植物生态学报 ›› 2019, Vol. 43 ›› Issue (11): 959-968.DOI: 10.17521/cjpe.2019.0180
收稿日期:
2019-07-15
接受日期:
2019-10-29
出版日期:
2019-11-20
发布日期:
2020-03-26
通讯作者:
黄华国
基金资助:
WANG Jing-Xu,HUANG Hua-Guo(),LIN Qi-Nan,WANG Bing,HUANG Kan
Received:
2019-07-15
Accepted:
2019-10-29
Online:
2019-11-20
Published:
2020-03-26
Contact:
HUANG Hua-Guo
Supported by:
摘要:
为寻求基于红外热成像技术监测云南松切梢小蠹(Tomicus yunnanensis)危害的可行性, 该研究以不同受害程度的云南松(Pinus yunnanesis)针叶为研究对象, 利用红外热成像仪观测受云南松切梢小蠹危害的云南松针叶温度的日变化规律, 并通过不同受害程度针叶的叶绿素含量、叶片含水量以及净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)等生理生化因子来分析解释针叶温度的变化。结果表明: (1)云南松针叶内叶绿素和水分含量随受害时间增加逐渐降低, 叶绿素含量下降速率比含水量下降速率快; (2)叶片的Pn、Gs及Tr随受害程度增加而降低, 针叶温度与大气温度的温差(ΔTl-a)则随受害程度增加而变大; (3)不同程度受害针叶温度与健康针叶的温差(ΔT)在14:00-15:00之间达到最大, 轻度、中度和重度受害针叶ΔT分别可达0.6、0.7、2.5 ℃; (4)不同程度受害针叶的Gs、叶片含水量与ΔT呈较强的负相关关系。针叶受害后叶片内部水分失衡引起叶温变化, 利用红外热辐射对于温度变化的敏感性, 可通过红外热成像技术精确探测针叶温度的变化, 从而检测到云南松遭受云南松切梢小蠹危害的程度。
王景旭, 黄华国, 林起楠, 王冰, 黄侃. 红外热成像监测云南松切梢小蠹虫害: 针叶尺度 观测. 植物生态学报, 2019, 43(11): 959-968. DOI: 10.17521/cjpe.2019.0180
WANG Jing-Xu, HUANG Hua-Guo, LIN Qi-Nan, WANG Bing, HUANG Kan. Shoot beetle damage to Pinus yunnanensis monitored by infrared thermal imaging at needle scale. Chinese Journal of Plant Ecology, 2019, 43(11): 959-968. DOI: 10.17521/cjpe.2019.0180
参数 Parameter | 平均值 Mean | 标准偏差 SD | 最大值 Max | 最小值 Min | 变化范围 Range | |||||
---|---|---|---|---|---|---|---|---|---|---|
HP | DP | HP | DP | HP | DP | HP | DP | HP | DP | |
冠幅 Crown diameter (m) | 2.5 | 2.3 | 0.27 | 0.22 | 5.5 | 5.3 | 0.5 | 0.5 | 5.0 | 4.8 |
树高 Stand average height (m) | 4.68 | 5.07 | 1.5 | 1.0 | 11 | 12 | 1 | 1 | 10 | 11 |
林冠郁闭度 Canopy closure (%) | 28 | 32 | 8.9 | 6.8 | 42 | 44 | 15 | 20 | 27 | 24 |
立木度 Stem density (hm-2) | 990 | 1 342 | 404 | 556 | 2 022 | 2 644 | 500 | 556 | 1 522 | 2 088 |
叶面积指数 Leaf area index (m2·m-2) | 0.78 | 0.83 | 0.37 | 0.29 | 1.86 | 1.61 | 0.43 | 0.37 | 1.43 | 1.24 |
表1 各样地林分结构参数统计(n = 34)
Table 1 Statistics for the forest structural parameters of plots (n = 34)
参数 Parameter | 平均值 Mean | 标准偏差 SD | 最大值 Max | 最小值 Min | 变化范围 Range | |||||
---|---|---|---|---|---|---|---|---|---|---|
HP | DP | HP | DP | HP | DP | HP | DP | HP | DP | |
冠幅 Crown diameter (m) | 2.5 | 2.3 | 0.27 | 0.22 | 5.5 | 5.3 | 0.5 | 0.5 | 5.0 | 4.8 |
树高 Stand average height (m) | 4.68 | 5.07 | 1.5 | 1.0 | 11 | 12 | 1 | 1 | 10 | 11 |
林冠郁闭度 Canopy closure (%) | 28 | 32 | 8.9 | 6.8 | 42 | 44 | 15 | 20 | 27 | 24 |
立木度 Stem density (hm-2) | 990 | 1 342 | 404 | 556 | 2 022 | 2 644 | 500 | 556 | 1 522 | 2 088 |
叶面积指数 Leaf area index (m2·m-2) | 0.78 | 0.83 | 0.37 | 0.29 | 1.86 | 1.61 | 0.43 | 0.37 | 1.43 | 1.24 |
图2 利用FLIR Tools提取云南松针叶温度。A, 重度受害针叶梢和健康梢的可见光图像。B, 重度受害针叶梢和健康梢的热红外图像。C, 轻度受害针叶梢和健康梢的可见光图像。D, 轻度受害针叶梢和健康梢的热红外图像。
Fig. 2 Utilizing FLIR Tools to extract the temperature of the needles of Pinus yunnanensis. A, Visible image to show heavily- infested and healthy shoots. B, Thermal infrared image to show heavily-infested and healthy shoots. C, Visible image to show lightly-infested and healthy shoots. D, Thermal infrared image to show lightly-infested and healthy shoots.
