植物生态学报 ›› 2017, Vol. 41 ›› Issue (8): 872-881.DOI: 10.17521/cjpe.2016.0316
出版日期:
2017-08-10
发布日期:
2017-09-29
通讯作者:
赵成章
作者简介:
康璟瑶(1991-),男,江苏南京人,硕士生,主要从事旅游地理与旅游规划研究,E-mail: 基金资助:
Ling HAN, Cheng-Zhang ZHAO*(), Wei FENG, Ting XU, Hui-Ling ZHENG, Bei-Bei DUAN
Online:
2017-08-10
Published:
2017-09-29
Contact:
Cheng-Zhang ZHAO
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
植物叶脉性状间的协同进化影响生理活动中水分利用策略和叶片经济谱的形成, 对理解叶片在叶脉建成中的碳投入和叶脉功能回报的经济权衡具有重要的意义。该文结合相关性和标准化主轴估计分析(SMA)方法, 研究了张掖洪泛平原湿地乔-草群落冠盖区、过渡区和空旷区3种自然生境下芨芨草(Achnatherum splendens)叶脉密度和叶脉直径的生长关系。结果表明: 从湿地群落的冠盖区到空旷区, 植物群落光合有效辐射(PAR)和水汽压亏缺(VPD)逐渐增加, 土壤含水量(SM)逐渐减小、土壤电导率逐渐增大; 芨芨草的叶片宽度(LW)、叶脉密度(1.28-1.59 mm·mm-2)和水分利用效率(WUE)呈逐渐增大的趋势, 叶片长度(LL)和叶脉直径(0.21-0.16 mm)呈逐渐减小的趋势, 叶性状的平均可塑性值为0.19, 株丛密度(BD)、蒸腾速率(Tr)和净光合速率(Pn)呈先增大后减小的倒U形趋势; 3种生境中芨芨草的WUE、PAR、Tr、Pn与叶脉密度和叶脉直径呈显著的相关关系; 叶脉密度与叶脉直径呈不同程度的负相关关系, 在冠盖区, 芨芨草叶脉密度和叶脉直径呈极显著的负相关关系, 在过渡区和空旷区, 二者呈显著的负相关关系, 从冠盖区到空旷区, SMA斜率逐渐增大(0.54-1.50), 冠盖区和空旷区的SMA斜率与1.0存在显著差异。为适应光照环境条件的变化, 芨芨草在空旷区具有大量细脉的叶脉网络性状, 在冠盖区生长少量粗脉的细长型叶片, 即在某一给定的叶片长度下, 阴生环境中芨芨草叶片需要更大的叶脉直径来支撑, 反映了湿地植物较强的表型可塑性机制。
韩玲, 赵成章, 冯威, 徐婷, 郑慧玲, 段贝贝. 张掖湿地芨芨草叶脉密度和叶脉直径的权衡关系对3种生境的响应. 植物生态学报, 2017, 41(8): 872-881. DOI: 10.17521/cjpe.2016.0316
Ling HAN, Cheng-Zhang ZHAO, Wei FENG, Ting XU, Hui-Ling ZHENG, Bei-Bei DUAN. Trade-off relationship between vein density and vein diameter of Achnatherum splendens in response to habitat changes in Zhangye wetland. Chinese Journal of Plant Ecology, 2017, 41(8): 872-881. DOI: 10.17521/cjpe.2016.0316
样地 Plot | PAR (μmol·m-2·s-1) | VPD (Pa·kPa) | 土壤含水量 Soil moisture (%) | 土壤电导率 Soil electrical conductivity (ms·cm-1) |
---|---|---|---|---|
冠盖区 Subcanopy areas | 636.30 ± 14.18c | 27.24 ± 2.68c | 40.07 ± 1.24a | 314 ± 13.89c |
过渡区 Transitional areas | 879.20 ± 27.95b | 29.79 ± 4.22b | 37.64 ± 1.07b | 669 ± 15.02b |
空旷区区 Open areas | 1 205.10 ± 50.75a | 31.84 ± 3.34a | 31.4 ± 0.67c | 1 090 ± 20.45a |
表1 不同生境下湿地植物群落的生物学特征和土壤特性(平均值±标准误差, n = 30)
Table 1 Biological characteristics and soil characteristics of wetland plant communities in the different microenvironments (mean ± SE, n = 30)
