植物生态学报 ›› 2016, Vol. 40 ›› Issue (11): 1208-1217.DOI: 10.17521/cjpe.2015.0470
• 研究论文 • 上一篇
收稿日期:
2015-12-22
接受日期:
2016-07-19
出版日期:
2016-11-10
发布日期:
2016-11-25
通讯作者:
叶子飘
基金资助:
Zi-Piao YE1,*(), Wen-Hai HU2, Xiao-Hong YAN2,3
Received:
2015-12-22
Accepted:
2016-07-19
Online:
2016-11-10
Published:
2016-11-25
Contact:
Zi-Piao YE
摘要:
为了比较光系统II实际光化学量子效率(ΦPSII)对光的响应机理模型(简称机理模型)、负指数模型和指数模型的优缺点, 用LI-6400-40B光合作用测定仪控制CO2浓度和温度, 测量了剑叶金鸡菊(Coreopsis lanceolata)、黄荆(Vitex negundo)和大狼杷草(Bidens frondosa)的电子传递速率(ETR)对光的响应曲线(ETR-I)和ΦPSII对光的响应曲线(ΦPSII-I), 然后用这3个模型分别拟合了这些数据。拟合结果表明: 3个模型都可以较好地拟合这3种植物的ETR-I的响应数据和ΦPSII-I的响应数据, 但由指数模型拟合ETR-I和ΦPSII-I的响应数据得到相应的饱和光强(PARsat)和光系统II最大光能利用效率(Fv/Fm)之间存在显著差异, 且估算的饱和光强远低于实测值。由机理模型可知, ΦPSII不仅与光强的函数有关, 还与植物的内禀特性有关, 即与天线色素分子的本征光能吸收截面、激子的传递效率、能级的简并度、光化学反应常数、热耗散常数和处于最低激发态的平均寿命等参数有关。此外, 由机理模型还可知, ΦPSII随光强的增加而下降的原因是捕光色素分子的有效光能吸收截面随光强增加而降低。
叶子飘, 胡文海, 闫小红. 光系统II实际光化学量子效率对光的响应模型的比较. 植物生态学报, 2016, 40(11): 1208-1217. DOI: 10.17521/cjpe.2015.0470
Zi-Piao YE, Wen-Hai HU, Xiao-Hong YAN. Comparison on light-response models of actual photochemical efficiency in photosystem II. Chinese Journal of Plant Ecology, 2016, 40(11): 1208-1217. DOI: 10.17521/cjpe.2015.0470
图1 剑叶金鸡菊(A)、黄荆(B)和大狼杷草(C)的电子传递速率对光的响应曲线(ETR-I)(平均值±标准误差)。公式(2)为ETR = α (1-β I) / (1 + γI) I, 其中α为ETR-I的初始斜率, β为光抑制项, γ为光饱和项, I为光强; 公式(9)为ETR =α'β'IΦPSIImax e-kwI, 其中α'为叶片光能吸收系数, β'为光能在2个光系统的分配比例, ΦPSIImax为光强为0时的最大光化学量子效率, kw是一个常数; 公式(11)为ETR = α'β'(Fv/Fm) PARsat [1-exp (-I/PARsat)], 其中Fv/Fm为光系统II的最大光量子效率, PARsat为饱和光强。
Fig. 1 Light-response curves of electron transport rate (ETR- I) for Coreopsis lanceolata (A), Vitex negundo (B) and Bidens frondosa (C) (mean ± SE). Equation (2) is ETR =α (1-β I) / (1 + γI) I. Here α is the initial slope of ETR-I, β is the photoinhibition term, γ is the saturation term, I is light intensity; Equation (9) is ETR =α'β'IΦPSIImaxe-kwI. Here α' is the light absorption coefficient of leaf, β' is the light energy distribution coefficient between photosystem II and photosystem I, ΦPSIImax is the maximum photochemical quantum efficiency while I = 0, kw is a constant; Equation (11) is ETR = α'β'(Fv/Fm) PARsat [1-exp(-I/PARsat)]. Here Fv/Fm is the maximum quantum of photosystem II, PARsat is the saturation irradiance.
