植物生态学报 ›› 2023, Vol. 47 ›› Issue (7): 998-1009.DOI: 10.17521/cjpe.2022.0091
所属专题: 光合作用
王嘉仪1, 王襄平2, 徐程扬1, 夏新莉3, 谢宗强4, 冯飞1, 樊大勇1,*()
收稿日期:
2022-03-09
接受日期:
2022-07-06
出版日期:
2023-07-20
发布日期:
2023-07-21
通讯作者:
*樊大勇(作者简介:
ORCID: 王嘉仪: 0000-0003-4479-7165
基金资助:
WANG Jia-Yi1, WANG Xiang-Ping2, XU Cheng-Yang1, XIA Xin-Li3, XIE Zong-Qiang4, FENG Fei1, FAN Da-Yong1,*()
Received:
2022-03-09
Accepted:
2022-07-06
Online:
2023-07-20
Published:
2023-07-21
Contact:
*FAN Da-Yong(Supported by:
摘要:
了解和量化城市树木耐旱性的变异性和潜在的驱动机制对于预测和管理全球气候变化下的城市生态系统稳定性至关重要。该研究以北京市常见行道树绒毛梣(Fraxinus velutina)为研究对象, 选取6个不同不透水表面比例(用归一化建筑指数(NDBI)反映)的实验地点。利用遥感数据提取各地的NDBI和月地表平均温度(Ts)参数, 并实地测定了空气水汽压亏缺(VPD)和黎明前水势(Ψpd), 在生长季采用自然干燥法拟合各地点绒毛梣枝条木质部脆弱性曲线, 并计算得到木质部栓塞脆弱性, 测定各地点凌晨和中午枝条的自然栓塞化程度以获取不同地点木质部栓塞的恢复程度; 同时测定了比导率(ks)和叶比导率(LSC)、气孔导度(Gs)和最大光化学量子效率(Fv/Fm)。研究了不同不透水表面比例下树木栓塞脆弱性(耐旱性)的适应性, 以及耐旱性与其他水力性状之间的相关性。结果表明: 1)不透水表面比例与50%导水率损失对应的水势值(Ψ50)显著负相关, 不透水表面比例越高耐旱性越高; 2) Ψ50与Ψpd及VPD显著相关; 3) ks与Ψ50间有显著权衡, 但LSC与Ψ50相关关系不明显; 4)栓塞修复能力与Ψpd呈正相关关系; 5)处于不同不透水表面比例地区的绒毛梣的Fv/Fm无显著差异; 6)随不透水表面比例的增加, 绒毛梣光合速率下降。该研究结果表明, 不透水表面比例是影响绒毛梣耐旱性的关键城市环境指标之一, 不透水表面比例提高导致绒毛梣耐旱性的提高, 同时绒毛梣白天出现的栓塞可以在夜晚进行积极的修复, 这两个特征均说明城市树木对于城市环境表现出水力结构的适应性, 但这种适应性以光合速率下降为代价。该研究结果为快速城市化和全球气候变化场景下北京城市生态系统健康程度、弹性和稳定性评价提供了重要研究数据, 并为决策者制定切实可行的北京城市树木管理策略提供了理论依据。
王嘉仪, 王襄平, 徐程扬, 夏新莉, 谢宗强, 冯飞, 樊大勇. 北京市行道树绒毛梣的水力结构对城市不透水表面比例的响应. 植物生态学报, 2023, 47(7): 998-1009. DOI: 10.17521/cjpe.2022.0091
WANG Jia-Yi, WANG Xiang-Ping, XU Cheng-Yang, XIA Xin-Li, XIE Zong-Qiang, FENG Fei, FAN Da-Yong. Response of hydraulic architecture in Fraxinus velutina street trees to the percentage of impervious pavement in Beijing. Chinese Journal of Plant Ecology, 2023, 47(7): 998-1009. DOI: 10.17521/cjpe.2022.0091
图1 在北京选取的6个实验地点的地理位置分布图(图源高德地图)。ADS, 安定路; LDS, 林大路; LTS, 立汤路; SSS, 顺沙路; WJS, 望京路; XZS, 西直门外大街。
Fig. 1 Geographical distribution map of the six experimental sites in Beijing (source: Amap). ADS, Anding Street; LDS, Linda Street; LTS, Litang Street; SSS, Shunsha Street; WJS, Wangjing Street; XZS, Xizhimen Wai Street.