样地 Plot | PAR (μmol·m-2·s-1) | VPD (Pa·kPa) | 土壤含水量 Soil moisture (%) | 土壤电导率 Soil electrical conductivity (ms·cm-1) |
---|---|---|---|---|
冠盖区 Subcanopy areas | 636.30 ± 14.18c | 27.24 ± 2.68c | 40.07 ± 1.24a | 314 ± 13.89c |
过渡区 Transitional areas | 879.20 ± 27.95b | 29.79 ± 4.22b | 37.64 ± 1.07b | 669 ± 15.02b |
空旷区区 Open areas | 1 205.10 ± 50.75a | 31.84 ± 3.34a | 31.4 ± 0.67c | 1 090 ± 20.45a |
样地 Plot | 冠盖区 Subcanopy areas | 过渡区 Transitional areas | 空旷区 Open areas | 可塑性指数 Plasticity index |
---|---|---|---|---|
叶脉密度 Vein destiny (mm·mm-2) | 1.28 ± 0.14c | 1.46 ± 0.15b | 1.59 ± 0.18a | 0.20 |
叶脉直径 Vein diameter (mm) | 0.21 ± 0.04a | 0.18 ± 0.03b | 0.16 ± 0.02c | 0.24 |
叶片长度 Leaf length (cm) | 58.6 ± 0.39a | 51.99 ± 0.28b | 49.08 ± 0.22c | 0.16 |
叶片宽度 Leaf width (cm) | 0.28 ± 0.04c | 0.31 ± 0.05b | 0.34 ± 0.07a | 0.17 |
株丛密度 Bundle density (bundle·m-2) | 4.25 ± 0.32c | 13.50 ± 0.82b | 11.75 ± 1.02a | 0.64 |
Pn (μmol·m-2·s-1) | 13.2 ± 0.12c | 14.01 ± 0.18a | 13.87 ± 0.13b | 0.05 |
Tr (mmol·m-2·s-1) | 6.35 ± 0.07c | 6.83 ± 0.11a | 6.65 ± 0.09b | 0.05 |
WUE (μmol·mmol-1) | 1.93 ± 0.01c | 2.12 ± 0.02b | 2.18 ± 0.03a | 0.11 |
表2 不同生境芨芨草叶性状与光合生理参数特征(平均值±标准误差, n = 30)
Table 2 Leaf traits characteristics and photosynthetic physiological parameters of Achnatherum splendens in the different microenvironments (mean ± SE, n = 30)
样地 Plot | 冠盖区 Subcanopy areas | 过渡区 Transitional areas | 空旷区 Open areas | 可塑性指数 Plasticity index |
---|---|---|---|---|
叶脉密度 Vein destiny (mm·mm-2) | 1.28 ± 0.14c | 1.46 ± 0.15b | 1.59 ± 0.18a | 0.20 |
叶脉直径 Vein diameter (mm) | 0.21 ± 0.04a | 0.18 ± 0.03b | 0.16 ± 0.02c | 0.24 |
叶片长度 Leaf length (cm) | 58.6 ± 0.39a | 51.99 ± 0.28b | 49.08 ± 0.22c | 0.16 |
叶片宽度 Leaf width (cm) | 0.28 ± 0.04c | 0.31 ± 0.05b | 0.34 ± 0.07a | 0.17 |
株丛密度 Bundle density (bundle·m-2) | 4.25 ± 0.32c | 13.50 ± 0.82b | 11.75 ± 1.02a | 0.64 |
Pn (μmol·m-2·s-1) | 13.2 ± 0.12c | 14.01 ± 0.18a | 13.87 ± 0.13b | 0.05 |
Tr (mmol·m-2·s-1) | 6.35 ± 0.07c | 6.83 ± 0.11a | 6.65 ± 0.09b | 0.05 |
WUE (μmol·mmol-1) | 1.93 ± 0.01c | 2.12 ± 0.02b | 2.18 ± 0.03a | 0.11 |
