植物生态学报 ›› 2021, Vol. 45 ›› Issue (4): 394-403.DOI: 10.17521/cjpe.2020.0367
倪鸣源, ARITSARA Amy Ny Aina, 王永强, 黄冬柳, 项伟, 万春燕, 朱师丹*()
收稿日期:
2020-11-09
接受日期:
2021-01-18
出版日期:
2021-04-20
发布日期:
2021-03-09
通讯作者:
ORCID: *朱师丹: 0000-0002-9228-368X(zhushidan@gxu.edu.cn)
作者简介:
* zhushidan@gxu.edu.cn基金资助:
NI Ming-Yuan, ARITSARA Amy Ny Aina, WANG Yong-Qiang, HUANG Dong-Liu, XIANG Wei, WAN Chun-Yan, ZHU Shi-Dan*()
Received:
2020-11-09
Accepted:
2021-01-18
Online:
2021-04-20
Published:
2021-03-09
Contact:
ZHU Shi-Dan
Supported by:
摘要:
树木木质部主要由导管、纤维和薄壁组织组成, 分别具有运输、支撑和贮存的生理功能。由于木质部空间限制, 一种组织比例的增加会导致其他组织比例的降低, 因而可能表现出权衡关系。分析木质部组织比例和权衡关系有助于了解植物的生理生态适应性。该研究选择中亚热带喀斯特常绿落叶阔叶混交林21种典型树种(10种落叶树种, 11种常绿树种), 测定枝条木质部各组织比例, 计算水力相关指标并分析性状之间的相关性。结果表明: (1)与全球木质部解剖数据对比分析, 喀斯特树种木质部趋向具有较高比例的薄壁组织; (2)喀斯特树种导管组织比例与薄壁和纤维组织比例之间没有显著的相关性, 但是薄壁和纤维组织比例之间有显著的权衡关系; (3)常绿和落叶树种的木质部水力运输安全性(导管壁加固系数)和效率性(理论导水率)均具有显著的权衡关系, 但是这两个类群线性回归的截距存在显著差异, 即在相同的理论导水率条件下, 落叶树种比常绿树种具有较高的导管壁加固系数(安全性), 可能与常绿树种具有更多的轴向薄壁组织有关。喀斯特树种木质部解剖特征表明薄壁组织的贮存功能对喀斯特树种(尤其是常绿树种)的干旱适应具有重要作用。
倪鸣源, ARITSARA Amy Ny Aina, 王永强, 黄冬柳, 项伟, 万春燕, 朱师丹. 中亚热带喀斯特常绿落叶阔叶混交林典型树种的木质部解剖与功能特征分析. 植物生态学报, 2021, 45(4): 394-403. DOI: 10.17521/cjpe.2020.0367
NI Ming-Yuan, ARITSARA Amy Ny Aina, WANG Yong-Qiang, HUANG Dong-Liu, XIANG Wei, WAN Chun-Yan, ZHU Shi-Dan. Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical karst region. Chinese Journal of Plant Ecology, 2021, 45(4): 394-403. DOI: 10.17521/cjpe.2020.0367
物种 Species | 科 Family | 胸径 DBH (cm) | 树高 Height (m) |
---|---|---|---|
落叶 Deciduous | |||
黄梨木 Boniodendron minus | 无患子科Sapindaceae | 12.4 ± 0.3 | 8.3 ± 0.2 |
禾串树 Bridelia balansae | 大戟科Euphorbiaceae | 13.6 ± 1.0 | 7.5 ± 0.5 |
大叶紫珠 Callicarpa macrophylla | 马鞭草科Verbenaceae | 6.5 ± 0.4 | 5.5 ± 0.7 |
麻楝 Chukrasia tabularis | 楝科 Meliaceae | 12.0 ± 1.4 | 8.0 ± 0.5 |
浆果楝 Cipadessa baccifera | 楝科 Meliaceae | 7.9 ± 1.1 | 6.4 ± 0.9 |
毛果巴豆 Croton lachnocarpus | 大戟科Euphorbiaceae | 8.4 ± 0.3 | 6.5 ± 0.2 |
伞花木 Eurycorymbus cavaleriei | 无患子科Sapindaceae | 10.6 ± 0.6 | 7.6 ± 0.3 |
青檀 Pteroceltis tatarinowii | 榆科 Ulmaceae | 15.6 ± 0.6 | 8.7 ± 0.2 |
菜豆树 Radermachera sinica | 紫葳科Bignoniaceae | 13.5 ± 0.5 | 8.3 ± 0.2 |