环境指标 Environment indicator | 实验地点 Experimental site | |||||
---|---|---|---|---|---|---|
LDS | WJS | XZS | SSS | LTS | ADS | |
NDBI | -0.342 | -0.343 | -0.302 | -0.219 | -0.123 | -0.180 |
Ts (℃) | 37.135 ± 1.943ab | 34.861 ± 1.083b | 38.933 ± 2.077a | 37.590 ± 1.866ab | 36.044 ± 0.930ab | 37.301 ± 1.757ab |
VPD (kPa) | 1.227 ± 0.027c | 1.107 ± 0.092d | 1.679 ± 0.039a | 1.539 ± 0.063b | 1.701 ± 0.102a | 1.700 ± 0.014a |
Ψpd (MPa) | -0.665 ± 0.039a | -0.651 ± 0.015a | -0.781 ± 0.027b | -0.845 ± 0.019c | -0.994 ± 0.011d | -1.107 ± 0.022d |
表1 北京6个实验地点绒毛梣的黎明前水势(Ψpd)、月地表平均温度(Ts)、空气水汽压亏缺(VPD)和归一化建筑物指数(NDBI) (平均值±标准误)
Table 1 Pre-dawn leaf water potential (Ψpd), monthly mean surface air temperature (Ts), vapor pressure deficit (VPD), and normalized difference built-up index (NDBI) at the six sites in Beijing (mean ± SE)
环境指标 Environment indicator | 实验地点 Experimental site | |||||
---|---|---|---|---|---|---|
LDS | WJS | XZS | SSS | LTS | ADS | |
NDBI | -0.342 | -0.343 | -0.302 | -0.219 | -0.123 | -0.180 |
Ts (℃) | 37.135 ± 1.943ab | 34.861 ± 1.083b | 38.933 ± 2.077a | 37.590 ± 1.866ab | 36.044 ± 0.930ab | 37.301 ± 1.757ab |
VPD (kPa) | 1.227 ± 0.027c | 1.107 ± 0.092d | 1.679 ± 0.039a | 1.539 ± 0.063b | 1.701 ± 0.102a | 1.700 ± 0.014a |
Ψpd (MPa) | -0.665 ± 0.039a | -0.651 ± 0.015a | -0.781 ± 0.027b | -0.845 ± 0.019c | -0.994 ± 0.011d | -1.107 ± 0.022d |
图2 北京6个实验地点绒毛梣的脆弱性曲线。黑色方块, 在实验室中自然干燥过程中所测的绒毛梣枝条导水率损失百分比(PLC)和水势(Ψ)对应点; 红色点, 黎明所测的自然PLC及对应水势; 蓝色三角, 午时所测的自然PLC及对应水势。ADS, 安定路; LDS, 林大路; LTS, 立汤路; SSS, 顺沙路; WJS, 望京路; XZS, 西直门外大街。同图一不同小写字母表示各位点间差异显著(p < 0.05)。Ψ50位点间的差异是采用95%置信区间是否重叠方法获得的。
Fig. 2 Vulnerability curves of Fraxinus velutina at the six study sites in Beijing. Black squares, the corresponding point of the percentage loss (PLC) and water potential (Ψ) measured during bench-dehydration of branches in the laboratory; Red circle, natural PLC measured at dawn and their corresponding water potentials; Blue triangle, natural PLC measured at noon and their corresponding water potentials. ADS, Anding Street; LDS, Linda Street; LTS, Litang Street; SSS, Shunsha Street; WJS, Wangjing Street; XZS, Xizhimen Wai Street. Different lowercase letters indicate significant differences among sites (p < 0.05). The difference between Ψ50 among sites is tested by the 95% CI-overlay method.