叶脉密度 Vein destiny | 叶脉直径 Vein diameter | LL | LW | BD | SM | PAR | VPD | Pn | Tr | WUE | |
---|---|---|---|---|---|---|---|---|---|---|---|
叶脉密度 Vein destiny | 1 | ||||||||||
叶脉直径 Vein diameter | -0.98** | 1 | |||||||||
LL | -0.83* | 0.84* | 1 | ||||||||
LW | 0.81* | -0.82* | -0.86* | 1 | |||||||
BD | 0.72* | -0.73 | -0.81* | 0.85* | 1 | ||||||
SM | -0.84* | 0.81* | 0.63 | 0.63 | -0.57 | 1 | |||||
PAR | 0.83* | -0.84* | -0.82* | 0.85* | 0.58 | -0.84* | 1 | ||||
VPD | 0.53 | -0.63 | -0.49 | 0.58 | 0.71 | -0.83* | -0.86* | 1 | |||
Pn | 0.87* | 0.84* | 0.62 | 0.78 | -0.56 | -0.81* | 0.86* | 0.82* | 1 | ||
Tr | 0.83* | 0.81* | 0.61 | 0.73 | 0.53 | -0.87* | 0.83* | 0.86* | 0.89* | 1 | |
WUE | 0.87* | 0.82* | 0.64 | 0.59 | 0.73 | -0.86* | 0.88* | 0.83* | 0.83* | -0.88* | 1 |
表3 不同生境下芨芨草叶性状和光合生理参数之间的相关性分析
Table 3 The correlation analysis between photosynthetic parameters and leaf traits characteristics of Achnatherum splendens in three different habitats
叶脉密度 Vein destiny | 叶脉直径 Vein diameter | LL | LW | BD | SM | PAR | VPD | Pn | Tr | WUE | |
---|---|---|---|---|---|---|---|---|---|---|---|
叶脉密度 Vein destiny | 1 | ||||||||||
叶脉直径 Vein diameter | -0.98** | 1 | |||||||||
LL | -0.83* | 0.84* | 1 | ||||||||
LW | 0.81* | -0.82* | -0.86* | 1 | |||||||
BD | 0.72* | -0.73 | -0.81* | 0.85* | 1 | ||||||
SM | -0.84* | 0.81* | 0.63 | 0.63 | -0.57 | 1 | |||||
PAR | 0.83* | -0.84* | -0.82* | 0.85* | 0.58 | -0.84* | 1 | ||||
VPD | 0.53 | -0.63 | -0.49 | 0.58 | 0.71 | -0.83* | -0.86* | 1 | |||
Pn | 0.87* | 0.84* | 0.62 | 0.78 | -0.56 | -0.81* | 0.86* | 0.82* | 1 | ||
Tr | 0.83* | 0.81* | 0.61 | 0.73 | 0.53 | -0.87* | 0.83* | 0.86* | 0.89* | 1 | |
WUE | 0.87* | 0.82* | 0.64 | 0.59 | 0.73 | -0.86* | 0.88* | 0.83* | 0.83* | -0.88* | 1 |
图1 不同生境中芨芨草叶脉密度与叶脉直径的权衡关系。A, 冠盖区。B, 过渡区。C, 空旷区。
Fig. 1 Relationship between vein density and vein diameter of Achnatherum splendens among different light conditions. A, subcanopy areas. B, transitional areas. C, open areas.
[1] |
Blonder B, Violle C, Bentley LP (2011). Venation networks and the origin of the leaf economics spectrum.Ecology Letters, 14, 91-100.