光合参数 Photosynthetic parameter | 剑叶金鸡菊 C. lanceolata | 黄荆 V. negundo | 大狼杷草 B. frondosa | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公式(2) Equation (2) | 公式(9) Equation (9) | 公式(11) Equation (11) | 测量值 Measured value | 公式(2) Equation (2) | 公式(9) Equation (9) | 公式(11) Equation (11) | 测量值 Measured value | 公式(2) Equation (2) | 公式(9) Equation (9) | 公式(11) Equation (11) | 测量值 Measured value | ||||||||
ETR-I的初始斜率 Initial slope of ETR-I (μmol·μmol -1) | 0.347 | ΦPSIImax (0.859) | Fv/Fm (0.954) | - | 0.352 | ΦPSIImax (0.834) | Fv/Fm (0.928) | - | 0.315 | ΦPSIImax (0.675) | Fv/Fm (0.820) | - | |||||||
最大电子传递速率 Maximu electron transport rate (μmol·m-2·s-1) | 232.3 | 231.3 | 156.5 | 230.4 | 230.2 | 229.8 | 155.99 | ≈228.8 | 136.7 | 137.28 | 86.67 | ≈135.8 | |||||||
饱和光强 Saturation irradiance (μmol·m-2·s-1) | 1 641.7 | 1 742.2 | 617.83 | ≈1 600 | 1 740.9 | 1 782.5 | 633.1 | ≈1 750 | 1 394.5 | 1 326.3 | 395.2 | ≈1 400 | |||||||
叶绿素含量 Chlorophyll content (mg·m-2) | 253.68 | 268.18 | 286.33 | ||||||||||||||||
本征截面 Eign-absorption cross section (10-21 m2) | 5.41 | - | - | - | 5.19 | - | - | - | 4.35 | - | - | - | |||||||
决定系数 Determined coefficient | 1.000 | 0.998 | 0.995 | - | 0.999 | 0.999 | 0.997 | - | 0.998 | 0.997 | 0.995 | - | |||||||
AIC信息准则 Akaike’s information criterion | 7.40 | 7.34 | 9.22 | - | 8.34 | 7.48 | 8.78 | - | 7.74 | 7.27 | 8.46 | - |
表1 三种模型对三种植物光合电子流对光曲线的拟合参数
Table 1 The measured data and fitted values for Coreopsis lanceolata, Vitex negundo and Bidens frondosa using three models
光合参数 Photosynthetic parameter | 剑叶金鸡菊 C. lanceolata | 黄荆 V. negundo | 大狼杷草 B. frondosa | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公式(2) Equation (2) | 公式(9) Equation (9) | 公式(11) Equation (11) | 测量值 Measured value | 公式(2) Equation (2) | 公式(9) Equation (9) | 公式(11) Equation (11) | 测量值 Measured value | 公式(2) Equation (2) | 公式(9) Equation (9) | 公式(11) Equation (11) | 测量值 Measured value | ||||||||
ETR-I的初始斜率 Initial slope of ETR-I (μmol·μmol -1) | 0.347 | ΦPSIImax (0.859) | Fv/Fm (0.954) | - | 0.352 | ΦPSIImax (0.834) | Fv/Fm (0.928) | - | 0.315 | ΦPSIImax (0.675) | Fv/Fm (0.820) | - | |||||||
最大电子传递速率 Maximu electron transport rate (μmol·m-2·s-1) | 232.3 | 231.3 | 156.5 | 230.4 | 230.2 | 229.8 | 155.99 | ≈228.8 | 136.7 | 137.28 | 86.67 | ≈135.8 | |||||||
饱和光强 Saturation irradiance (μmol·m-2·s-1) | 1 641.7 | 1 742.2 | 617.83 | ≈1 600 | 1 740.9 | 1 782.5 | 633.1 | ≈1 750 | 1 394.5 | 1 326.3 | 395.2 | ≈1 400 | |||||||
叶绿素含量 Chlorophyll content (mg·m-2) | 253.68 | 268.18 | 286.33 | ||||||||||||||||
本征截面 Eign-absorption cross section (10-21 m2) | 5.41 | - | - | - | 5.19 | - | - | - | 4.35 | - | - | - | |||||||
决定系数 Determined coefficient | 1.000 | 0.998 | 0.995 | - | 0.999 | 0.999 | 0.997 | - | 0.998 | 0.997 | 0.995 | - | |||||||
AIC信息准则 Akaike’s information criterion | 7.40 | 7.34 | 9.22 | - | 8.34 | 7.48 | 8.78 | - | 7.74 | 7.27 | 8.46 | - |
图2 剑叶金鸡菊(A)、黄荆(B)和大狼杷草(C)的实际光量子效率对光的响应曲线(ΦPSII-I)(平均值±标准误差)。公式(5)为ΦPSII = ω (1-βI) / (1 + γI), 其中ω为ΦPSII-I的初始斜率; 公式(8)为ΦPSII = ΦPSIImax e-kwI, 公式(10)为ΦPSII = (Fv/Fm) PARsat / I (1-exp(-I/PARsat))。β、γ、Fv/Fm、ΦPSIImax、kw和PARsat的定义同图1。
Fig. 2 Light-response curves of ΦPSII for Coreopsis lanceolata (A), Vitex negundo (B) and Bideas frondosa (C)(mean ± SE). Equation (5) is ΦPSII = ω (1-βI) / (1 + γI). Here ω is the initial slope of ΦPSII-I; Equation (8) is ΦPSII = ΦPSIImax e-kwI; Equation (10) is ΦPSII = (Fv/Fm) PARsat / I (1-exp(-I/PARsat)). The definition of β, γ, Fv/Fm, ΦPSIImax, kw and PARsat see Fig. 1.