图3 北京6个地点归一化建筑指数(NDBI) (A)、空气水汽压亏缺(VPD) (B)、黎明前水势(Ψpd) (C)、月地表平均温度(Ts) (D)的平均值与50%导水率损失对应的水势值(Ψ50)之间的相关性(平均值±标准误)。地点同图1。
Fig. 3 Correlations between 50% loss of hydraulic conductivity (Ψ50) and normalized difference built-up index (NDBI) (A), vapor pressure deficit (VPD) (B), pre-dawn leaf water potential (Ψpd) (C), monthly mean surface air temperature (Ts) (D) at the six study sites in Beijing (mean ± SE). Site see Fig. 1.
图4 北京6个实验位点绒毛梣的比导率(ks) (A)、叶比导率(LSC) (B)和胡伯尔值(Hv) (C) (平均值±标准误)。不同小写字母表示各地点间差异显著(p < 0.05)。地点同图1。
Fig. 4 Specific conductivity (ks) (A), leaf specific conductivity (LSC) (B) and Huber values (Hv) (C) of Fraxinus velutina measured at the six study sites in Beijing (mean ± SE). Different lowercase letters indicate significant differences among sites (p < 0.05). Site see Fig. 1.
图5 北京6个地点绒毛梣比导率(ks) (A)、叶比导率(LSC) (B)与50%导水率损失对应的水势值(Ψ50)间的相关性(平均值±标准误)。
Fig. 5 Relationships between specific conductivity (ks) (A), leaf specific conductivity (LSC) (B) and 50% loss of hydraulic conductivity (Ψ50) in Fraxinus velutina at six experimental sites in Beijing (mean ± SE).
图6 北京6个实验点的黎明前水势与对应位点绒毛梣栓塞修复力之间的相关关系(平均值±标准误)。地点同图1。
Fig. 6 Correlation between pre-dawn leaf water potential and embolism repair ability of Fraxinus velutina at six experimental sites in Beijing (mean ± SE). Site see Fig. 1.
图7 绒毛梣气孔导度(Gs)和叶比导率(LSC)的关系(平均值±标准误)。
Fig. 7 Relationship between leaf specific conductivity (LSC) and stomatal conductance (Gs) of Fraxinus velutina (mean ± SE).
实验点 Experimental site | Gs (mol·m-2·s-1) | Fv/Fm | A (μmol·m-2·s-1) |
---|---|---|---|
LDS | 0.383 ± 0.034a | 0.828 6 ± 0.048 3 | 21.17 ± 1.730a |
WJS | 0.350 ± 0.016a | 0.841 9 ± 0.027 2 | 19.66 ± 1.456ab |
XZS | 0.254 ± 0.022b | 0.839 7 ± 0.011 5 | 20.04 ± 1.174a |
SSS | 0.181 ± 0.026c | 0.833 4 ± 0.023 0 | 17.34 ± 1.166b |
LTS | 0.138 ± 0.023c | 0.837 4 ± 0.035 1 | 14.11 ± 1.274c |
ADS | 0.157 ± 0.015c | 0.826 3 ± 0.019 4 | 14.63 ± 1.334c |
表2 北京6个实验点绒毛梣的气孔导度(Gs)、光系统II (PSII)最大光化学量子产量(Fv/Fm)和净光合速率(A) (平均值±标准误)。
Table 2 Stomatal conductance (Gs), maximal efficiency of PSII photochemistry (Fv/Fm), and net photosynthesis rate (A) of Fraxinus velutina measured at the six experimental sites in Beijing (mean ± SE)
实验点 Experimental site | Gs (mol·m-2·s-1) | Fv/Fm | A (μmol·m-2·s-1) |
---|---|---|---|
LDS | 0.383 ± 0.034a | 0.828 6 ± 0.048 3 | 21.17 ± 1.730a |
WJS | 0.350 ± 0.016a | 0.841 9 ± 0.027 2 | 19.66 ± 1.456ab |
XZS | 0.254 ± 0.022b | 0.839 7 ± 0.011 5 | 20.04 ± 1.174a |
SSS | 0.181 ± 0.026c | 0.833 4 ± 0.023 0 | 17.34 ± 1.166b |
LTS | 0.138 ± 0.023c | 0.837 4 ± 0.035 1 | 14.11 ± 1.274c |
ADS | 0.157 ± 0.015c | 0.826 3 ± 0.019 4 | 14.63 ± 1.334c |
[1] |
Arnfield AJ (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23, 1-26.
