植物生态学报 ›› 2012, Vol. 36 ›› Issue (6): 483-490.DOI: 10.3724/SP.J.1258.2012.00483
收稿日期:
2011-11-09
接受日期:
2012-03-27
出版日期:
2012-11-09
发布日期:
2012-06-04
通讯作者:
冯起
作者简介:
*(E-mail:qifeng@lzb.ac.cn)YU Teng-Fei1, FENG Qi1,2,*(), SI Jian-Hua2
Received:
2011-11-09
Accepted:
2012-03-27
Online:
2012-11-09
Published:
2012-06-04
Contact:
FENG Qi
摘要:
气孔通过调节植物体水分散失和CO2吸收在植物适应环境变化和环境胁迫中发挥重要作用。该文在对极端干旱区多枝柽柳(Tamarix ramosissma)叶片气体交换参数观测的基础上, 引入诊断函数f(H)对BWB模型和BBL模型提出的气孔导度(gs)模型中的空气湿度(hs或Ds)进行了评价, 并将评价结果引入叶子飘和于强推导出的gs机理模型。结果表明: (1) BWB和BBL模型对hs (或Ds)的模拟效果存在很大差异: BWB模型拟合效果较好(R2 = 0.5354), BBL模型的结果显著但效果较差(R2 = 0.1103)。试验结果显示: 随hs(或Ds)的增大, gs呈先增大后减小的趋势, 可用Gauss模型进行拟合, R2分别为0.593和0.258, 说明gs与hs的关系要比Ds更密切; (2)叶子飘和于强给出的简化模型(Simple模型)和该文给出的指数模型(Gauss-h模型)均具有较好的模拟效果(R2分别为0.8707和0.8286), η值分别为0.1245和0.0171, 其值均介于0-1之间; (3)模型验证中Gauss-h模型较Simple模型明显低估了观测值, 当观测条件无限趋近于Simple模型的假设时, Simple模型的拟合效果可得到显著提高(R2 = 0.9606)。
鱼腾飞, 冯起, 司建华. 极端干旱区多枝柽柳叶片气孔导度的环境响应模拟. 植物生态学报, 2012, 36(6): 483-490. DOI: 10.3724/SP.J.1258.2012.00483
YU Teng-Fei, FENG Qi, SI Jian-Hua. Simulating responses of leaf stomatal conductance to environmental factors for Tamarix ramosissma in an extreme arid region of China. Chinese Journal of Plant Ecology, 2012, 36(6): 483-490. DOI: 10.3724/SP.J.1258.2012.00483
模型 Model | 气孔导度响应函数 f (H) | 参数 Parameter | 检验值 Test value | |||||
---|---|---|---|---|---|---|---|---|
α | β | n | r2 | F | Sig. | |||
BWB | f(H)=αhs | 0.26 | -- | 81 | 0.535 4 | 517.16 | 0.000 | |
BBL | f(H)= α/(1+Ds/β) | 10.12 | 1.2 | 81 | 0.110 3 | 248.87 | 0.000 |
表1 气孔导度对大气湿度(相对湿度hs和水汽压差Ds)响应的模型参数及检验结果
Table 1 Model parameters and test results of the response of stomatal conductance to relative humidity (hs) and vapor pressure deficit (Ds)
模型 Model | 气孔导度响应函数 f (H) | 参数 Parameter | 检验值 Test value | |||||
---|---|---|---|---|---|---|---|---|
α | β | n | r2 | F | Sig. | |||
BWB | f(H)=αhs | 0.26 | -- | 81 | 0.535 4 | 517.16 | 0.000 | |
BBL | f(H)= α/(1+Ds/β) | 10.12 | 1.2 | 81 | 0.110 3 | 248.87 | 0.000 |
图1 气孔导度响应函数f(H)与相对湿度(hs) (A)和水汽压差(Ds) (B)的拟合结果。
Fig. 1 Modelling results of the response function of stomatal conductance (f(H)) to relative humidity (hs) (A) and vapor pressure deficit (Ds) (B).
图2 多枝柽柳气孔导度(gs)与相对湿度(hs) (A)及水汽压差(Ds) (B)的关系。
Fig. 2 Relationships between stomatic conductance (gs) and relative humidity (hs) (A) and vapor pressure deficit (Ds) (B) for Tamarix ramosissma.