光合参数 Photosynthetic parameter | 剑叶金鸡菊 C. lanceolata | 黄荆 V. negundo | 大狼杷草 B. frondosa | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公式(5) Equation (5) | 公式(8) Equation (8) | 公式(10) Equation (10) | 测量值 Measured value | 公式(5) Equation (5) | 公式(8) Equation (8) | 公式(10) Equation (10) | 测量值 Measured value | 公式(5) Equation (5) | 公式(8) Equation (8) | 公式(10) Equation (10) | 测量值 Measured value | |||
ΦPSII-I的初始斜率 Initial slope of ΦPSII-I (μmol·μmol -1) | 0.763 | ΦPSIImax (0.771) | Fv/Fm (0.779) | - | 0.752 | ΦPSIImax (0.759) | Fv/Fm (0.767) | - | 0.665 | ΦPSIImax (0.678) | Fv/Fm (0.674) | - | ||
饱和光强 Saturation irradiance (μmol·m-2·s-1) | 1 642.9 | 1 744.9 | 824.95 | ≈1 600 | 1 712.7 | 1 763.3 | 830.33 | ≈1 750 | 1 406.7 | 1 331.2 | 448.50 | ≈1 400 | ||
决定系数 Determined coefficient | 0.995 | 0.992 | 0.984 | - | 0.996 | 0.994 | 0.986 | - | 0.996 | 0.995 | 0.991 | - | ||
AIC信息准则 Akaike’s information criterion | -2.49 | -2.75 | -2.03 | - | -2.79 | -3.04 | -2.20 | - | -2.51 | -3.06 | -2.46 | - |
表2 三种模型对三种植物叶片的ΦPSII-I曲线的拟合参数
Table 2 The measured data and fitted values for Coreopsis lanceolata, Vitex negundo and Bidens frondosa using three models
光合参数 Photosynthetic parameter | 剑叶金鸡菊 C. lanceolata | 黄荆 V. negundo | 大狼杷草 B. frondosa | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公式(5) Equation (5) | 公式(8) Equation (8) | 公式(10) Equation (10) | 测量值 Measured value | 公式(5) Equation (5) | 公式(8) Equation (8) | 公式(10) Equation (10) | 测量值 Measured value | 公式(5) Equation (5) | 公式(8) Equation (8) | 公式(10) Equation (10) | 测量值 Measured value | |||
ΦPSII-I的初始斜率 Initial slope of ΦPSII-I (μmol·μmol -1) | 0.763 | ΦPSIImax (0.771) | Fv/Fm (0.779) | - | 0.752 | ΦPSIImax (0.759) | Fv/Fm (0.767) | - | 0.665 | ΦPSIImax (0.678) | Fv/Fm (0.674) | - | ||
饱和光强 Saturation irradiance (μmol·m-2·s-1) | 1 642.9 | 1 744.9 | 824.95 | ≈1 600 | 1 712.7 | 1 763.3 | 830.33 | ≈1 750 | 1 406.7 | 1 331.2 | 448.50 | ≈1 400 | ||
决定系数 Determined coefficient | 0.995 | 0.992 | 0.984 | - | 0.996 | 0.994 | 0.986 | - | 0.996 | 0.995 | 0.991 | - | ||
AIC信息准则 Akaike’s information criterion | -2.49 | -2.75 | -2.03 | - | -2.79 | -3.04 | -2.20 | - | -2.51 | -3.06 | -2.46 | - |
剑叶金鸡菊 C. lanceolata | 黄荆 V. negundo | 大狼杷草 B. frondosa | ||||||
---|---|---|---|---|---|---|---|---|
ΦPSIImax | Fv/Fm | ΦPSIImax | Fv/Fm | ΦPSIImax | Fv/Fm | |||
公式(8) Equation (8) | 0.859 ± 0.011a | - | 0.834 ± 0.005a | - | 0.678 ± 0.059a | - | ||
公式(9) Equation (9) | 0.771 ± 0.004b | - | 0.759 ± 0.006b | - | 0.675 ± 0.051a | - | ||
公式(10) Equation (10) | - | 0.954 ± 0.019a | - | 0.928 ± 0.005a | - | 0.820 ± 0.079a | ||
公式(11) Equation (11) | - | 0.779 ± 0.004b | - | 0.767 ± 0.006b | - | 0.674 ± 0.029a | ||
α/ω | 0.455 ± 0.007* | 0.468 ± 0.008* | 0.474 ± 0.023ns |
表3 三种模型对三种植物叶片的ΦPSII-I曲线的拟合参数(平均值±标准误差)
Table 3 The fitted values of ΦPSII-I curves for Coreopsis lanceolata, Vitex negundo and Bidens frondosa using three models (mean ± SE)
剑叶金鸡菊 C. lanceolata | 黄荆 V. negundo | 大狼杷草 B. frondosa | ||||||