DOI URL |
[2] |
Baker NR (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
DOI PMID |
[3] |
Brodersen CR, McElrone AJ (2013). Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Frontiers in Plant Science, 4, 108. DOI: 10.3389/fpls.2013.00108.
DOI PMID |
[4] |
Brodribb TJ, Feild TS (2000). Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant, Cell and Environment, 23, 1381-1388.
DOI URL |
[5] | Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello PI, Villalobos-Vega R, Bustamante M, Miralles- Wilhelm F (2006). Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Plant, Cell & Environment, 29, 2153-2167. |
[6] | Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg LDSL (2003). Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels. Plant, Cell & Environment, 26, 1633-1645. |
[7] |
Chapman S, Watson JEM, Salazar A, Thatcher M, McAlpine CA (2017). The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecology, 32, 1921-1935.
DOI |
[8] |
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531-539.
DOI |
[9] |
Christman MA, Sperry JS, Smith DD (2012). Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytologist, 193, 713-720.
DOI PMID |
[10] |
Eamus D, Boulain N, Cleverly J, Breshears DD (2013). Global change-type drought-induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecology and Evolution, 3, 2711-2729.
DOI PMID |
[11] | Eamus D, Taylor DT, Macinnis-Ng CMO, Shanahan S, de Silva L (2008). Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. Plant, Cell & Environment, 31, 269-277. |
[12] |
Edmondson JL, Stott I, Davies ZG, Gaston KJ, Leake JR (2016). Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs. Scientific Reports, 6, 33708. DOI: 10.1038/srep33708.
DOI PMID |
[13] |
Fan DY, Jie SL, Liu CC, Zhang XY, Xu XW, Zhang SR, Xie ZQ (2011). The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a karst area. Tree Physiology, 31, 865-877.
DOI URL |
[14] |
Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
DOI PMID |
[15] |
Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao KF, Cochard H, Delzon S, Domec JC, Fan ZX, Feild TS, et al. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 209, 123-136.
DOI PMID |
[16] |
Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008). Global change and the ecology of cities. Science, 319, 756-760.
DOI PMID |
[17] |
Han JY, Baik JJ, Lee H (2014). Urban impacts on precipitation. Asia-Pacific Journal of Atmospheric Sciences, 50, 17-30.
DOI URL |
[18] |
Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA (2001). In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiology, 126, 27-31.
PMID |
[19] | Huang XJ, Li JC, Ding F (2013). Extraction of impervious surface extraction information of impervious surface area based on improved NDBI. Geospatial Information, 11(5), 63-64. |
[黄小巾, 李家存, 丁凤 (2013). 基于改进NDBI指数法的不透水面信息提取. 地理空间信息, 11(5), 63-64.] | |
[20] |
Iakovoglou V, Thompson J, Burras L, Kipper R (2001). Factors related to tree growth across urban-rural gradients in the Midwest, USA. Urban Ecosystems, 5, 71-85.
DOI URL |
[21] |
Imhoff ML, Bounoua L, DeFries R, Lawrence WT, Stutzer D, Tucker CJ, Ricketts T (2004). The consequences of urban land transformation on net primary productivity in the United States. Remote Sensing of Environment, 89, 434-443.
DOI URL |
[22] |
Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032.
DOI |
[金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.]
DOI |
|
[23] |
Johnson DM, Wortemann R, McCulloh KA, Jordan-Meille L, Ward E, Warren JM, Palmroth S, Domec JC (2016). A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiology, 36, 983-993.
DOI PMID |
[24] |
Klein T, Shpringer I, Fikler B, Elbaz G, Cohen S, Yakir D (2013). Relationships between stomatal regulation, water- use, and water-use efficiency of two coexisting key Mediterranean tree species. Forest Ecology and Management, 302, 34-42.
DOI URL |
[25] |
Kuang WH, Liu Y, Dou YY, Chi WF, Chen GS, Gao CF, Yang TR, Liu JY, Zhang RH (2015). What are hot and what are not in an urban landscape: quantifying and explaining the land surface temperature pattern in Beijing, China. Landscape Ecology, 30, 357-373.