圆叶乌桕 Triadica rotundifolia | 大戟科Euphorbiaceae | 15.8 ± 4.2 | 8.5 ± 0.3 |
常绿 Evergreen | |||
假鱼骨木 Psydrax dicocca | 茜草科Rubiaceae | 9.2 ± 1.1 | 6.5 ± 0.5 |
灰岩棒柄花 Cleidion bracteosum | 大戟科Euphorbiaceae | 7.3 ± 0.3 | 5.2 ± 0.2 |
岩生厚壳桂 Cryptocarya calcicola | 樟科 Lauraceae | 8.1 ± 0.4 | 6.5 ± 0.2 |
青冈 Cyclobalanopsis glauca | 壳斗科Fagaceae | 10.9 ± 1.2 | 7.4 ± 0.6 |
大叶水榕 Ficus glaberrima | 桑科 Moraceae | 19.5 ± 3.4 | 7.7 ± 0.7 |
山小橘 Glycosmis pentaphylla | 芸香科Rutaceae | 6.4 ± 0.3 | 4.3 ± 0.3 |
黑木姜子 Litsea salicifolia | 樟科 Lauraceae | 7.6 ± 0.8 | 6.8 ± 0.4 |
小芸木 Micromelum integerrimum | 芸香科Rutaceae | 6.2 ± 1.1 | 5.3 ± 0.8 |
千里香 Murraya paniculata | 芸香科Rutaceae | 6.4 ± 0.1 | 5.0 ± 0.2 |
广西密花树 Myrsine kwangsiensis | 紫金牛科 Myrsinaceae | 7.6 ± 0.3 | 6.1 ± 0.2 |
铁榄Sinosideroxylon pedunculatum | 山榄科Sapotaceae | 8.8 ± 0.4 | 6.5 ± 0.2 |
表1 广西木论21种喀斯特树种的叶习性、胸径和树高(平均值±标准差)
Table 1 Leaf types by longevity, diameter at breast-height (DBH), and height of the 21 karst tree species studied in Mulun, Guangxi (mean ± SD)
物种 Species | 科 Family | 胸径 DBH (cm) | 树高 Height (m) |
---|---|---|---|
落叶 Deciduous | |||
黄梨木 Boniodendron minus | 无患子科Sapindaceae | 12.4 ± 0.3 | 8.3 ± 0.2 |
禾串树 Bridelia balansae | 大戟科Euphorbiaceae | 13.6 ± 1.0 | 7.5 ± 0.5 |
大叶紫珠 Callicarpa macrophylla | 马鞭草科Verbenaceae | 6.5 ± 0.4 | 5.5 ± 0.7 |
麻楝 Chukrasia tabularis | 楝科 Meliaceae | 12.0 ± 1.4 | 8.0 ± 0.5 |
浆果楝 Cipadessa baccifera | 楝科 Meliaceae | 7.9 ± 1.1 | 6.4 ± 0.9 |
毛果巴豆 Croton lachnocarpus | 大戟科Euphorbiaceae | 8.4 ± 0.3 | 6.5 ± 0.2 |
伞花木 Eurycorymbus cavaleriei | 无患子科Sapindaceae | 10.6 ± 0.6 | 7.6 ± 0.3 |
青檀 Pteroceltis tatarinowii | 榆科 Ulmaceae | 15.6 ± 0.6 | 8.7 ± 0.2 |
菜豆树 Radermachera sinica | 紫葳科Bignoniaceae | 13.5 ± 0.5 | 8.3 ± 0.2 |
圆叶乌桕 Triadica rotundifolia | 大戟科Euphorbiaceae | 15.8 ± 4.2 | 8.5 ± 0.3 |
常绿 Evergreen | |||
假鱼骨木 Psydrax dicocca | 茜草科Rubiaceae | 9.2 ± 1.1 | 6.5 ± 0.5 |
灰岩棒柄花 Cleidion bracteosum | 大戟科Euphorbiaceae | 7.3 ± 0.3 | 5.2 ± 0.2 |
岩生厚壳桂 Cryptocarya calcicola | 樟科 Lauraceae | 8.1 ± 0.4 | 6.5 ± 0.2 |
青冈 Cyclobalanopsis glauca | 壳斗科Fagaceae | 10.9 ± 1.2 | 7.4 ± 0.6 |
