植物生态学报 ›› 2021, Vol. 45 ›› Issue (6): 650-658.DOI: 10.17521/cjpe.2020.0430
方菁1,2, 叶琳峰1,2, 陈森1,2, 陆世通1,2, 潘天天1,2, 谢江波1,2,3, 李彦1,2,3, 王忠媛1,*()
收稿日期:
2020-12-30
接受日期:
2021-04-26
出版日期:
2021-06-20
发布日期:
2021-09-09
通讯作者:
王忠媛
作者简介:
*(wangzhongyuan2014@163.com)基金资助:
FANG Jing1,2, YE Lin-Feng1,2, CHEN Sen1,2, LU Shi-Tong1,2, PAN Tian-Tian1,2, XIE Jiang-Bo1,2,3, LI Yan1,2,3, WANG Zhong-Yuan1,*()
Received:
2020-12-30
Accepted:
2021-04-26
Online:
2021-06-20
Published:
2021-09-09
Contact:
WANG Zhong-Yuan
Supported by:
摘要:
水是植物生存与生长的基础条件, 水分有效性影响植物木质部解剖结构、水力功能, 使之形成特定的适应特征。因此, 对比自然与人工生境中同一植物的水力功能与解剖结构差异, 有助于理解植物对水分环境的适应机理。该研究以湿润区三角槭(Acer buergerianum)、青冈(Cyclobalanopsis glauca)和女贞(Ligustrum lucidum)为研究材料, 对比分析了自然和人工生境中各物种的栓塞抗性(导水率损失50%时的水势(P50))、输水效率(比导率(Ks))和解剖结构(导管直径(D)、导管壁厚(T)、导管密度(N)、木质部密度(WD)、厚度跨度比(t/b)2)特征, 探究了同生境种内与跨生境、跨物种水平的效率-安全权衡关系, 量化分析了水力功能与解剖结构的关系。结果发现: 1) 3种被子植物在自然生境中Ks更大, P50更小, 与其更大的D、更小的(t/b)2有关。2)同生境种内Ks与P50不存在权衡。3)功能性状和解剖结构相关分析表明: 同生境种内D与P50不存在显著的相关关系; 除自然生境女贞外, T、(t/b)2均与P50正相关。相对于人工生境, 在水分有效性低或无额外浇灌的自然生境中, 植物通过增大导管直径显著提高其输水效率, 从而避免水势下降、降低潜在栓塞风险。
方菁, 叶琳峰, 陈森, 陆世通, 潘天天, 谢江波, 李彦, 王忠媛. 自然和人工生境被子植物枝木质部结构与功能差异. 植物生态学报, 2021, 45(6): 650-658. DOI: 10.17521/cjpe.2020.0430
FANG Jing, YE Lin-Feng, CHEN Sen, LU Shi-Tong, PAN Tian-Tian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats. Chinese Journal of Plant Ecology, 2021, 45(6): 650-658. DOI: 10.17521/cjpe.2020.0430
生境 Habitat | 经纬度 Latitude, Longitude | 海拔 Altitude (m) | 坡向 Slope direction | 坡度 Slope (°) | 土壤类型 Soil type | pH |
---|---|---|---|---|---|---|
自然生境 Field habitat | 30.34° N, 119.46° E | 350-450 | 西南 SW | 12 | 红壤 Red soil | 4.88 ± 0.16 |
人工生境 Garden habitat | 30.26° N, 119.73° E | 43-47 | 西南 SW | 9 | 红壤 Red soil | 5.25 ± 0.11 |
表1 自然和人工生境样地的基本特征(平均值±标准误, n = 3)
Table 1 Basic characteristics for the field and garden habitats (mean ± SE, n = 3)
生境 Habitat | 经纬度 Latitude, Longitude | 海拔 Altitude (m) | 坡向 Slope direction | 坡度 Slope (°) | 土壤类型 Soil type | pH |
---|---|---|---|---|---|---|
自然生境 Field habitat | 30.34° N, 119.46° E | 350-450 | 西南 SW | 12 | 红壤 Red soil | 4.88 ± 0.16 |
人工生境 Garden habitat | 30.26° N, 119.73° E | 43-47 | 西南 SW | 9 | 红壤 Red soil | 5.25 ± 0.11 |
树种 Species | 生境 Habitat | n | 树高 Tree height (m) | 胸径 DBH (cm) | 树龄 Tree age (a) | 冠幅 Crown (m) |