---|---|---|---|---|---|---|---|---|
ΦPSIImax | Fv/Fm | ΦPSIImax | Fv/Fm | ΦPSIImax | Fv/Fm | |||
公式(8) Equation (8) | 0.859 ± 0.011a | - | 0.834 ± 0.005a | - | 0.678 ± 0.059a | - | ||
公式(9) Equation (9) | 0.771 ± 0.004b | - | 0.759 ± 0.006b | - | 0.675 ± 0.051a | - | ||
公式(10) Equation (10) | - | 0.954 ± 0.019a | - | 0.928 ± 0.005a | - | 0.820 ± 0.079a | ||
公式(11) Equation (11) | - | 0.779 ± 0.004b | - | 0.767 ± 0.006b | - | 0.674 ± 0.029a | ||
α/ω | 0.455 ± 0.007* | 0.468 ± 0.008* | 0.474 ± 0.023ns |
图3 剑叶金鸡菊(A)、黄荆(B)和大狼杷草(C)的有效光能吸收截面对光的响应曲线(σ'ik-I)(平均值±标准误差)。
Fig. 3 Light-response curves of effective light energy absorption cross-section (σ'ik-I) for Coreopsis lanceolata (A), Vitex negundo (B) and Bidens frondosa (C)(mean ± SE).
[1] | Akaike H (1973). A new look at the statistical model identifica- tion.IEEE Translations Automatic Control, 19, 716-723. |
[2] | An DS, Cao J, Huang XH, Zhou J, Dou MA (2015). Application of Lake-model based indices from chlorophyll fluorescence on sugarcane seedling drought resistance study.Chinese Journal of Plant Ecology, 39, 398-406. (in Chinese with English abstract)[安东升, 曹娟, 黄小华, 周娟, 窦美安 (2015). 基于Lake模型的叶绿素荧光参数在甘蔗苗期抗旱性研究中的应用. 植物生态学报, 39, 398-406.] |
[3] | Arnon DJ (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15. |
[4] | Baker NR (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual of Review Plant Biology, 59, 89-113. |
[5] | Ehleringer J, Pearcy RW (1983). Variation in quantum yield for CO2 uptake among C3 and C4 plants.Plant Physiology, 73, 555-559. |
[6] | Feng HQ, Jiao QS, Tian WY, Sun K, Jia LY (2014). Effects of extracellular ATP on the characteristics of photochemical reaction in bean (Phaseolus vulgaris) leaves under differ- ent light intensities. Chinese Journal of Plant Ecology, 38, 1117-1123. (in Chinese with English abstract)[冯汉青, 焦青松, 田武英, 孙坤, 贾凌云 (2014). 不同光强下细胞外三磷酸腺苷对菜豆叶片光化学反应特性的影响. 植物生态学报, 38, 1117-1123.] |
[7] | Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.Biochimica et Biophysica Acta, 990, 87-92. |
[8] | Goh CH, Ko SM, Koh S, Kim YJ, Bae HJ (2012). Photosyn- thesis and environments: Photoinhibition and repair mech- anisms in plants.Journal of Plant Biology, 55, 93-101. |
[9] | Govindjee (2002). A role for a light-harvesting antenna complex of photosystem II in photoprotection.The Plant Cell, 14, 1663-1668. |
[10] | Krall JP, Edward GE (1992). Relationship between photo- system II activity and CO2 fixation in leaves.Physiologia Plantarum, 86,180-187. |
[11] | Laws E, Sakshaug E, Babin M, Dandonneau Y, Falkowski P, Geider R, Legendre L, Morel A, Sondergaard M, Takahashi M, Williams PJ (2002). Photosynthesis and primary productivity in marine ecosystems: Practical aspects and application of techniques.Joint Global Ocean Flux Study, 36, 1-77. |
[12] | Lin L, Tang Y, Zhang JT, Yan WL, Xiao JH, Ding C, Dong C, Ji ZS (2015). Effects of different water potentials on leaf gas exchange and chlorophyll fluorescence parameters of cucumber during post-flowering growth stage.Chinese Journal of Applied Ecology, 26, 2030-2040. (in Chinese with English abstract)[林琭, 汤昀, 张纪涛, 闫万丽, 肖建红, 丁超, 董川, 籍增顺 (2015). 不同水势对黄瓜花后叶片气体交换及叶绿素荧光参数的影响. 应用生态学报, 26, 2030-2040.] |
