015). Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants.Plant, Cell & Environment, 39, 965-982. |
[11] | Gang CC, Wang ZQ, Chen YZ, Yang Y, Li JL, Cheng JM, Qi JG, Odehe I (2016). Drought-induced dynamics of carbon and water use efficiency of global grasslands from 2000 to 2011.Ecological Indicators, 67, 788-797. |
[12] | Gao L, Yang J, Liu RX (2009). Effects of soil moisture levels on photosynthesis, transpiration, and moisture use efficiency of female and male plants of Hippophae rhamnoidesssp ssp. sinensi.Acta Ecologica Sinica, 29, 6025-6034. (in Chinese with English abstract)[高丽, 杨劼, 刘瑞香 (2009). 不同土壤水分条件下中国沙棘雌雄株光合作用、蒸腾作用及水分利用效率特征. 生态学报, 29, 6025-6034.] |
[13] | Gao Y, Xia JB, Zhao ZG, Kong QX, Gu GY, Zhang L (2013). Effect of simulated soil water change on photosynthetic characteristics of Salix matsudana in shell sand habitat.Acta Botanica Boreali-Occidentalia Sinica, 33, 2467-2473. (in Chinese with English abstract)[高源, 夏江宝, 赵自国, 孔庆仙, 谷广义, 张亮 (2013). 模拟贝壳砂水分变化对旱柳光合特性的影响. 西北植物学报, 33, 2467-2473.] |
[14] | Gao Y, Zhu XJ, Yu GR, He NP, Wang QF, Tian J (2014). Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation. Agricultural and Forest Meteorology, 195-196, 32-37. |
[15] | Glenn DM (2016). Effect of highly processed calcined kaolin residues on apple water use efficiency.Scientia Horticulturae, 23, 127-132. |
[16] | Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions.Chinese Journal of Plant Ecology, 39, 300-308. (in English with Chinese abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.] |
[17] | Gurevitch J, Scheiner SM, Fox GA (2002). The Ecology of Plants. Sinauer Associates, Sunderland, USA. |
[18] | He CX, Li JY, Meng P, Zhang JS (2013). Changes of leaf traits and WUE with crown height of four tall tree species.Acta Ecologica Sinica, 33, 5644-5654. (in English with Chinese abstract)[何春霞, 李吉跃, 孟平, 张劲松 (2013). 4种高大树木的叶片性状及WUE随树高的变化. 生态学报, 33, 5644-5654.] |
[19] | Kenney AM, McKay JK, Richards JH, Juenger TE (2014). Direct and indirect selection on flowering time, water-use efficiency (WUE, δ13C), and WUE plasticity to drought in Arabidopsis thaliana.Ecology and Evolution, 4, 4505-4521. |
[20] | Li MX, Yang YZ, Zhu Q, Chen H, Peng CH (2016). Evaluating water use efficiency patterns of Qinling Mountains under climate change.Acta Ecologica Sinica, 36, 936-945. (in Chinese with English abstract)[李明旭, 杨延征, 朱求安, 陈槐, 彭长辉 (2016). 气候变化背景下秦岭地区陆地生态系统水分利用率变化趋势. 生态学报, 36, 936-945.] |
[21] | Li X, Xie YH, Huang JS, Chen XS (2009). Research progresses on the formation mechanism of vegetation distribution pattern in wetlands.Wetland Science, 7, 280-288. (in Chinese with English abstract)[李旭, 谢永宏, 黄继山, 陈心胜 (2009). 湿地植被格局成因研究进展. 湿地科学, 7, 280-288.] |
[22] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions.Scientia Sinica Vitae, 45, 325-339. (in Chinese with English abstract)[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] |
[23] | Matthew-Ogburn R, Edwards EJ (2013). Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants.Current Biology, 23, 722-726. |
[24] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. (in Chinese with English abstract)[孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.] |
[25] | Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes.Functional Ecology, 28, 810-818. |