---|---|---|---|---|---|---|
三角槭 Acer buergerianum | 自然生境 Field habitat | 19 | 9.44 ± 0.37 | 10.26 ± 0.38 | 10-15 | 2.70 ± 0.12 |
人工生境 Garden habitat | 20 | 10.75 ± 0.27 | 11.31 ± 0.24 | 10-15 | 3.04 ± 0.07 | |
青冈 Cyclobalanopsis glauca | 自然生境 Field habitat | 18 | 12.41 ± 0.38 | 14.65 ± 0.54 | 15-20 | 6.45 ± 0.14 |
人工生境 Garden habitat | 21 | 12.57 ± 0.30 | 15.43 ± 0.28 | 15-20 | 6.86 ± 0.03 | |
女贞 Ligustrum lucidum | 自然生境 Field habitat | 20 | 6.47 ± 0.24 | 12.10 ± 0.38 | 10-15 | 3.94 ± 0.21 |
人工生境 Garden habitat | 18 | 7.33 ± 0.11 | 13.62 ± 0.27 | 10-15 | 4.51 ± 0.16 |
表2 自然和人工生境3种被子植物样树的基本特性(平均值±标准误)
Table 2 Basic characteristics of the sampled trees for the three species in field and garden habitats (mean ± SE)
树种 Species | 生境 Habitat | n | 树高 Tree height (m) | 胸径 DBH (cm) | 树龄 Tree age (a) | 冠幅 Crown (m) |
---|---|---|---|---|---|---|
三角槭 Acer buergerianum | 自然生境 Field habitat | 19 | 9.44 ± 0.37 | 10.26 ± 0.38 | 10-15 | 2.70 ± 0.12 |
人工生境 Garden habitat | 20 | 10.75 ± 0.27 | 11.31 ± 0.24 | 10-15 | 3.04 ± 0.07 | |
青冈 Cyclobalanopsis glauca | 自然生境 Field habitat | 18 | 12.41 ± 0.38 | 14.65 ± 0.54 | 15-20 | 6.45 ± 0.14 |
人工生境 Garden habitat | 21 | 12.57 ± 0.30 | 15.43 ± 0.28 | 15-20 | 6.86 ± 0.03 | |
女贞 Ligustrum lucidum | 自然生境 Field habitat | 20 | 6.47 ± 0.24 | 12.10 ± 0.38 | 10-15 | 3.94 ± 0.21 |
人工生境 Garden habitat | 18 | 7.33 ± 0.11 | 13.62 ± 0.27 | 10-15 | 4.51 ± 0.16 |
图1 三种植物自然和人工生境水力功能性状图(平均值±标准误)。A, 比导率(Ks)。B, 栓塞抗性(导水率损失50%时的水势, P50)。不同小写字母表示种内差异显著(p < 0.05)。
Fig. 1 Hydraulic functional traits of three species in field and garden habitats (mean ± SE). A, The specific hydraulic conductivity (Ks). B, Embolism resistance (water potential at 50% loss of conductivity, P50). Different lowercase letters indicate significant differences within species (p < 0.05).
图2 三种植物自然和人工生境木质部解剖横切面光学显微镜图像。A, 自然生境三角槭。B, 自然生境青冈。C, 自然生境女贞。D, 人工生境三角槭。E, 人工生境青冈。F, 人工生境女贞。
Fig. 2 Examples of light microscopy images of xylem cross sections of three species in field and garden habitats. A, Acer buergerianum in the field. B, Cyclobalanopsis glauca in the field. C, Ligustrum lucidum in the field. D, A. buergerianum in the garden. E, C. glauca in the garden. F, L. lucidum in the garden.