DOI URL PMID |
[2] |
Brodribb TJ, Bowman DJMS, Nichols S, Delzon S, Burlett R (2010). Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit.New Phytologist, 188, 533-542.
DOI URL PMID |
[3] |
Brodribb TJ, Jordan GJ (2008). Internal coordination between hydraulics and stomatal control in leaves.Plant, Cell & Environment, 31, 1557-1564.
DOI URL PMID |
[4] |
Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees.New Phytologist, 192, 437-448.
DOI URL |
[5] | Cai J, Tyree MT (2010). The impact of vessel size on vulnerability curves: Data and models for within-species variability in saplings of aspen, Populus tremuloides Michx.Plant, Cell & Environment, 33, 1059-1069. |
[6] |
Cai J, Zhang SX, Tyree MT (2010). A computational algorithm addressing how vessel length might depend on vessel diameter.Plant, Cell & Environment, 33, 1234-1238.
DOI URL PMID |
[7] |
Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A (2005). Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: A comparison of co-occurring Mediterranean oaks that differ in leaf lifespan.New Phytologist, 168, 597-612.
DOI URL PMID |
[8] | Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG (2014). Variations with slope in stem and leaf traits of Melica przewalskyi in alpine grassland.Chinese Journal of Plant Ecology, 38, 1307-1314.(in English with Chinese abstract)[党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚 (2014). 高寒草地甘肃臭草茎-叶性状的坡度差异性. 植物生态学报, 38, 1307-1314.] |
[9] |
Drezner TD (2007). An analysis of winter temperature and dew point under the canopy of a common Sonoran Desert nurse and the implications for positive plant interactions.Journal of Arid Environments, 69, 554-568.
DOI URL |
[10] | Falster DS, Warton DI, Wright IJ (. Cited: 2016-10-11. |
[11] |
Funk JL, Cornwell WK (2013). Leaf traits within communities: Context may affect the mapping of traits to function.Ecology, 94, 1893-1897.
DOI URL PMID |
[12] |
Givnish TJ (1987). Comparative studies of leaf form: Assessing the relative roles of selective pressures and phylogenetic constraints.New Phytologist, 106, 131-160.
DOI URL |
[13] | Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions.Chinese Journal of Plant Ecology, 39, 300-308.(in Chinese with English abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.] |
[14] |
Hale BK, Herms DA, Hansen RC, Clausen TP, Arnold D (2005). Effects of drought stress and nutrient availability on dry matter allocation, phenolic glycosides, and rapid induced resistance of poplar to two Lymantriid defoliators.Journal of Chemical Ecology, 31, 2601-2620.
DOI URL PMID |
[15] | Han L, Zhao CZ, Xu T, Feng W, Duan BB, Zheng HL (2016). Trade-off between leaf size and vein density of Achnatherum splendens in Zhangye wetland.Chinese Journal of Plant Ecology, 40, 788-797.(in Chinese with English abstract)[韩玲, 赵成章, 徐婷, 冯威, 段贝贝, 郑慧玲 (2016). 张掖湿地芨芨草叶大小和叶脉密度的权衡关系. 植物生态学报, 40, 788-797.] |
[16] | Hao CS, Wang QK, Sun XL (2016). Effects of light heterogeneity on leaf anatomical structure in Buchloe dactyloides.Chinese Journal of Plant Ecology, 40, 246-254.(in Chinese with English abstract)[郝晨淞, 王庆凯, 孙小玲 (2016). 异质性光对野牛草叶片解剖结构的影响. 植物生态学报, 40, 246-254.] |
[17] |
Hao GY, Hoffmann WA, Scholz FG, Bucci SJ, Meinzer FC, Franco AC, Cao KF, Goldstein G (2008). Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems.Oecologia, 155, 405-415.
DOI URL PMID |
[18] | Harvey PH, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK.Heberling JM, Fridley JD (2012). Biogeographic constraints on the world-wide leaf economics spectrum. Global Ecology and Biogeography, 21, 1137-1146. |
[19] |
James SA, Bell DT (2000). Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances.Tree Physiology, 20, 1007-1018.