[13] | Lin MZ, Wang ZW, He LC, Xu K, Cheng DL, Wang GX (2015). Plant photosynthesis-irradiance curve response to pollution show non-competitive inhibited Michaelis kinet- ics.PLOS ONE, 10, e0142712. doi: 10.1371/journal. pone. 0142712. |
[14] | Major KM, Dunton KH (2002). Variations in light-harvesting characteristics of the seagrass,Thalassia testudinum: Evidence for photoacclimation. Journal of Experimental Marine Biology and Ecology, 275, 173-189. |
[15] | Murchie EH, Ali A, Herman T (2015). Photoprotection as a trait for rice yield improvement: Status and prospects.Rice, 8, 31-40. |
[16] | Nelson N, Yocum CF (2006). Structure of function of photo- systems I and II.Annual Review of Plant Biology, 57, 521-565. |
[17] | Niyogi KK, Truong TB (2013). Evolution of flexible non- photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis.Current Opinion in Plant Biology, 16, 307-314. |
[18] | Oxborough K (2004). Imaging of chlorophyll a fluorescence: Theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance.Journal of Experimental Botany, 55, 1195-1205. |
[19] | Panitchayangkoon G, Hayes D, Fransted KA, Caram JR, Harel E, Wen J, Blankenship RE, Engel GS (2010). Long-lived quantum coherence in photosynthetic complexes at physiological temperature.Proceedings of the National Academy Sciences of the United States of America, 107, 12766-12770. |
[20] | Ralph PJ, Gademann R (2005). Rapid light curves: A powerful tool to assess photosynthetic activity.Aquatic Botany, 82, 222-237. |
[21] | Richter M, Renger T, Knorr A (2008). A Block equation approach to intensity dependent optical spectra of light harvesting complex II. Excitation dependence of light harvesting complex II pump-probe spectra.Photosynthesis Research, 95, 119-127. |
[22] | Ritchie RJ (2008). Fitting light saturation curves measured using modulated fluorometry.Photosynthesis Research, 96, 201-215. |
[23] | Ritchie RJ, Bunthawin S (2010). The use of pulse amplitude modulation (PAM) fluorometry to measure photosynthesis in a cam orchid,Dendrobium spp.(D. cv. Viravuth Pink). International Journal of Plant Sciences, 171, 575-585. |
[24] | Rochaix JD (2014). Regulation and dynamics of the light- harvesting system. Annual of Review Plant Biology, 65, 287-309. |
[25] | Sarovar M, Ishizaki A, Fleming G, Whaley B (2010). Quantum entanglement in photosynthetic light-harvesting com- plexes.Nature Physics, 6, 462-467. |
[26] | Shi SB, Li TC, Li M, Liu SZ, Li AD, Ma JP (2015). Interaction effect analysis of soil drought and strong light on PSII nonphotochemical quenching inKobresia pygmaea leaves. Plant Physiology Journal, 51, 1678-1686. (in Chinese with English abstract)[师生波, 李天才, 李妙, 刘世增, 李爱德, 马剑平 (2015). 土壤干旱和强光对高山嵩草叶片PSII反应中心非光化学猝灭的交互影响分析. 植物生理学报, 51, 1678-1686.] |