图3 BWB模型及其与机理模型修正形式的比较。 Ci, 胞间CO2浓度; Cs, 叶面CO2浓度; f (H), 气孔导度响应函数; gs, 气孔导度; hs, 相对湿度; Pn, 净光合速率。
Fig. 3 Comparison of Ball-Berry model and the amendments form of mechanism model. Ci, intercellular CO2 concentration; Cs, foliar CO2 concentration; f (H), response function of stomatal conductance; gs, stomatal conductance; hs, relative humidity; Pn, net photosynthetic rate。
[1] | Anderson JE (1977). Transpiration and photosynthesis in saltcedar. Hydrology and Water Resources in Arizona and the Southwest, 7, 125-131. |
[2] | Aphalo PJ, Jarvis PG (1993). An analysis of Ball’s empirical model of stomatal conductance. Annals of Botany, 72, 321-327. |
[3] | Ball JT, Woodrow LE, Berry JA (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins I ed. Progress in Photosynthesis Research. Martinus Nijhoff Publishers, Amsterdam. 221-224. |
[4] | Chang ZQ ( 常宗强), Feng Q ( 冯起), Zhang XF ( 张秀凤), Su YH ( 苏永红), Si JH ( 司建华), Xi HY ( 席海洋), Cao SK ( 曹生奎) (2011). Responses of water use efficiency of Tamarix ramosissima Ledeb leaf to elevated CO2 concentration. Arid Land Geography (干旱区地理), 34, 499-504. (in Chinese with English abstract) |
[5] |
Cowan IR (1965). Transport of water in the soil-plant- atmosphere system. Journal of Applied Ecology, 2, 221-239.
DOI URL |
[6] | Deng X ( 邓雄), Li XM ( 李小明), Zhang XM ( 张希明), Ye WH ( 叶万辉), Foezki A, Runge M (2003). Studies on gas exchange of Tamarix ramosissima Lbd. Acta Ecologica Sinica (生态学报), 23, 180-187. (in Chinese with English abstract) |
[7] | Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10, 603-628. |
[8] |
Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 901-908.
DOI URL PMID |
[9] | Jarvis PG (1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society B: Biological Sciences, 273, 593-610. |
[10] | Leuning R (1995). A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell & Environment, 18, 339-355. |
[11] | Liu B ( 刘冰), Zhao WZ ( 赵文智) (2009). Ecological adaptability of photosynthesis and water metabolism for Tamarix Ramosissima and Nitraria Sphaerocarpa in desert-oasis ecotone. Journal of Desert Research (中国沙漠), 29, 101-107. (in Chinese with English abstract) |
[12] | Liu MT ( 刘铭庭) (1995). A Comprehensive Study on Plants of Tamarix Genus and Application on a Large Scale (柽柳属植物综合研究及大面积推广应用). Lanzhou University Press, Lanzhou. (in Chinese) |
[13] | Loustau D, Berbigier P, Kramer K (1997). Sensitivity of the water balance of southwestern France maritime pine forests to climate. In: Mohren GMJ, Kramer K, Sabaté S eds. Impacts of Global Change on Tree Physiology and Forest Ecosystems. Kluwer Academic Publishers, Dordrecht. 193-205. |
[14] |
Sala A, Smith SD, Devitt DA (1995). Water use by Tamarix ramosissima and associated phreatophytes in a Mojave Desert floodplain. Ecological Applications, 6, 888-898.
DOI URL |
[15] | Si JH ( 司建华), Chang ZQ ( 常宗强), Su YH ( 苏永红), Xi HY ( 席海洋), Feng Q ( 冯起) (2008). Stomatal conductance characteristics of Populus euphratica leaves and response to environmental factors in the extreme arid region. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 28, 125-130. (in Chinese with English abstract) |
[16] | Tuzet A, Perrier A, Leuning R (2003). A coupled model of stomatal conductance, photosynthesis and transpiration. Plant, Cell & Environment, 26, 1097-1116. |
[17] |
van Wijk MT, Dekker SC, Bouten W, Bosveld FC, Kohsiek W, Kramer K, Mohren GMJ (2000). Mod- eling daily gas exchange of a Douglas-fir forest: comparison of three stomatal conductance models with and without a soil water stress function. Tree Physiology, 20, 115-122.
URL PMID |
[18] |
Wang SS, Yang Y, Trishchenko AP (2009). Assessment of canopy stomatal conductance models using flux measurements. Ecological Modeling, 220, 2115-2118.