[26] | Nardini A, Raimondo F, LoGullo MA (2010). Leaf miners help us understand leaf hydraulic design. Plant, Cell and Environment, 33, 1091-1100. |
[27] | Niu YY, Liao K, Jia Y, Pang HX, Xu GX, Jiang ZB (2015). Analysis on differences in photosynthetic characteristics of korla fragrant pear among different planting densities.Agricultural Science & Technology, 16, 862-867. |
[28] | Pagano M, Storchi P (2015). Leaf vein density: A possible role as cooling system.Journal of Life Sciences, 9, 299-303. |
[29] | Pradhan S, Sehgal VK, Sanoo RN, Bandyopadhyay KK, Singh R (2014). Yield, water, radiation and nitrogen use efficiencies of wheat (Triticum aestivum) as influenced by nitrogen levels in a semi-arid environment.Indian Journal of Agronomy 59, 267-275. |
[30] | Quan XK, Wang CK (2015). Comparison of foliar water use efficiency among 17 provenances of Larix gmelinii in the Mao’ershan area.Chinese Journal of Plant Ecology, 39, 352-361. (in English with Chinese abstract)[全先奎, 王传宽 (2015). 帽儿山17个种源落叶松针叶的水分利用效率比较. 植物生态学报, 39, 352-361.] |
[31] | Ren QJ, Li HL, Bu HY (2015). Comparison of physiological and leaf morphological traits for photosynthesis of the 51 plant species in the Maqu alpine swamp meadow.Chinese Journal of Plant Ecology, 39, 593-603.[任青吉, 李宏林, 卜海燕 (2015). 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较. 植物生态学报, 39, 593-603.] |
[32] | Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees.Ecology, 87, 483-491. |
[33] | Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983-1000. |
[34] | Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.Journal of Experimental Botany, 64, 4053-4080. |
[35] | Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns.Nature Communications, 3, 837. |
[36] | Silvertown J, Charlesworth D (2001). Introduction to Plant Population Biology. Blackwell, London. |
[37] | Song LQ, Hu CM, Hou XL, Shi L, Liu LA, Yang JC, Jiang CD (2015). Relationship between photosynthetic characteristics and leaf vein density in Sorghum bicolor and Perilla frutescens.Chinese Bulletin of Botany, 50, 100-106. (in English with Chinese abstract)[宋丽清, 胡春梅, 侯喜林, 石雷, 刘立安, 杨景成, 姜闯道 (2015). 高粱、紫苏叶脉密度与光合特性的关系. 植物学报, 50, 100-106.] |
[38] | Song YC (2001). Vegetation Ecology. East China Normal University Press, Shanghai. 551-552. (in Chinese)[宋永昌 (2001). 植被生态学. 华东师范大学出版社, 上海. 551-552.] |
[39] | Tan XJ, Zhao XS (2006). Spatial distribution and ecological adaptability of wetland vegetation in Yellow River Delta along a water table depth gradient.Chinese Journal of Ecology, 25, 1460-1464. (in Chinese with English abstract)[谭学界, 赵欣胜 (2006). 水深梯度下湿地植被空间分布与生态适应. 生态学杂志, 25, 1460-1464.] |
[40] | Villagra M, Campanello PI, Bucci SJ, Goldstein G (2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.Tree Physiology, 33, 1308-1318. |
[41] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional!Oikos, 116, 882-892. |
[42] | Wang JL, Yu YR, Fang QX, Jiang DF, Qi H, Wang QF (2008). Responses of water use efficiency of nine plant species to light and CO2 and it’s modeling.Acta Ecologica Sinica, 28, 525-533. (in Chinese with English abstract)[王建林, 于贵瑞, 房全孝, 姜德锋, 齐华, 王秋凤 (2008). 不同植物叶片水分利用效率对光和CO2的响应与模拟. 生态学报, 28, 525-533.] |
[43] | Wang LL, Wang L, Zhang LF, Liu YY, Xu SJ (2015). Structure and dynamic characteristics of Gymnocarpos przewalskii in different habitats.Chinese Journal of Plant Ecology, 39, 980-989. (in Chinese with English abstract)[王立龙, 王亮, 张丽芳, 刘玉洋, 徐世健 (2015). 浙江天童木本植物叶片性状空间变异的地统计学分析. 植物生态学报, 39, 980-989.] |