大叶水榕 Ficus glaberrima | 桑科 Moraceae | 19.5 ± 3.4 | 7.7 ± 0.7 |
山小橘 Glycosmis pentaphylla | 芸香科Rutaceae | 6.4 ± 0.3 | 4.3 ± 0.3 |
黑木姜子 Litsea salicifolia | 樟科 Lauraceae | 7.6 ± 0.8 | 6.8 ± 0.4 |
小芸木 Micromelum integerrimum | 芸香科Rutaceae | 6.2 ± 1.1 | 5.3 ± 0.8 |
千里香 Murraya paniculata | 芸香科Rutaceae | 6.4 ± 0.1 | 5.0 ± 0.2 |
广西密花树 Myrsine kwangsiensis | 紫金牛科 Myrsinaceae | 7.6 ± 0.3 | 6.1 ± 0.2 |
铁榄Sinosideroxylon pedunculatum | 山榄科Sapotaceae | 8.8 ± 0.4 | 6.5 ± 0.2 |
图1 菜豆树木质部染色切片(A)和经过人工辨别和绘制 后的木质部组织结构分布图(B)。绿色, 导管管腔; 黄色, 导管壁; 红色, 射线细胞; 蓝色, 轴向薄壁细胞; 紫色, 纤维 细胞。
Fig. 1 A stained xylem cross-section image of Radermachera sinica(A), and the same image in which different xylem tissues were manually coded with different colors (B). Green, vessel lumen; Yellow, vessel wall; Red, ray parenchyma; Blue, axial parenchyma; Purple, fibers.
图2 基于TRY Database数据库的全球805种木本植物木质部各组分比例的平均值和广西木论21种喀斯特树种的木质部各组分的比例。
Fig. 2 Xylem tissue partitioning of the 21 karst woody species in Mulun, Guangxi, and 805 woody species data downloaded from the TRY Database.
图3 喀斯特树种在全球木质部组织划分谱的位置(A)和木质部各组织比例之间的相关性(B)。●, 喀斯特树种; △, 全球数据(TRY)。 Fb,纤维组织比例; TPf, 薄壁组织比例; Vs, 导管组织比例。ns, p > 0.05; ***, p < 0.001。
Fig. 3 Distributions of the karst woody species in the global xylem partitioning spectrum (A) and relationships among xylem tissue fractions (B). ●, karst woody species; △, global observations from TRY. Fb,fibers fraction; TPf, total parenchyma fraction; Vs, vessels fraction. ns, p > 0.05; ***, p < 0.001.
图4 广西木论喀斯特木本植物10个木质部性状(A)和21个树种(B)的主成分分析图。○, 落叶树种; ●, 常绿树种。APf,轴向薄壁组织比例; Dh,导管水力直径; Fb,纤维组织比例; Kt,理论导水率; RPf,射线组织比例; t,相连接两个导管的细胞壁厚度之和; t/b,导管壁加固系数;TPf,总的薄壁组织比例; Vd,导管密度; Vs,导管组织比例。
Fig. 4 Principal component analysis for 10 xylem traits of woody plant (A), and 21 karst woody species (B) in Mulun, Guangxi. ○, deciduous; ●, evergreen. APf,axial parenchyma fraction; Dh,hydraulically-mean vessel diameter; Fb,fiber fraction; Kt,theoretical hydraulic conductivity; RPf,ray parenchyma fraction; t,double wall thickness measured from vessel pairs; t/b,vessel wall reinforcement coefficient; TPf,total parenchyma fraction; Vd,vessel density; Vs,vessel lumen fraction.