测量参数 Measured parameter | 缩写 Abbreviation | 测量方法 Measured method | 测量间隔时间 Measured interval times | 用途 Purpose |
---|---|---|---|---|
光谱反射率 Spectral reflectance | Ref | 光谱仪联合互补观测AvaSpec-EDU-VIS和AvaSpec-NIR1.7 | 7 d | 评估光谱对受害程度的响应 Assess the spectral response to the damaged degrees |
叶绿素含量 Chlorophyll content of leaf | CCL | CCM-300 | 7 d | 解释光谱变化并划分不同受害阶段 Interpret spectral changes and divide into the damaged stages |
叶片含水量 Water content of leaf | WCL | 烘干 Oven drying | 7 d | 分析不同受害阶段叶片含水量与叶片温度的关系 Analyze the relationship between leaf water content and leaf temperature at different damaged stages |
叶片温度 Leaf temperature | Tleaf | FLIR T420 | 1 h | 分析不同受害阶段叶片温度日变化 Analyze diurnal changes of leaf temperature at different damaged stages |
气孔导度 Stomata conductance | Gs | LI-6400 | 2 h | 解释不同受害阶段叶片温度的变化 Explain leaf temperature changes at different damaged stages |
净光合速率 Net photosynthetic rate | Pn | |||
蒸腾速率 Transpiration rate | Tr | |||
叶片与大气温差 Temperature difference between leaf and atmosphere | ΔTl-a |
表2 试验测量参数、仪器、测量间隔及用途
Table 2 Parameters, instruments, measurement intervals of the observation and their purposes
测量参数 Measured parameter | 缩写 Abbreviation | 测量方法 Measured method | 测量间隔时间 Measured interval times | 用途 Purpose |
---|---|---|---|---|
光谱反射率 Spectral reflectance | Ref | 光谱仪联合互补观测AvaSpec-EDU-VIS和AvaSpec-NIR1.7 | 7 d | 评估光谱对受害程度的响应 Assess the spectral response to the damaged degrees |
叶绿素含量 Chlorophyll content of leaf | CCL | CCM-300 | 7 d | 解释光谱变化并划分不同受害阶段 Interpret spectral changes and divide into the damaged stages |
叶片含水量 Water content of leaf | WCL | 烘干 Oven drying | 7 d | 分析不同受害阶段叶片含水量与叶片温度的关系 Analyze the relationship between leaf water content and leaf temperature at different damaged stages |
叶片温度 Leaf temperature | Tleaf | FLIR T420 | 1 h | 分析不同受害阶段叶片温度日变化 Analyze diurnal changes of leaf temperature at different damaged stages |
气孔导度 Stomata conductance | Gs | LI-6400 | 2 h | 解释不同受害阶段叶片温度的变化 Explain leaf temperature changes at different damaged stages |
净光合速率 Net photosynthetic rate | Pn | |||
蒸腾速率 Transpiration rate | Tr | |||
叶片与大气温差 Temperature difference between leaf and atmosphere | ΔTl-a |
图3 云南松受害针叶随受害时间增长叶绿素含量(CCL)及水分含量(WCL)变化(平均值±标准偏差)。
Fig. 3 Chlorophyll content (CCL) and water content (WCL) (mean ± SD) of damaged needles of Pinus yunnanensis changed with duration.