DOI URL PMID |
[20] |
Li L, Zeng H, Guo DL (2013). Leaf venation functional traits and their ecological significance.Chinese Journal of Plant Ecology, 37, 691-698.(in Chinese with English abstract)[李乐, 曾辉, 郭大立 (2013). 叶脉网络功能性状及其生态学意义. 植物生态学报,37, 691-698.]
DOI URL |
[21] | Li R, Dang W, Cai J, Zhang SX, Jiang ZM (2016). Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees.Chinese Journal of Plant Ecology, 40, 255-263.(in Chinese with English abstract) [李荣, 党维, 蔡靖, 张硕新, 姜在民 (2016). 6个耐旱树种木质部结构与栓塞脆弱性的关系. 植物生态学报,40, 255-263.] |
[22] |
Matthew-Ogburn R, Edwards EJ (2013). Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants.Current Biology, 23, 722-726.
DOI URL PMID |
[23] |
McCulloh KA, Johnson DM, Petitmermet J, McNellis B, Meinzer FC, Lachenbruch B (2015). A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height.Tree Physiology, 35, 723-731.
DOI URL PMID |
[24] | Mencuccini M (2003). The ecological significance of long-distance water transport: Short-term regulation, long- term acclimation and the hydraulic costs of stature across plant life forms.Plant, Cell & Environment, 26, 163-182. |
[25] |
Milios E, Pipinis E, Petrou P, Akritidou S, Smiris P, Aslanidou M (2007). Structure and regeneration patterns of the Juniperus excelsa Bieb. stands in the central part of the Nestos valley in the northeast of Greece, in the context of anthropogenic disturbances and nurse plant facilitation.Ecological Research, 22, 713-723.
DOI URL |
[26] |
Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes.Functional Ecology, 28, 810-818.
DOI URL |
[27] |
Navas ML, Roumet C, Bellmann A, Laurent G, Garnier E (2010). Suites of plant traits in species from different stages of a Mediterranean secondary succession.Plant Biology, 12, 183-196.
DOI URL |
[28] |
Niklas KJ, Enquist BJ (2002). Canonical rules for plant organ biomass partitioning and annual allocation.American Journal of Botany, 89, 812-819.
DOI URL |
[29] |
Ping XY, Zhou GS, Sun JS (2010). Advances in the study of photosynthate allocation and its controls.Chinese Journal of Plant Ecology, 34, 100-111.(in Chinese with English abstract)[平晓燕, 周广胜, 孙敬松 (2010). 植物光合产物分配及其影响因子研究进展, 植物生态学报,34, 100-111.
DOI URL |
[30] |
Pitman EJG (1939). A note on normal correlation.Biometrika, 31, 9-12.
DOI URL |
[31] |
Qin FF, Li Q, Cui ZM, Li HP, Yang ZR (2012). Leaf anatomical structures and ecological adaptabilities to light of three alfalfa cultivars with different fall dormancies under shading during overwintering.Chinese Journal of Plant Ecology, 36, 333-345.(in Chinese with English abstract)[覃凤飞, 李强, 崔棹茗, 李洪萍, 杨智然 (2012). 越冬期遮阴条件下3个不同秋眠型紫花苜蓿品种叶片解剖结构与其光生态适应性. 植物生态学报,36, 333-345.]
DOI URL |
[32] |
Reich PB, Cornelissen H (2014). The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto.Journal of Ecology, 102, 275-301.
DOI URL |
[33] |
Ren QJ, Li HL, Bu HY (2015). Comparison of physiological and leaf morphological traits for photosynthesis of the 51 plant species in the Maqu alpine swamp meadow.Chinese Journal of Plant Ecology, 39, 593-603.(in Chinese with English abstract)[任青吉, 李宏林, 卜海燕 (2015). 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较. 植物生态学报,39, 593-603.]
DOI URL |
[34] |
Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future.New Phytologist, 198, 983-1000.