图5 广西木论喀斯特21个树种导管壁加固系数(t/b)与理论导水率(Kt)的相关关系的简化主轴回归分析。○: 落叶树种(D), ●: 常绿树种(E)。落叶树种回归方程(灰色): y = -0.31x - 0.67, 常绿树种回归方程(黑色): y = -0.41x - 0.71。**,p< 0.01。
Fig. 5 Reduced major axis regression of vessel wall reinforcement coefficient (t/b) and theoretical hydraulic conductivity (Kt) of 21 karst woody species in Mulun, Guangxi. ○, deciduous (D); ●, evergreen (E). Linear regression of deciduous species (grey): y = -0.31x - 0.67; linear regression of evergreen species (black): y = -0.41x- 0.71. **, p< 0.01.
[1] |
Aguirre-Gutiérrez J, Oliveras I, Rifai S, Fauset S, Adu-Bredu S, Affum-Baffoe K, Baker TR, Feldpausch TR, Gvozdevaite A, Hubau W, Kraft NJB, Lewis SL, Moore S, Niinemets Ü, Peprah T, Phillips OL, Ziemińska K, Enquist B, Malhi Y (2019). Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecology Letters, 22, 855-865.
DOI PMID |
[2] |
Aritsara ANA, Razakandraibe VM, Ramananantoandro T, Gleason SM, Cao KF (2021). Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimization of hydraulic efficiency and safety. New Phytologist, 229, 1467-1480.
DOI URL |
[3] |
Barbosa ACF, Pace MR, Witovisk L, Angyalossy V (2010). A new method to obtain good anatomical slides of heterogeneous plant parts. IAWA Journal, 31, 373-383.
DOI URL |
[4] |
Cao KF, Fu PL, Chen YJ, Jiang YJ, Zhu SD ( 2014). Implications of the ecophysiological adaptation of plants on tropical karst habitats for the ecological restoration of desertified rocky lands in Southern China. Scientia Sinica Vitae, 44, 238-247.
DOI URL |
[ 曹坤芳, 付培立, 陈亚军, 姜艳娟, 朱师丹 ( 2014). 热带岩溶植物生理生态适应性对于南方石漠化土地生态重建的启示. 中国科学: 生命科学, 44, 238-247.] | |
[5] |
Cao M, Wu C, Liu JC, Jiang YJ (2020). Increasing leaf δ13C values of woody plants in response to water stress induced by tunnel excavation in a karst trough valley: implication for improving water-use efficiency. Journal of Hydrology, 586, 124895. DOI: 10.1016/j.jhydrol.2020.124895.
DOI URL |
[6] |
Carlquist S (2018). Living cells in wood 3. Overview; Functional anatomy of the parenchyma network. Botanical Review, 84, 242-294.
DOI URL |
[7] | Carlquist SJ (2001). Comparative Wood Anatomy. Springer,Berlin. 448. |
[8] | Chen HS, Nie YP, Wang KL ( 2013). Spatio-temporal heterogeneity of water and plant adaptation mechanisms in karst regions: a review. Acta Ecologica Sinica, 33, 317-326. |
[ 陈洪松, 聂云鹏, 王克林 ( 2013). 岩溶山区水分时空异质性及植物适应机理研究进展. 生态学报, 33, 317-326.] | |
[9] |
Chen ZC, Li S, Luan JW, Zhang YT, Zhu SD, Wan XC, Liu SR (2019). Prediction of temperate broadleaf tree species mortality in arid limestone habitats with stomatal safety margins. Tree Physiology, 39, 1428-1437.
DOI URL |
[10] |
Chen ZC, Zhu SD, Zhang YT, Luan JW, Li S, Sun PS, Wan XC, Liu SR (2020). Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. Tree Physiology, 40, 1029-1042.
DOI URL |
[11] |
Choat B, Ball MC, Luly JG, Holtum JAM (2005). Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees, 19, 305-311.
DOI URL |
[12] |
Deng CY, Zheng JM, Zhang WC, Guo SZ, Xue QH, Ye LY, Sun JW ( 2015). Ecological wood anatomy of Rhizophora stylosa . Chinese Journal of Plant Ecology, 39, 604-615.