图5 云南松不同受害阶段针叶的可见光图像。上排为侧视图, 下排为对应的俯视图。
Fig. 5 Visible images to show damaged shoots at different stages of Pinus yunnanensis. The top images are side view; the bottom images are top view.
图6 云南松针叶的归一化植被指数(NDVI)和归一化水指数(NDWI)分别与叶片叶绿素含量(CCL)和叶片含水量(WCL)的相关关系。误差棒代表标准偏差。
Fig. 6 Correlation of normalized difference vegetation index (NDVI) with leaf chlorophyll content (CCL) and the correlation of normalized difference water index (NDWI) and leaf water content (WCL) of Pinus yunnanensis. Error bar indicates standard deviation.
图7 不同受害阶段云南松针叶的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)以及叶片与大气温差(ΔTl-a)的日变化规律。
Fig. 7 Daily changes of net photosynthetic rate (Pn), stomata conductance (Gs), transpiration rate (Tr) and temperature differences between leaf and atmosphere (ΔTl-a) of damaged needles of Pinus yunnanensis at different stages.
图8 不同受害阶段云南松针叶的温差(ΔT)日变化曲线。
Fig. 8 The diurnal changes of temperature differences between damaged shoots and healthy shoots (ΔT) of damaged needles of Pinus yunnanensis at different stages.
图9 不同受害阶段云南松针叶温差(ΔT)与气孔导度及叶片含水量的相关性分析。误差棒代表标准偏差。
Fig. 9 Correlation analysis between temperature difference (ΔT) and stomata conductance, and water content of damaged needles at different stages in Pinus yunnanensis. Error bar indicates standard deviation.
[1] | Abdullah H, Darvishzadeh R, Skidmore AK, Groen TA, Heurich M ( 2018). European spruce bark beetle ( Ips typographus L.) green attack affects foliar reflectance and biochemical properties. International Journal of Applied Earth Observation and Geoinformation, 64, 199-209. |
[2] | Berdugo C, Hillnhütter C, Sikaro R, Oerke EC ( 2012). A resistance bioassay for Rhizoctonia root and crown rot and damping-off caused by the anastomosis groups AG 2-2IIIB and AG 4 in sugar beet. Journal of Agricultural Science and Technology, ( A2), 294-302. |
[3] | Blonquist Jr JM, Norman JM, Bugbee B ( 2009). Automated measurement of canopy stomatal conductance based on infrared temperature. Agricultural and Forest Meteorology, 149, 1931-1945. |
[4] | Bouche PS, Larter M, Domec JC, Burlett R, Gasson P, Jansen S, Delzon S ( 2014). A broad survey of hydraulic and mechanical safety in the xylem of conifers. Journal of Experimental Botany, 65, 4419-4431. |
[5] | Chaerle L, van Caeneghem W, Messens E, Lambers H, van Montagu M, van der Straeten D ( 1999). Presymptomatic visualization of plant-virus interactions by thermography. Nature Biotechnology, 17, 813-816. |
[6] | Cheng Q, Huang CY, Wang DW, Xiao LJ ( 2012). Correlation between cotton canopy CWSI and photosynthesis characteristics based on infrared thermography. Cotton Science, 24, 341-347. |
[ 程麒, 黄春燕, 王登伟, 肖莉娟 ( 2012). 基于红外热图像的棉花冠层水分胁迫指数与光合特性的关系. 棉花学报, 24, 341-347.] | |
[7] | Choat B ( 2013). Predicting thresholds of drought-induced mortality in woody plant species. Tree Physiology, 33, 669-671. |
[8] | Coops NC, Johnson M, Wulder MA, White JC ( 2006). Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 103, 67-80. |
[9] | Fan L ( 2017). Multi-source Data Estimating Soil Moisture and Its Application on Forest Fire Risk Assessment. PhD dissertation, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing. |
[ 樊磊 ( 2017). 基于多源数据的土壤水分估算及森林火灾风险评估应用. 博士学位论文, 中国科学院遥感与数字地球研究所, 北京.] | |