[44] | Wang YP, Gao HH, Liu YS, Mu P, Yu XP, An LZ, Zhang F (2013). Adaptation mechanisms of alpine plants photosynthetic apparatus against adverse stress: A review. Chinese Journal of Applied Ecology, 24, 2049-2055. (in Chinese with English abstract)[王玉萍, 高会会, 刘悦善, 慕平, 鱼小军, 安黎哲, 张峰 (2013). 高山植物光合机构耐受胁迫的适应机制. 应用生态学报, 24, 2049-2055.] |
[45] | Westoby M, Falster DS, Moles AT (2002). Plant ecological strategies: Some leading dimensions of variation between species.Annual Review of Ecology Systematics, 33, 125-159. |
[46] | Wu HW, Li XY, Jing ZY, Li J, Zheng XR, Zhao DZ (2015). Variations in water use for Achnatherum splendens in Lake Qinghai watershed based on δD and δ18O.Acta Ecologica Sinica, 35, 8174-8183. (in Chinese with English abstract)[吴华武, 李小雁, 蒋志云, 李静, 郑肖然, 赵殿智 (2015). 基于δD和δ18O的青海湖流域芨芨草水分利用来源变化研究. 生态学报, 35, 8174-8183.] |
[47] | Xu MS, Zhao YT, Yang XD, Shi QR, Zhou LL, Zhang QQ, Arshad A, Yan ER (2016). Geostatistical analysis of spatial variations in leaf traits of woody plants in Tiantong, Zhejiang Province.Chinese Journal of Plant Ecology, 40, 48-59. (in Chinese with English abstract)[许洺山, 赵延涛, 杨晓东, 史青茹, 周刘丽, 张晴晴, Ali ARSHAD, 阎恩荣 (2016). 浙江天童木本植物叶片性状空间变异的地统计学分析. 植物生态学报, 40, 48-59.] |
[48] | Yang WD, Chen YT (2008). Membrane leakage and antioxidant enzyme activities in roots and leaves of Salix matsudana with cadmium stress.Acta Botanica Boreali-Occidentalia Sinica, 28, 2263-2269. (in Chinese with English abstract)[杨卫东, 陈益泰 (2008). 镉胁迫对旱柳细胞膜透性和抗氧化酶活性的影响. 西北植物学报, 28, 2263-2269.] |
[49] | Yu WY, Ji RP, Feng R, Zhao XL, Zhang YS (2015). Response of water stress on photosynthetic characteristics and water use efficiency of maize leaves in different growth stage.Acta Ecologica Sinica, 35, 2902-2909. (in Chinese with English abstract)[于文颖, 纪瑞鹏, 冯锐, 赵先丽, 张玉书 (2015). 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应. 生态学报, 35, 2902-2909.] |
[50] | Zhang YQ, Li SW, Fu W, Wen HD (2014). Effects of nitrogen application on yield, photosynthetic characteristics and water use efficiency of hybrid millet.Journal of Plant Nutrition and Fertilizer, 20, 1119-1126. (in Chinese with English abstract)[张亚琦, 李淑文, 付巍, 文宏达 (2014). 施氮对杂交谷子产量与光合特性及水分利用效率的影响. 植物营养与肥料学报, 20, 1119-1126.] |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[3] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[4] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[5] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[6] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[7] | 吴盼, 彭希强, 杨树仁, 高亚男, 白丰桦, 衣世杰, 杜宁, 郭卫华. 山东省滨海湿地柽柳种群的空间分布格局及其关联性[J]. 植物生态学报, 2019, 43(9): 817-824. |
[8] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[9] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[10] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[11] | 韩玲, 赵成章, 冯威, 徐婷, 郑慧玲, 段贝贝. 张掖湿地芨芨草叶脉密度和叶脉直径的权衡关系对3种生境的响应[J]. 植物生态学报, 2017, 41(8): 872-881. |
[12] | 陈静, 赵成章, 王继伟, 赵连春. 不同密度旱柳的树冠构型与光截获[J]. 植物生态学报, 2017, 41(6): 661-669. |
[13] | 刘晓, 戚超, 闫艺兰, 袁国富. 不同生态系统水分利用效率指标在黄土高原半干旱草地应用的适宜性评价[J]. 植物生态学报, 2017, 41(5): 497-505. |
[14] | 黄小涛, 罗格平. 新疆草地蒸散与水分利用效率的时空特征[J]. 植物生态学报, 2017, 41(5): 506-518. |
[15] | 韩玲, 赵成章, 徐婷, 冯威, 段贝贝. 不同土壤水分条件下洪泛平原湿地芨芨草叶片厚度与叶脉性状的关系[J]. 植物生态学报, 2017, 41(5): 529-538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19