DOI URL |
[ 邓传远, 郑俊鸣, 张万超, 郭素枝, 薛秋华, 叶露莹, 孙建文 ( 2015). 红海榄木材结构的生态解剖. 植物生态学报, 39, 604-615.] | |
[13] |
Fan DY, Jie SL, Liu CC, Zhang XY, Xu XW, Zhang SR, Xie ZQ (2011). The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a karst area. Tree Physiology, 31, 865-877.
DOI URL |
[14] |
Fu PL, Jiang YJ, Wang AY, Brodribb TJ, Zhang JL, Zhu SD, Cao KF (2012). Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Annals of Botany, 110, 189-199.
DOI URL |
[15] |
Geekiyanage N, Goodale UM, Cao KF, Kitajima K (2019). Plant ecology of tropical and subtropical karst ecosystems. Biotropica, 51, 626-640.
DOI |
[16] |
Godfrey JM, Riggio J, Orozco J, Guzmán-Delgado P, Chin ARO, Zwieniecki MA (2020). Ray fractions and carbohydrate dynamics of tree species along a 2750 m elevation gradient indicate climate response, not spatial storage limitation. New Phytologist, 225, 2314-2330.
DOI URL |
[17] | Hacke UG (2015). Functional and Ecological Xylem Anatomy. Springer International Publishing, Cham, Switzerland. |
[18] |
Hacke UG, Sperry JS (2001). Functional and ecological xylem anatomy. Perspectives in Plant Ecology, Evolution and Systematics, 4, 97-115.
DOI URL |
[19] |
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457-461.
DOI PMID |
[20] | Hacke UG, Spicer R, Schreiber SG, Plavcová L (2017). An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment, 40, 831-845. |
[21] | Hamilton NE, Ferry M (2018). Ggtern: Ternary Diagrams Using ggplot2. Journal of Statistical Software, 87, 1-17. |
[22] | Hu BQ ( 2014). Study on Human-Land Systems in Karst Areas. Science Press, Beijing. 596. |
[ 胡宝清 ( 2014). 喀斯特人地系统研究. 科学出版社,北京. 596.] | |
[23] | Janssen TAJ, Hölttä T, Fleischer K, Naudts K, Dolman H (2020). Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Plant, Cell & Environment, 43, 965-980. |
[24] | Jiang ZC, Li XK, Zeng FP ( 2007). Ecological Reconstruction in Peak Cluster Karst Depression. Geological Publishing House, Beijing. 151. |
[ 蒋忠诚, 李先琨, 曾馥平 ( 2007). 岩溶峰丛洼地生态重建. 地质出版社,北京. 151.] | |
[25] |
Kattge J, Bönisch G, Diaz S, Lavorel S, Prentice I, Leadley P (2020). TRY plant trait database—Enhanced coverage and open access. Global Change Biology, 26, 119-188.
DOI PMID |
[26] |
Liu H, Gleason SM, Hao GY, Hua L, He PC, Goldstein G, Ye Q (2019). Hydraulic traits are coordinated with maximum plant height at the global scale. Science Advances, 5, eaav1332. DOI: 10.1126/sciadv.aav1332.
DOI |
[27] |
Liu L, Song TQ, Peng WX, Wang KL, Du H, Lu SY, Zeng FP ( 2012). Spatial heterogeneity of soil microbial biomass in Mulun National Nature Reserve in karst area. Acta Ecologica Sinica, 32, 207-214.
DOI URL |
[ 刘璐, 宋同清, 彭晚霞, 王克林, 杜虎, 鹿士杨, 曾馥平 ( 2012). 木论喀斯特自然保护区土壤微生物生物量的空间格局. 生态学报, 32, 207-214.] | |
[28] | Liu SJ, Zhang W, Wang KL, Chen HS, Wei GF ( 2010). Spatiotemporal heterogeneity and its formation causes of soil physical properties in karst peak-cluster depression area of northwest Guangxi, China. Chinese Journal of Applied Ecology, 21, 2249-2256. |
[ 刘淑娟, 张伟, 王克林, 陈洪松, 韦国富 ( 2010). 桂西北喀斯特峰丛洼地土壤物理性质的时空分异及成因. 应用生态学报, 21, 2249-2256.] | |
[29] | McCulloh KA, Domec JC, Johnson DM, Smith DD, Meinzer FC (2019). A dynamic yet vulnerable pipeline: integration and coordination of hydraulic traits across whole plants. Plant, Cell & Environment, 42, 2789-2807. |
[30] |
Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009). Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology, 23, 922-930.