图3 三种植物自然和人工生境木质部解剖结构特征图(平均值±标准误)。A, 导管直径(D)。B, 导管壁厚(T)。C, 导管密度(N)。D, 木质部密度(WD)。E, 厚度跨度比((t/b)2)。不同小写字母表示种内差异显著(p < 0.05)。
Fig. 3 Xylem anatomical structure traits of three species in field and garden habitats (mean ± SE). A, Vessel diameter (D). B, Double thickness of vessel wall (T). C, Vessel density (N). D, Xylem density (WD). E, Thickness-to-span ratio of vessels ((t/b)2). Different lowercase letters indicate significant differences within species (p < 0.05).
图4 三种植物自然和人工生境功能性状(Ks和P50)与解剖结构的网络分析。A, 自然生境三角槭。B, 自然生境青冈。C, 自然生境女贞。D, 人工生境三角槭。E, 人工生境青冈。F, 人工生境女贞。实线, 正相关; 虚线, 负相关。红色线条, p < 0.05; 灰色线条, p > 0.05。线条粗细表示相关系数(r)的大小。D, 导管直径(μm); Ks, 比导率(kg·m-1∙MPa-1·s-1); N, 导管密度(103∙mm-2); P50, 导水率损失50%时的水势(-MPa); T, 导管壁厚(μm); Ttob为(t/b)2, 厚度跨度比; WD, 木质部密度(g∙cm-3)。
Fig. 4 Correlation networks between functional traits (Ks and P50) and structural traits of xylem for the three species in field and garden habitat. A, Acer buergerianum in the field. B, Cyclobalanopsis glauca in the field. C, Ligustrum lucidum in the field. D, A. buergerianum in the garden. E, C. glauca in the garden. F, L. lucidum in the garden. Solid lines, positive correlations; dashed lines, negative correlations. Red lines, p < 0.05; grey lines, p > 0.05. Line thickness indicate the correlation coefficient (r) values. D, vessel diameter (μm); Ks, specific hydraulic conductivity (kg·m-1∙MPa-1·s-1); N, vessel density (103∙mm-2); P50, water potential at 50% loss of conductivity (-MPa); T, double thickness of vessel wall (μm); Ttob, thickness-to-span ratio of vessels ((t/b)2); WD, xylem density (g∙cm-3).
[1] |
Aguilar-Romero R, Pineda-Garcia F, Paz H, González- Rodríguez A, Oyama K (2017). Differentiation in the water- use strategies among oak species from central Mexico. Tree Physiology, 37, 915-925.
DOI PMID |
[2] |
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684.
DOI URL |
[3] | An F, Zhang SX, Zhao PJ(2002). Progress on study of vulnerability of xylem embolism in woody plants. Journal of Northwest Forestry University, 17(3), 30-34. |
[ 安锋, 张硕新, 赵平娟(2002). 木本植物木质部栓塞脆弱性研究进展. 西北林学院学报, 17(3), 30-34.] | |
[4] |
Anderegg WRL, Anderegg LDL, Berry JA, Field CB (2014). Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off. Oecologia, 175, 11-23.
DOI PMID |
[5] |
Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought- induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 113, 5024-5029.
DOI PMID |
[6] |
Beikircher B, Mayr S (2009). Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana. Tree Physiology, 29, 765-775.
DOI PMID |
[7] |
Bréda N, Huc R, Granier A, Dreyer E (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625-644.
DOI URL |
[8] |
Brodribb TJ, Cochard H (2009). Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiology, 149, 575-584.
DOI PMID |
[9] |
Bucci SJ, Scholz FG, Campanello PI, Montti L, Jimenez- Castillo M, Rockwell FA, Manna LL, Guerra P, Bernal PL, Troncoso O, Enricci J, Holbrook MN, Goldstein G (2012). Hydraulic differences along the water transport system of South American Nothofagus species: Do leaves protect the stem functionality? Tree Physiology, 32, 880-893.