DOI URL |
[26] |
Liu H, Ye Q, Gleason SM, He P, Yin D (2021). Weak tradeoff between xylem hydraulic efficiency and safety: climatic seasonality matters. New Phytologist, 229, 1440-1452.
DOI PMID |
[27] |
Liu HY, Williams AP, Allen CD, Guo DL, Wu XC, Anenkhonov OA, Liang EY, Sandanov DV, Yin Y, Qi ZH, Badmaeva NK (2013). Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Global Change Biology, 19, 2500-2510.
DOI PMID |
[28] | Liu JJ (2009). Influences of Elevated CO2 Concentration and Drought Stress on Water Transport of Tree Species. PhD dissertation, Beijing Forestry University, Beijing. 10-181. |
[刘娟娟 (2009). CO2浓度升高与干旱胁迫对苗木水分运输的影响. 博士学位论文, 北京林业大学, 北京. 10-181.] | |
[29] |
Livesley SJ, McPherson GM, Calfapietra C (2016). The urban forest and ecosystem services: impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of Environmental Quality, 45, 119-124.
DOI PMID |
[30] | Luo DD, Wang CK, Jin Y (2019). Stomatal regulation of plants in response to drought stress. Chinese Journal of Applied Ecology, 30, 4333-4343. |
[罗丹丹, 王传宽, 金鹰 (2019). 植物应对干旱胁迫的气孔调节. 应用生态学报, 30, 4333-4343.]
DOI |
|
[31] |
Luo DD, Wang CK, Jin Y (2021). Response mechanisms of hydraulic systems of woody plants to drought stress. Chinese Journal of Plant Ecology, 45, 925-941.
DOI URL |
[罗丹丹, 王传宽, 金鹰 (2021). 木本植物水力系统对干旱胁迫的响应机制. 植物生态学报, 45, 925-941.]
DOI |
|
[32] |
McDowell NG (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155, 1051-1059.
DOI PMID |
[33] |
Meineke EK, Dunn RR, Sexton JO, Frank SD (2013). Urban warming drives insect pest abundance on street trees. PLoS ONE, 8, e59687. DOI: 10.1371/journal.pone.0059687.
DOI URL |
[34] |
Messenger S (1986). Alkaline runoff, soil pH and white oak manganese deficiency. Tree Physiology, 2, 317-325.
PMID |
[35] |
Morgenroth J, Buchan G, Scharenbroch BC. (2013). Below- ground effects of porous pavements—Soil moisture and chemical properties. Ecological Engineering, 51, 221-228.
DOI URL |
[36] |
Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes. Functional Ecology, 28, 810-818.
DOI URL |
[37] |
Oleson KW, Bonan GB, Feddema J, Jackson T (2011). An examination of urban heat island characteristics in a global climate model. International Journal of Climatology, 31, 1848-1865.
DOI URL |
[38] |
Pammenter NW, van der Willigen C (1998). A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology, 18, 589-593.
PMID |
[39] |
Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C, Tjoelker MG, Reich PB, Adams MA, Adams MA (2016). Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecology Letters, 19, 240-248.
DOI URL |
[40] |
Pockman WT, Sperry JS (2000). Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation. American Journal of Botany, 87, 1287-1299.
PMID |
[41] | Pratt RB, Jacobsen AL (2017). Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics. Plant, Cell & Environment, 40, 897-913. |
[42] |
Pritzkow C, Williamson V, Szota C, Trouvé R, Arndt SK (2019). Phenotypic plasticity and genetic adaptation of functional traits influences intra-specific variation in hydraulic efficiency and safety. Tree Physiology, 40, 215-229.
DOI URL |
[43] |
Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman F, Phillips RP (2015). The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia, 179, 641-654.
DOI PMID |
[44] |
Salleo S, Gullo MAL, Paoli D, Zippo M (1996). Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. New Phytologist, 132, 47-56.
DOI URL |
[45] |
Savi T, Bertuzzi S, Branca S, Tretiach M, Nardini A (2015). Drought-induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change? New Phytologist, 205, 1106-1116.