DOI URL |
[31] | Morris H, Gillingham MAF, Plavcová L, Gleason SM, Olson ME, Coomes DA, Fichtler E, Klepsch MM, Martínez- Cabrera HI, McGlinn DJ, Wheeler EA, Zheng JM, Ziemińska K, Jansen S (2018). Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant, Cell & Environment, 41, 245-260. |
[32] |
Morris H, Brodersen C, Schwarze FWMR, Jansen S (2016a). The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Frontiers in Plant Science, 7, 1665. DOI: 10.3389/ fpls.2016.01665.
DOI |
[33] |
Morris H, Plavcová L, Cvecko P, Fichtler E, Gillingham MAF, Martínez-Cabrera HI, McGlinn DJ, Wheeler E, Zheng JM, Ziemińska K, Jansen S (2016b). A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist, 209, 1553-1565.
DOI URL |
[34] | Peng WX, Wang KL, Song TQ, Zeng FP, Wang JR ( 2008). Controlling and restoration models of complex degradation of vulnerable karst ecosystem. Acta Ecologica Sinica, 28, 811-820. |
[ 彭晚霞, 王克林, 宋同清, 曾馥平, 王久荣 ( 2008). 喀斯特脆弱生态系统复合退化控制与重建模式. 生态学报, 28, 811-820.] | |
[35] |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167. DOI: 10.1071/ bt12225.
DOI URL |
[36] |
Plavcová L, Hoch G, Morris H, Ghiasi S, Jansen S (2016). The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. American Journal of Botany, 103, 603-612.
DOI PMID |
[37] | Plavcová L, Jansen S (2015). The role of xylem parenchyma in the storage and utilization of nonstructural carbohydrates// Hacke U. Functional and Ecological Xylem Anatomy. Springer International Publishing, Cham,Switzerland. 209-234. |
[38] | Pratt RB, Jacobsen AL (2017). Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics. Plant, Cell & Environment, 40, 897-913. |
[39] |
Qu X, Huang G (2018). Different multi-year mean temperature in mid-summer of South China under different 1.5 °C warming scenarios. Scientific Reports, 8, 13794. DOI: 10. 1038/s41598-018-32277-6.
DOI URL |
[40] |
Rueden CT, Hiner MC, Eliceiri KW (2016). ImageJ: image analysis interoperability for the next generation of biological image data. Microscopy and Microanalysis, 22, 2066-2067.
DOI URL |
[41] |
Santiago LS, de Guzman ME, Baraloto C, Vogenberg JE, Brodie M, Hérault B, Fortunel C, Bonal D (2018). Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 218, 1015-1024.
DOI URL |
[42] | Secchi F, Pagliarani C, Zwieniecki MA (2017). The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant, Cell & Environment, 40, 858-871. |
[43] |
Siddiq Z, Zhang YJ, Zhu SD, Cao KF (2019). Canopy water status and photosynthesis of tropical trees are associated with trunk sapwood hydraulic properties. Plant Physiology and Biochemistry, 139, 724-730.
DOI PMID |
[44] | Song TQ ( 2015). Plants and Environment in Karst Areas of Southwest China. Science Press, Beijing. 607. |
[ 宋同清 ( 2015). 西南喀斯特植物与环境. 科学出版社,北京. 607.] | |
[45] |
Tan FS, Song HQ, Li ZG, Zhang QW, Zhu SD ( 2019). Hydraulic safety margin of 17 co-occurring woody plants in a seasonal rain forest in Guangxi’s Southwest karst landscape, China. Chinese Journal of Plant Ecology, 43, 227-237.