[10] | Gitelson AA, Merzlyak MN ( 1996). Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148, 494-500. |
[11] | He C, Liu KZ, Shu LF, Hong XF, Zhang SY ( 2018). The diagnostic methods for resurgences of smoldering fire in the forests by infrared thermal imaging. Spectroscopy and Spectral Analysis, 38, 326-332. |
[ 何诚, 刘柯珍, 舒立福, 洪霞芳, 张思玉 ( 2018). 基于红外热成像的林地余火死灰复燃点诊断方法研究. 光谱学与光谱分析, 38, 326-332.] | |
[12] | Huang MF, Xing XF, Wang PJ, Wang CZ ( 2006). Comparison between three different methods of retrieving surface temperature from Landsat TM thermal infrared band. Arid Land Geography, 29, 132-137. |
[ 黄妙芬, 邢旭峰, 王培娟, 王昌佐 ( 2006). 利用LANDSAT/TM热红外通道反演地表温度的三种方法比较. 干旱区地理, 29, 132-137.] | |
[13] | Jones HG ( 1998). Stomatal control of photosynthesis and transpiration. Journal of Experimental Botany, 49, 387-398. |
[14] | Jones HG, Vaughan RA ( 2010). Remote Sensing of Vegetation: Principles, Techniques, and Applications. Oxford University Press, New York. |
[15] | Lausch A, Heurich M, Gordalla D, Dobner HJ, Gwillym-Margianto S, Salbach C ( 2013). Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. Forest Ecology and Management, 308, 76-89. |
[16] | Lin QN, Huang HG, Yu LF, Wang JX ( 2018). Detection of shoot beetle stress on Yunnan pine forest using a coupled LIBERTY2-INFORM simulation. Remote Sensing, 10, 1133. DOI: 10.3390/rs10071133. |
[17] | Liu Y, Ding JQ, Su BQD, Liao DQ, Zhao JR, Li JS ( 2009). Identification of maize drought-tolerance at seeding stage based on leaf temperature using infrared thermography. Scientia Agricultura Sinica, 42, 2192-2201. |
[ 刘亚, 丁俊强, 苏巴钱德, 廖登群, 赵久然, 李建生 ( 2009). 基于远红外热成像的叶温变化与玉米苗期耐旱性的研究. 中国农业科学, 42, 192-201.] | |
[18] | Markus I, Clement A ( 2014). Early detection of bark beetle infestation in norway spruce ( Picea abies L.) using WorldView-2 Data. Photogrammetrie Fernerkundung Geoinformation, 5, 351-367. |
[19] | Marx A ( 2010). Detection and classification of bark beetle infestation in pure Norway spruce stands with multi-temporal RapidEye imagery and data mining techniques. Photogrammetrie-Fernerkundung Geoinformation, 2010, 243-252. |
[20] | Näsi R, Honkavaara E, Lyytikäinen-Saarenmaa P, Blomqvist M, Litkey P, Hakala T, Viljanen N, Kantola T, Tanhuanpää T, Holopainen M ( 2015). Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sensing, 7, 15467-15493. |
[21] | Netherer S, Matthews B, Katzensteiner K, Blackwell E, Henschke P, Hietz P, Pennerstorfer J, Rosner S, Kikuta S, Schume H, Schopf A ( 2015). Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytologist, 205, 1128-1141. |
[22] | Oerke EC, Frӧhling P, Steiner U ( 2011). Thermographic assessment of scab disease on apple leaves. Precision Agriculture, 12, 699-715. |
[23] | Sandholt I, Rasmussen K, Andersen J ( 2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79, 213-224. |
[24] | Scherrer D, Bader MKF, Körner C ( 2011). Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agricultural and Forest Meteorology, 151, 1632-1640. |
[25] | Seelig HD, Hoehn A, Stodieck LS, Klaus DM, Adams WW, Emery WJ ( 2008). The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared. International Journal of Remote Sensing, 29, 3701-3713. |