DOI URL |
[10] |
Carlquist S (1977). Ecological factors in wood evolution: a floristic approach. American Journal of Botany, 64, 887-896.
DOI URL |
[11] | Chen ZC, Jiang LN, Feng JX, Wan XC(2018). Progress and controversy of xylem embolism determination techniques in woody plants. Scientia Silvae Sinicae, 54(5), 143-151. |
[ 陈志成, 姜丽娜, 冯锦霞, 万贤崇(2018). 木本植物木质部栓塞测定技术的争议与进展. 林业科学, 54(5), 143-151.] | |
[12] |
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755.
DOI URL |
[13] |
Choat B, Sack L, Holbrook NM (2007). Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytologist, 175, 686-698.
DOI URL |
[14] |
Cochard H, Barigah ST, Kleinhentz M, Eshel A (2008). Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? Journal of Plant Physiology, 165, 976-982.
PMID |
[15] |
Cochard H, Casella E, Mencuccini M (2007). Xylem vulnerability to cavitation varies among poplar and willow clones and correlates with yield. Tree Physiology, 27, 1761-1767.
PMID |
[16] |
Cornwell WK, Bhaskar R, Sack L, Cordell S, Lunch CK (2007). Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Functional Ecology, 21, 1063-1071.
DOI URL |
[17] | Fichot R, Barigah TS, Chamaillard S, Le Thiec D, Laurans F, Cochard H, Brignolas F (2010). Common trade-offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoides × Populus nigra hybrids. Plant, Cell & Environment, 33, 1553-1568. |
[18] |
Froux F, Huc R, Ducrey M, Dreyer E (2002). Xylem hydraulic efficiency versus vulnerability in seedlings of four contrasting Mediterranean tree species (Cedrus atlantica, Cupressus sempervirens, Pinus halepensis and Pinus nigra). Annals of Forest Science, 59, 409-418.
DOI URL |
[19] |
Gazol A, Camarero JJ, Vicente-Serrano SM, Sánchez-Salguero R, Gutiérrez E, de Luis M, Sangüesa-Barreda G, Novak K, Rozas V, Tíscar PA, Linares JC, Martín-Hernández N, Martínez del Castillo E, Ribas M, García-González I, et al. (2018). Forest resilience to drought varies across biomes. Global Change Biology, 24, 2143-2158.
DOI URL |
[20] |
Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao KF, Cochard H, Delzon S, Domec JC, Fan ZX, Feild TS, et al. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 209, 123-136.
DOI PMID |
[21] |
Hacke UG, Sperry JS, Pittermann J (2000). Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 1, 31-41.
DOI URL |
[22] |
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457-461.
DOI PMID |
[23] |
Hajek P, Kurjak D, von Wühlisch G, Delzon S, Schuldt B (2016). Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield. Frontiers in Plant Science, 7, 791. DOI: 10.3389/fpls.2016.00791.
DOI |
[24] |
Jacobsen AL, Ewers FW, Pratt RB, Paddock WA, Davis SD (2005). Do xylem fibers affect vessel cavitation resistance? Plant Physiology, 139, 546-556.
PMID |
[25] |
Lewis AM, Boose ER (1995). Estimating volume flow rates through xylem conduits. American Journal of Botany, 82, 1112-1116.
DOI URL |
[26] |
Maherali H, DeLucia EH (2000). Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates. Tree Physiology, 20, 859-867.
PMID |
[27] |
Maherali H, Pockman WT, Jackson RB (2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85, 2184-2199.
DOI URL |
[28] |
Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002). Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia, 133, 19-29.
DOI PMID |
[29] |
Maseda PH, Fernández RJ (2006). Stay wet or else: three ways in which plants can adjust hydraulically to their environment. Journal of Experimental Botany, 57, 3963-3977.
PMID |
[30] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI PMID |
[31] | Mencuccini M (2003). The ecological significance of long- distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant, Cell & Environment, 26, 163-182. |
[32] |
Nolf M, Pagitz K, Mayr S (2014). Physiological acclimation to drought stress in Solidago canadensis. Physiologia Plantarum, 150, 529-539.