DOI URL PMID |
[35] |
Sack L, Scoffoni C, McKown AD (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns.Nature Communications, 3, 837.
DOI URL PMID |
[36] |
Sellin A, ?unapuu E, Kupper P (2008). Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula).Physiologia Plantarum, 134, 412-420.
DOI URL |
[37] |
Sultan SE (2005). An emerging focus on plant ecological development.New Phytologist, 166, 1-5.
DOI URL PMID |
[38] |
van Kleunen M, Fischer M (2007). Progress in the detection of costs of phenotypic plasticity in plants.New Phytologist, 176, 727-730.
DOI URL PMID |
[39] |
Villagra M, Campanello PI, Bucci SJ, Goldstein G (2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.Tree Physiology, 33, 1308-1318.
DOI URL PMID |
[40] |
Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models.Biometrical Journal, 44, 161-174.
DOI URL |
[41] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291.
DOI URL PMID |
[42] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species.Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[43] |
Westoby M, Reich PB, Wright IJ (2013). Understanding ecological variation across species: Area-based vs. mass- based expression of leaf traits.New Phytologist, 199, 322-323.
DOI URL PMID |
[44] |
Wu T, Geng YF, Chai Y, Hao JB, Yuan CM (2014). Response of leaf anatomical structure and photosynthesis characteristics of Parthenocissus himalayana to three habitat types.Ecology and Environmental Sciences, 23, 1586-1592.(in Chinese with English abstract)[吴涛, 耿云芬, 柴勇, 郝佳波, 袁春明 (2014). 三叶爬山虎叶片解剖结构和光合生理特性对3种生境的响应. 生态环境学报,23, 1586-1592.]
DOI URL |
[45] |
Zhang HX, Li S, Zhang SX, Xiong XY, Cai J (2013). Relationships between xylem structure and embolism vulnerability in four Populus clones.Scientia Silvae Sinicae, 49(5), 54-61.(in Chinese with English abstract)[张海昕, 李珊, 张硕新, 熊晓燕, 蔡靖 (2013). 4个杨树无性系木质部导管结构与栓塞脆弱性的关系. 林业科学,49(5), 54-61.]
DOI URL |
[46] |
Zhang MJ, Liu MS, Xu C, Chi T, Hong C (2012). Spatial pattern responses of Achnatherum splendens to environmental stress in different density levels.Acta Ecologica Sinica, 32, 595-604.(in Chinese with English abstract)[张明娟, 刘茂松, 徐驰, 池婷, 洪超 (2012). 不同密度条件下芨芨草空间格局对环境胁迫的响应. 生态学报,32, 595-604.]
DOI URL |
[47] |
Zhang QM, Zhang C, Liu MS, Yu W, Xu C, Wang HJ (2007). The influences of arboraceous layer on spatial patterns and morphological characteristics of herbaceous layer in an arid plant community.Acta Ecologica Sinica, 27, 1265-1271.
DOI URL |
[48] | Zhang SB, Zhang JL, Cao KF (2016). Effects of seasonal drought on water status, leaf spectral traits and fluorescence parameters in Tarenna depauperata Hutchins, a Chinese savanna evergreen species.Plant Science Journal, 34, 117-126.(in Chinese with English abstract)[张树斌, 张教林, 曹坤芳 (2016). 季节性干旱对白皮乌口树水分状况、叶片光谱特征和荧光参数的影响. 植物科学学报,34, 117-126.] |
[49] |
Zhang YF, Wang W, Liang CZ, Wang LX, Pei H, Wang CY, Wang WF (2012). Suitable habitat for the Achnatherum splendens community in typical steppe region of Inner Mongolia.Acta Ecologica Sinica, 32, 1193-1201.(in English with Chinese abstract)[张翼飞, 王炜, 梁存柱, 王立新, 裴浩, 王成燕, 王伟峰 (2012). 内蒙古典型草原区芨芨草群落适生生境. 生态学报,32, 1193-1201.]