[26] | Skakun RS, Wulder MA, Franklin SE ( 2003). Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage. Remote Sensing of Environment, 86, 433-443. |
[27] | Sprintsin M, Chen JM, Czurylowicz P ( 2011). Combining land surface temperature and shortwave infrared reflectance for early detection of mountain pine beetle infestations in western Canada. Journal of Applied Remote Sensing, 5(1), 053566. DOI: 10.1117/1.3662866. |
[28] | Stoll M, Schultz HR, Baecker G, Berkelmann-Loehnertz B ( 2008). Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precision Agriculture, 9, 407-417. |
[29] | Tanner CB ( 1963). Plant temperatures. Agronomy Journal, 55, 210-211. |
[30] | Wulder MA, White JC, Bentz B, Alvarez MF, Coops NC ( 2006). Estimating the probability of mountain pine beetle red-attack damage. Remote Sensing of Environment, 101, 150-166. |
[31] | Yu LF, Huang JX, Zong SX, Huang HG, Luo YQ ( 2018). Detecting shoot beetle damage on Yunnan pine using landsat time-series data. Forests, 9, 39. DOI: 10.3390/f9010039. |
[32] | Zarco-Tejada PJ, González-Dugo V, Berni JAJ ( 2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 117, 322-337. |
[33] | Zhang WZ, Han YD, Du HJ, Huang RD, Chen WF ( 2007). Relationship between canopy temperature and soil water content, yield components at flowering stage in rice. Chinese Journal Rice Science, 21, 99-102. |
[ 张文忠, 韩亚东, 杜宏娟, 黄瑞东, 陈温福 ( 2007). 水稻开花期冠层温度与土壤水分及产量结构的关系. 中国水稻科学, 21, 99-102.] | |
[34] | Zhao TX, Guo B, An XM, Zhang WJ ( 2012). The study of stomatal conductance estimation of Populus deltoids Bartr. × Populus ussuriensis Kom. by infrared thermography. Chinese Agricultural Science Bulletin, 28, 65-70. |
[ 赵田欣, 郭斌, 安新民, 张文杰 ( 2012). 美洲黑杨与大青杨杂种叶片气孔导度的红外热像测量方法研究. 中国农学通报, 28, 65-70.] | |
[35] | Zhu SP ( 2007). Research on detection Methods of Plant Disease Using Computer Vision. Master degree dissertation, Zhejiang University, Hangzhou. |
[ 朱圣盼 ( 2007). 基于计算机视觉技术的植物病害检测方法的研究. 硕士学位论文, 浙江大学, 杭州.] |
[1] | 王嘉仪, 王襄平, 徐程扬, 夏新莉, 谢宗强, 冯飞, 樊大勇. 北京市行道树绒毛梣的水力结构对城市不透水表面比例的响应[J]. 植物生态学报, 2023, 47(7): 998-1009. |
[2] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[3] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[4] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[5] | 范嘉智, 王丹, 胡亚林, 景盼盼, 王朋朋, 陈吉泉. 最优气孔行为理论和气孔导度模拟[J]. 植物生态学报, 2016, 40(6): 631-642. |
[6] | 周洪华, 李卫红. 胡杨木质部水分传导对盐胁迫的响应与适应[J]. 植物生态学报, 2015, 39(1): 81-91. |
[7] | 熊慧, 马承恩, 李乐, 曾辉, 郭大立. 不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应[J]. 植物生态学报, 2014, 38(8): 868-877. |
[8] | 鱼腾飞, 冯起, 司建华. 极端干旱区多枝柽柳叶片气孔导度的环境响应模拟[J]. 植物生态学报, 2012, 36(6): 483-490. |
[9] | 袁国富, 庄伟, 罗毅. 冬小麦叶片气孔导度模型水分响应函数的参数化[J]. 植物生态学报, 2012, 36(5): 463-470. |
[10] | 李秀媛, 刘西平, Hang DUONG, Roger KJELGREN. 美国海滨桤木和薄叶桤木水分生理特性的比较[J]. 植物生态学报, 2011, 35(1): 73-81. |
[11] | 叶子飘, 于强. 植物气孔导度的机理模型[J]. 植物生态学报, 2009, 33(4): 772-782. |
[12] | 赵平, 饶兴权, 马玲, 蔡锡安, 曾小平. 基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度[J]. 植物生态学报, 2006, 30(4): 655-665. |
[13] | 田永超, 朱艳, 姚霞, 周昌俊, 曹卫星. 水稻叶片气孔导度与冠层反射光谱的定量关系分析[J]. 植物生态学报, 2006, 30(2): 261-267. |
[14] | 刘颖慧, 高琼, 贾海坤. 半干旱地区3种植物叶片水平的抗旱耐旱特性分析——两个气孔导度模型的应用和比较[J]. 植物生态学报, 2006, 30(1): 64-70. |
[15] | 王建林, 于贵瑞, 王伯伦, 齐华, 徐正进. 北方粳稻光合速率、气孔导度对光强和CO2浓度的响应[J]. 植物生态学报, 2005, 29(1): 16-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19