DOI URL |
[ 谭凤森, 宋慧清, 李忠国, 张启伟, 朱师丹 ( 2019). 桂西南喀斯特季雨林木本植物的水力安全. 植物生态学报, 43, 227-237.] | |
[46] |
Tomasella M, Petrussa E, Petruzzellis F, Nardini A, Casolo V (2019). The possible role of non-structural carbohydrates in the regulation of tree hydraulics. International Journal of Molecular Sciences, 21, E144. DOI: 10.3390/ ijms21010144.
DOI |
[47] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. 2nd ed. Springer Heidelberg,Berlin. |
[48] |
Wang J, Wen XF, Zhang XY, Li SG (2018). The strategies of water-carbon regulation of plants in a subtropical primary forest on karst soils in China. Biogeosciences, 15, 4193-4203.
DOI URL |
[49] |
Warton DI, Duursma RA, Falster DS, Taskinen S (2012). Smatr 3—An R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257-259.
DOI URL |
[50] |
Yin YH, Ma DY, Wu SH (2018). Climate change risk to forests in China associated with warming. Scientific Reports, 8, 493. DOI: 10.1038/s41598-017-18798-6.
DOI URL |
[51] | Yuan DX ( 1992). Karst in southwest China and its comparison with karst in North China. Quaternary Sciences, 12, 352-361. |
[ 袁道先 ( 1992). 中国西南部的岩溶及其与华北岩溶的对比. 第四纪研究, 12, 352-361.] | |
[52] | Zheng YW ( 1999). Introduction to Mulun Karst Forest Region. Science Press, Beijing. 254. |
[ 郑颖吾 ( 1999). 木论喀斯特林区概论. 科学出版社,北京. 254.] | |
[53] | Zhou CB, Hu X, Song YY, Gong W, Hu TX ( 2016). Radial variation and its storage function of ray tissue. Journal of Northwest Forestry University, 31, 179-183. |
[ 周朝彬, 胡霞, 宋于洋, 龚伟, 胡庭兴 ( 2016). 射线组织径向变异及其贮藏功能研究进展. 西北林学院学报, 31, 179-183.] | |
[54] | Zhu SD, Chen YJ, Fu PL, Cao KF (2017). Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability. Tree Physiology, 37, 1469-1477. |
[55] |
Zwieniecki MA, Holbrook NM (2009). Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends in Plant Science, 14, 530-534.
DOI PMID |
[1] | 李耀琪 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[3] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[4] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[5] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[6] | 代远萌 李满乐 徐铭泽 田赟 赵洪贤 高圣杰 郝少荣 刘鹏 贾昕 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征研究[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[7] | 方菁, 叶琳峰, 陈森, 陆世通, 潘天天, 谢江波, 李彦, 王忠媛. 自然和人工生境被子植物枝木质部结构与功能差异[J]. 植物生态学报, 2021, 45(6): 650-658. |
[8] | 王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242-252. |
[9] | 谭一波, 田红灯, 曾春阳, 沈浩, 申文辉, 叶建平, 甘国娟. 猫儿山铁杉相邻植株冠层机械磨损对枝叶性状的影响[J]. 植物生态学报, 2021, 45(12): 1281-1291. |
[10] | 李豪, 马如玉, 强波, 贺聪, 韩路, 王海珍. 胡杨当年生小枝茎构型对展叶效率的影响[J]. 植物生态学报, 2021, 45(11): 1251-1262. |
[11] | 王玉贤, 侯盟, 谢言言, 刘左军, 赵志刚, 路宁娜. 青藏高原高寒草甸植物花寿命与花吸引特征的关系及其对雌性繁殖成功的影响[J]. 植物生态学报, 2020, 44(9): 905-915. |
[12] | 李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略[J]. 植物生态学报, 2020, 44(6): 642-653. |
[13] | 宋慧清, 倪鸣源, 朱师丹. 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例[J]. 植物生态学报, 2020, 44(3): 192-204. |
[14] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[15] | 李志民, 王传宽. 木本植物木质部的冻融栓塞应对研究进展[J]. 植物生态学报, 2019, 43(8): 635-647. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19