[27] | Silsbe GM, Kromkamp JC (2012). Modeling the irradiance dependency of the quantum efficiency of photosynthesis.Limnology and Oceanography: Methods, 10, 645-652. |
[28] | Smyth TJ, Pemberton KL, Aiken J, Geider RJ (2004). A meth- odology to determine primary production and phytoplank- ton photosynthetic parameters from fast repetition rate fluorometry.Journal of Plankton Research, 26, 1337-1350. |
[29] | Takahashi S, Badger MR (2011). Photoprotection in plants: A new light on photosystem II damage.Trends in Plant Sciences, 16, 53-59. |
[30] | Vijayan P, Browse J (2002). Photoinhibition in mutants of arabidopsis deficient in thylakoid unsaturation.Plant Physiology, 129, 876-885. |
[31] | Ware MA, Belgio E, Ruban AV (2015). Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities.Photosynthesis Research, 126, 261-274. |
[32] | Webb WL, Newton M, Starr D (1974). Carbon dioxide ex- change of Alnus rubra: A mathematical model. Oecologia, 17, 281-291. |
[33] | White AJ, Critchley C (1999). Rapid light curves: A new fluo- rescence method to asses the state of the photosynthetic apparatus.Photosynthesis Research, 59, 63-72. |
[34] | Ye ZP, Hu WH, Xiao YA, Fan DY, Yin JH, Duan SH, Yan XH, He L, Zhang SS (2014). A mechanistic model of light-response of photosynthetic electron flow and its application.Chinese Journal of Plant Ecology, 38, 1241-1249. (in Chinese with English abstract)[叶子飘, 胡文海, 肖宜安, 樊大勇, 尹建华, 段世华, 闫小红, 贺俐, 张斯斯 (2014). 光合电子流对光响应的机理模型及其应用. 植物生态学报, 38, 1241-1249.] |
[35] | Ye ZP, Robakowski P, Suggett DJ (2013a). A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules.Planta, 237, 837-847. |
[36] | Ye ZP, Suggett DJ, Robakowski P, Kang HJ (2013b). A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of PSII in C3 and C4 species.New Phytologist, 199, 110-120. |
[1] | 王复标, 叶子飘. 植物电子传递速率光响应模型的研究进展[J]. 植物生态学报, 2024, 48(3): 287-305. |
[2] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[3] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[4] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[5] | 叶子飘, 段世华, 安婷, 康华靖. 最大电子传递速率的确定及其对电子流分配的影响[J]. 植物生态学报, 2018, 42(4): 498-507. |
[6] | 李理渊, 李俊, 同小娟, 孟平, 张劲松, 张静茹. 黄河小浪底栓皮栎、刺槐叶片电子传递速率-光响应的模拟[J]. 植物生态学报, 2018, 42(10): 1009-1021. |
[7] | 叶子飘, 段世华, 安婷, 康华靖. C4作物电子传递速率对CO2响应模型的构建及应用[J]. 植物生态学报, 2018, 42(10): 1000-1008. |
[8] | 李志真, 刘东焕, 赵世伟, 姜闯道, 石雷. 环境强光诱导玉簪叶片光抑制的机制[J]. 植物生态学报, 2014, 38(7): 720-728. |
[9] | 叶子飘,胡文海,肖宜安,樊大勇,尹建华,段世华,闫小红,贺俐,张斯斯. 光合电子流对光响应的机理模型及其应用[J]. 植物生态学报, 2014, 38(11): 1241-1249. |
[10] | 鱼腾飞, 冯起, 司建华. 极端干旱区多枝柽柳叶片气孔导度的环境响应模拟[J]. 植物生态学报, 2012, 36(6): 483-490. |
[11] | 薛伟, 李向义, 林丽莎, 王迎菊, 李磊. 短时间热胁迫对疏叶骆驼刺光系统II、Rubisco活性和活性氧化剂的影响[J]. 植物生态学报, 2011, 35(4): 441-451. |
[12] | 张绪成, 于显枫, 高世铭. 高大气CO2浓度下氮素对小麦叶片光能利用的影响[J]. 植物生态学报, 2010, 34(10): 1196-1203. |
[13] | 祖元刚, 张衷华, 王文杰, 杨逢建, 贺海升. 薇甘菊叶和茎的光合特性[J]. 植物生态学报, 2006, 30(6): 998-1004. |
[14] | 米湘成, 马克平, 邹应斌. 人工神经网络模型及其在农业和生态学研究中的应用[J]. 植物生态学报, 2005, 29(5): 863-870. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19