DOI PMID |
[46] |
Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001). Tree and forest functioning in response to global warming. New Phytologist, 149, 369-399.
DOI PMID |
[47] | Scoffoni C, Sack L (2015). Are leaves ‘freewheelin’? Testing for a wheeler-type effect in leaf xylem hydraulic decline. Plant, Cell & Environment, 38, 534-543. |
[48] | Shen WJ, Peng SL, Zhang SX (2000). Studies on the xylem draught-tolerant characteristics of three draught-tolerant tree species. Chinese Journal of Ecology, 19, 1-6. |
[申卫军, 彭少麟, 张硕新 (2000). 三个耐旱树种木质部栓塞化的脆弱性及其恢复能力. 生态学杂志, 19, 1-6.] | |
[49] | Sun Q, Guo R, Shen FY, Gao RF, Shen YB (2007). Discussion on the embolism repairing in xylem of woody plants. Journal of Beijing Forestry University, 29(5), 94-98. |
[孙青, 郭锐, 沈繁宜, 高荣孚, 沈应柏 (2007). 木本植物木质部栓塞修复机制的探讨. 北京林业大学学报, 29(5), 94-98.] | |
[50] |
Sun Y, Xie S, Zhao S (2019). Valuing urban green spaces in mitigating climate change: a city-wide estimate of aboveground carbon stored in urban green spaces of China’s capital. Global Change Biology, 25, 1717-1732.
DOI URL |
[51] |
Tardieu F (1998). Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany, 49, 419-432.
DOI URL |
[52] | Wang Y, Yan XD (2006). The response of the forest ecosystem in China to global climate change. Chinese Journal of Atmospheric Sciences, 30, 1009-1018. |
[王叶, 延晓冬 (2006). 全球气候变化对中国森林生态系统的影响. 大气科学, 30, 1009-1018.] | |
[53] | Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM (2013). Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell & Environment, 36, 1938-1949. |
[54] | Zhang SX, Shen WJ, Zhang YY (2000). Ecophysiological effect of xylem embolism in six tree species. Acta Ecologica Sinica, 20, 788-794. |
[张硕新, 申卫军, 张远迎 (2000). 六种木本植物木质部栓塞化生理生态效应的研究. 生态学报, 20, 788-794.] |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[3] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[4] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[5] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[6] | 李志民, 王传宽. 木本植物木质部的冻融栓塞应对研究进展[J]. 植物生态学报, 2019, 43(8): 635-647. |
[7] | 王景旭, 黄华国, 林起楠, 王冰, 黄侃. 红外热成像监测云南松切梢小蠹虫害: 针叶尺度 观测[J]. 植物生态学报, 2019, 43(11): 959-968. |
[8] | 安瑞, 孟凤, 尹鹏先, 杜光源. 刺槐木质部栓塞脆弱性检测的方法比较[J]. 植物生态学报, 2018, 42(11): 1113-1119. |
[9] | 范嘉智, 王丹, 胡亚林, 景盼盼, 王朋朋, 陈吉泉. 最优气孔行为理论和气孔导度模拟[J]. 植物生态学报, 2016, 40(6): 631-642. |
[10] | 李荣, 党维, 蔡靖, 张硕新, 姜在民. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J]. 植物生态学报, 2016, 40(3): 255-263. |
[11] | 李荣, 姜在民, 张硕新, 蔡靖. 木本植物木质部栓塞脆弱性研究新进展[J]. 植物生态学报, 2015, 39(8): 838-848. |
[12] | 周洪华, 李卫红. 胡杨木质部水分传导对盐胁迫的响应与适应[J]. 植物生态学报, 2015, 39(1): 81-91. |
[13] | 熊慧, 马承恩, 李乐, 曾辉, 郭大立. 不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应[J]. 植物生态学报, 2014, 38(8): 868-877. |
[14] | 鱼腾飞, 冯起, 司建华. 极端干旱区多枝柽柳叶片气孔导度的环境响应模拟[J]. 植物生态学报, 2012, 36(6): 483-490. |
[15] | 袁国富, 庄伟, 罗毅. 冬小麦叶片气孔导度模型水分响应函数的参数化[J]. 植物生态学报, 2012, 36(5): 463-470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19