DOI URL |
[50] |
Zhang YJ, Cao KF, Sack L, Li N, Wei XM, Goldstein G (2015). Extending the generality of leaf economic design principles in the cycads, an ancient lineage.New Phytologist, 206, 817-829.
DOI URL PMID |
[51] | Zhang YQ, Liang CZ, Wang W, Wang LX, Peng JT, Yang JC, Jia CZ (2010). Soil salinity and distribution.Chinese Journal of Ecology, 29, 2438-2443.(in Chinese with English abstract)[张雅琼, 梁存柱, 王炜, 王立新, 彭江涛, 闫建成, 贾成朕 (2010). 芨芨草群落土壤盐分特征. 生态学杂志,29, 2438-2443.] |
[52] |
Zhao YT, Xu MS, Zhang ZH, Zhou LL, Zhang QQ, Arshad A, Song YJ, Yan ER (2016). Hydraulic architecture of evergreen broad-leaved woody plants at different successional stages in Tiantong National Forest Park, Zhejiang Province, China.Chinese Journal of Plant Ecology, 40, 116-126.(in Chinese with English abstract)[赵延涛, 许洺山, 张志浩, 周刘丽, 张晴晴, Ali ARSHAD, 宋彦君, 阎恩荣 (2016). 浙江天童常绿阔叶林不同演替阶段木本植物的水力结构特征. 植物生态学报,40, 116-126.]
DOI URL |
[53] |
Zou CM, Wang YQ, Liu Y, Zhang XH, Tang S (2015). Responses of photosynthesis and growth to weak light regime in four legume species.Chinese Journal of Plant Ecology, 39, 909-916.(in Chinese with English abstract)[邹长明, 王允青, 刘英, 张晓红, 唐杉 (2015). 四种豆科作物的光合生理和生长发育对弱光的响应. 植物生态学报,39, 909-916.]
DOI URL |
[54] | Zwieniecki MA, Brodribb TJ, Holbrook NM (2007). Hydraulic design of leaves: Insights from rehydration kinetics.Plant, Cell & Environment, 30, 910-921. |
[1] | 李耀琪 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[3] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[4] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[5] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[6] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[7] | 代远萌 李满乐 徐铭泽 田赟 赵洪贤 高圣杰 郝少荣 刘鹏 贾昕 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征研究[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[8] | 方菁, 叶琳峰, 陈森, 陆世通, 潘天天, 谢江波, 李彦, 王忠媛. 自然和人工生境被子植物枝木质部结构与功能差异[J]. 植物生态学报, 2021, 45(6): 650-658. |
[9] | 倪鸣源, ARITSARA Amy Ny Aina, 王永强, 黄冬柳, 项伟, 万春燕, 朱师丹. 中亚热带喀斯特常绿落叶阔叶混交林典型树种的木质部解剖与功能特征分析[J]. 植物生态学报, 2021, 45(4): 394-403. |
[10] | 王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242-252. |
[11] | 谭一波, 田红灯, 曾春阳, 沈浩, 申文辉, 叶建平, 甘国娟. 猫儿山铁杉相邻植株冠层机械磨损对枝叶性状的影响[J]. 植物生态学报, 2021, 45(12): 1281-1291. |
[12] | 李豪, 马如玉, 强波, 贺聪, 韩路, 王海珍. 胡杨当年生小枝茎构型对展叶效率的影响[J]. 植物生态学报, 2021, 45(11): 1251-1262. |
[13] | 王玉贤, 侯盟, 谢言言, 刘左军, 赵志刚, 路宁娜. 青藏高原高寒草甸植物花寿命与花吸引特征的关系及其对雌性繁殖成功的影响[J]. 植物生态学报, 2020, 44(9): 905-915. |
[14] | 李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略[J]. 植物生态学报, 2020, 44(6): 642-653. |
[15] | 宋慧清, 倪鸣源, 朱师丹. 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例[J]. 植物生态学报, 2020, 44(3): 192-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19