DOI URL |
[33] |
Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007a). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 174, 787-798.
DOI URL |
[34] |
Pratt RB, Jacobsen AL, Golgotiu KA, Sperry JS, Ewers FW, Davis SD (2007b). Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae). Ecological Monographs, 77, 239-253.
DOI URL |
[35] |
Schuldt B, Knutzen F, Delzon S, Jansen S, Müller-Haubold H, Burlett R, Clough Y, Leuschner C (2016). How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytologist, 210, 443-458.
DOI URL |
[36] |
Schumann K, Leuschner C, Schuldt B (2019). Xylem hydraulic safety and efficiency in relation to leaf and wood traits in three temperate Acer species differing in habitat preferences. Trees, 33, 1475-1490.
DOI URL |
[37] |
Sperry JS (2003). Evolution of water transport and xylem structure. International Journal of Plant Sciences, 164, S115-S127.
DOI URL |
[38] |
Tissier J, Lambs L, Peltier JP, Marigo G (2004). Relationships between hydraulic traits and habitat preference for six Acer species occurring in the French Alps. Annals of Forest Science, 61, 81-86.
DOI URL |
[39] |
Tyree MT, Davis SD, Cochard H (1994). Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA Journal, 15, 335-360.
DOI URL |
[40] |
Tyree MT, Sperry JS (1989). Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19-38.
DOI URL |
[41] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. Springer, Berlin. 45-56. |
[42] | Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005). Inter- vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell & Environment, 28, 800-812. |
[43] |
Zhang JZ, Gou XH, Zhao ZQ, Liu WH, Zhang F, Cao ZY, Zhou FF(2013). Improved method of obtaining micro- core paraffin sections in dendroecological research. Chinese Journal of Plant Ecology, 37, 972-977.
DOI URL |
[ 张军周, 勾晓华, 赵志千, 刘文火, 张芬, 曹宗英, 周非飞(2013). 树轮生态学研究中微树芯石蜡切片制作的方法探讨. 植物生态学报, 37, 972-977.] |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[3] | 王嘉仪, 王襄平, 徐程扬, 夏新莉, 谢宗强, 冯飞, 樊大勇. 北京市行道树绒毛梣的水力结构对城市不透水表面比例的响应[J]. 植物生态学报, 2023, 47(7): 998-1009. |
[4] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[5] | 伍敏, 田雨, 樊大勇, 张祥雪. 干旱胁迫下毛白杨和元宝槭的水力学调控[J]. 植物生态学报, 2022, 46(9): 1086-1097. |
[6] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[7] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[8] | 罗丹丹, 王传宽, 金鹰. 木本植物水力系统对干旱胁迫的响应机制[J]. 植物生态学报, 2021, 45(9): 925-941. |
[9] | 陆世通, 陈森, 李彦, 王忠媛, 潘天天, 叶琳峰, 谢江波. 罗汉松科3种植物茎和根木质部水分运输、解剖结构与机械强度之间的关系[J]. 植物生态学报, 2021, 45(6): 659-669. |
[10] | 宋慧清, 倪鸣源, 朱师丹. 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例[J]. 植物生态学报, 2020, 44(3): 192-204. |
[11] | 李志民, 王传宽. 木本植物木质部的冻融栓塞应对研究进展[J]. 植物生态学报, 2019, 43(8): 635-647. |
[12] | 谭凤森, 宋慧清, 李忠国, 张启伟, 朱师丹. 桂西南喀斯特季雨林木本植物的水力安全[J]. 植物生态学报, 2019, 43(3): 227-237. |
[13] | 程向芬, 马晋, 赵涵, 姜在民, 蔡靖. 木本植物水力学结构之导管长度研究进展[J]. 植物生态学报, 2018, 42(6): 609-618. |
[14] | 安瑞, 孟凤, 尹鹏先, 杜光源. 刺槐木质部栓塞脆弱性检测的方法比较[J]. 植物生态学报, 2018, 42(11): 1113-1119. |
[15] | 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9): 1020-1032. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19