DOI URL |
[19] | Wang YH ( 王玉辉), Zhou GS ( 周广胜) (2000). Analysis and quantitative simulation of stomatal conductance of a Neurolepidium chinense. Acta Phytoecologica Sinica (植物生态学报), 24, 739-743. (in Chinese with English abstract) |
[20] |
Ye ZP ( 叶子飘), Yu Q ( 于强) (2009). Mechanism model of stomatal conductance. Chinese Journal of Plant Ecology (植物生态学报), 33, 772-782. (in Chinese with English abstract)
DOI URL |
[21] |
Yu GR, Kobayashi T, Zhuang J, Wang QF, Qu LQ (2003). A coupled model of photosynthesis-transpiration based on the stomatal behavior for maize (Zea mays L.) grown in the field. Plant and Soil, 249, 401-415.
DOI URL |
[22] |
Zeng FJ ( 曾凡江), Foetzki A, Li XY ( 李向义), Zhang XM ( 张希明), Li XM ( 李小明), Runge M (2002). A preliminary study on the effect of irrigation on water physiology of Tamarix ramosissima in Cele oasis. Chinese Journal of Applied Ecology (应用生态学报), 13, 849-853. (in Chinese with English abstract)
URL PMID |
[23] | Zhang YL ( 张镱锂) (1997). The geological study on the plant flora in Ejina County of Inner Mongolina. Arid Zone Research (干旱区研究), 14(3), 23-32. (in Chinese with English abstract) |
[24] | Zhao LJ ( 赵良菊), Xiao HL ( 肖洪浪), Cheng GD ( 程国栋), Song YX ( 宋耀选), Zhao L ( 赵亮), Li CZ ( 李彩芝), Yang Q ( 杨秋) (2008). A preliminary study of water sources of riparian plants in the lower reaches of the Heihe basin. Acta Geoscientica Sinica (地球学报), 29, 709-718. (in Chinese with English abstract) |
[25] | Zhuang L ( 庄丽), Chen YN ( 陈亚宁) (2006). Physiological response of Tamarix ramosissima under water stress along the lower reaches of Tarim River. Chinese Science Bulletin (科学通报), 51, 1123-1129. (in Chinese) |
[1] | 王复标, 叶子飘. 植物电子传递速率光响应模型的研究进展[J]. 植物生态学报, 2024, 48(3): 287-305. |
[2] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[3] | 王嘉仪, 王襄平, 徐程扬, 夏新莉, 谢宗强, 冯飞, 樊大勇. 北京市行道树绒毛梣的水力结构对城市不透水表面比例的响应[J]. 植物生态学报, 2023, 47(7): 998-1009. |
[4] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[5] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[6] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[7] | 王景旭, 黄华国, 林起楠, 王冰, 黄侃. 红外热成像监测云南松切梢小蠹虫害: 针叶尺度 观测[J]. 植物生态学报, 2019, 43(11): 959-968. |
[8] | 叶子飘, 段世华, 安婷, 康华靖. 最大电子传递速率的确定及其对电子流分配的影响[J]. 植物生态学报, 2018, 42(4): 498-507. |
[9] | 范嘉智, 王丹, 胡亚林, 景盼盼, 王朋朋, 陈吉泉. 最优气孔行为理论和气孔导度模拟[J]. 植物生态学报, 2016, 40(6): 631-642. |
[10] | 叶子飘, 胡文海, 闫小红. 光系统II实际光化学量子效率对光的响应模型的比较[J]. 植物生态学报, 2016, 40(11): 1208-1217. |
[11] | 周洪华, 李卫红. 胡杨木质部水分传导对盐胁迫的响应与适应[J]. 植物生态学报, 2015, 39(1): 81-91. |
[12] | 熊慧, 马承恩, 李乐, 曾辉, 郭大立. 不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应[J]. 植物生态学报, 2014, 38(8): 868-877. |
[13] | 叶子飘,胡文海,肖宜安,樊大勇,尹建华,段世华,闫小红,贺俐,张斯斯. 光合电子流对光响应的机理模型及其应用[J]. 植物生态学报, 2014, 38(11): 1241-1249. |
[14] | 袁国富, 庄伟, 罗毅. 冬小麦叶片气孔导度模型水分响应函数的参数化[J]. 植物生态学报, 2012, 36(5): 463-470. |
[15] | 马晓东, 朱成刚, 李卫红. 多枝柽柳幼苗根系形态及生物量对不同灌溉处理的响应[J]. 植物生态学报, 2012, 36(10): 1024-1032. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19