植物生态学报 ›› 2023, Vol. 47 ›› Issue (10): 1441-1452.DOI: 10.17521/cjpe.2022.0227
收稿日期:
2022-06-06
接受日期:
2022-10-10
出版日期:
2023-10-20
发布日期:
2023-11-23
通讯作者:
* E-mail: 基金资助:
SHI Sheng-Bo1,4,*(), SHI Rui2, ZHOU Dang-Wei1,3, ZHANG Wen4
Received:
2022-06-06
Accepted:
2022-10-10
Online:
2023-10-20
Published:
2023-11-23
Supported by:
摘要:
低温是青藏高原地区植物生长季内频繁发生的非生物胁迫, 然而其对典型高山植物叶片光能利用和分配的影响如何, 尚缺乏研究。该研究以高寒草甸优势种高山嵩草(Kobresia pygmaea)为材料, 采用叶绿素荧光成像分析技术, 研究了低温对光系统II (PSII)光化学及非光化学猝灭中光诱导和非光诱导的量子产量相对份额的影响。结果表明: PSII最大光化学量子效率(Fv/Fm和1/Fo - 1/Fm)的最适温度在10 ℃左右, 且变异系数(CV)较小; PSII相对电子传递速率(rETR)的光响应曲线随温度降低而整体下移, 其初始斜率(α)也相应降低。低温逆境可引起PSII实际光化学量子效率(ΦPSII)和非光化学猝灭中非调节性能量耗散量子产量(ΦNO)的降低, 及调节性能量耗散量子产量(ΦNPQ)的增大, 并导致均值CV的增高。1 000 µmol·m−2·s−1稳态光强下, ΦPSII、ΦNPQ和ΦNO三组分的相对比率在20、10、5、0和-5 ℃分别为: 23:57:20、18:63:19、15:68:17、11:75:14和8:80:12。PSII反应中心光化学效率的相对限制(LPPFD)随温度降低而逐渐增大, 且光强越大其限制增强。一般线性模型的双因素方差分析表明, PSII光化学和非光化学能量耗散过程没有交互效应产生。尽管光化学能量转换和保护性的调节机制可有效分配激发能, 能避免ΦNO的增加, 但高山嵩草叶片的光合机构在维持运行的同时依然承受着来自低温的胁迫, 是影响植物光合生理过程及限制生长发育的重要因素。
师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响. 植物生态学报, 2023, 47(10): 1441-1452. DOI: 10.17521/cjpe.2022.0227
SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves. Chinese Journal of Plant Ecology, 2023, 47(10): 1441-1452. DOI: 10.17521/cjpe.2022.0227
图1 高山嵩草草甸及植株构型。A, 高山嵩草-杂类草草甸。B, 高山嵩草的垫状聚集生长方式。C, 发达的根系主要分布在10 cm深的土层, 与土壤形成致密的草根盘结层。D, 短粗根状茎及具密集褐色宿存叶鞘的植株。
Fig. 1 Kobresia pygmaea meadow and plant configuration. A, Natural landscape of K. pygmaea-forb meadow. B, Cushion aggregation growth pattern of K. pygmaea. C, Developed root system is mainly distributed within a depth of 10 cm, forming a dense layer with the soil. D, Plants with stubby rhizomes and dense brown persistent leaf sheaths.
图2 温度对高山嵩草叶片光系统II相对电子传递速率(rETR)快速光响应曲线的影响(平均值±标准差, n = 60)。
Fig. 2 Effects of measurement temperature on rapid light- response curves of the relative electron transfer rate through photosystem II (rETR) of Kobresia pygmaea leaves (mean ± SD, n = 60). PPFD, photosynthetical active photon flux density.
图3 高山嵩草叶片光系统II最大光化学量子效率(Fv/Fm和1/Fo - 1/Fm)的温度响应。图中不同小写字母表示Fv/Fm和1/Fo - 1/Fm在不同测定温度间的差异显著(α = 0.05; 平均值±标准差, n = 60)。
Fig. 3 Response of the maximum quantum efficiency of photosystem II photochemistry (Fv/Fm and 1/Fo - 1/Fm) of Kobresia pygmaea leaves to temperature. Different lowercase letters indicate significant differences of Fv/Fm and 1/Fo - 1/Fm among different measurement temperature degree, respectively (α = 0.05; mean ± SD, n = 60).
图4 高山嵩草叶片光系统II非光化学猝灭系数(qNP)的温度响应及在不同稳态作用光强的变化。A中不同小写字母表示降温测定中1 000 μmol·m-2·s-1稳态光强下各温度间差异显著(α = 0.05; 平均值±标准差, n = 55); B中不同小写字母表示相同稳态光强时各温度间差异显著(α = 0.05; 平均值±标准差, n = 80)。
Fig. 4 Response of the photosystem II non-photochemical quenching coefficient (qNP) in Kobresia pygmaea leaves to temperature and its variation to steady-state light intensities. Different lowercase letters in A indicate significant differences among different measurement temperature under 1 000 μmol·m-2·s-1 steady-state light intensity (α = 0.05; mean ± SD, n = 55); different lowercase letters in B indicate significant differences among different temperature under the same steady-state light intensity (α = 0.05; mean ± SD, n = 80). PPFD, photosynthetical active photon flux density.
图5 温度对光系统II实际光化学量子效率(ΦPSII) (A)、调节性能量耗散量子产量(ΦNPQ) (B)和非调节性能量耗散量子产量(ΦNO) (C)相对份额的影响。不同小写字母表示ΦPSII、ΦNPQ和ΦNO在1 000 μmol·m-2·s-1稳态光强下不同温度间的差异显著(α = 0.05; 平均值±标准差, n = 55)。
Fig. 5 Effects of temperature on the photosystem II actual photochemical efficiency (ΦPSII) (A), the quantum yield of regulated energy dissipation (ΦNPQ) (B) and non-regulated energy dissipation (ΦNO) (C) in Kobresia pygmaea leaves. Different lowercase letters indicate significant differences among different measurement temperature under 1 000 μmol·m-2·s-1 steady-state light intensity (α = 0.05; mean ± SD, n = 55).
图6 不同测定温度下光系统II实际光化学量子效率(ΦPSII) (A)、调节性能量耗散量子产量(ΦNPQ) (B)和非调节性能量耗散量子产量(ΦNO) (C)相对份额的变化及对稳态作用光强的响应。不同小写字母表示同一稳态光强下ΦPSII、ΦNPQ和ΦNO在不同测定温度间的差异显著(α = 0.05; 平均值±标准差, n = 80)。
Fig. 6 Photosystem II actual photochemical efficiency (ΦPSII) (A), the quantum yield of regulated energy dissipation (ΦNPQ) (B), and non-regulated energy dissipation (ΦNO) (C) in Kobresia pygmaea leaves under different temperature degrees. Different lowercase letters indicate significant differences among measurement temperature degrees at the same light intensity (α = 0.05; mean ± SD, n = 80). PPFD, photosynthetical active photon flux density.
图7 高山嵩草叶片光系统II反应中心光化学效率的相对限制(LPPFD)的温度响应及在不同稳态作用光强的变化。A中不同小写字母表示1 000 μmol·m-2·s-1稳态光强下不同温度间差异显著(α = 0.05; 平均值±标准差, n = 55); B中不同小写字母表示相同稳态光强时不同温度间差异显著(平均值±标准差, n = 80)。
Fig. 7 Response of the relative limitation of photosystem II photochemical efficiency (LPPFD) in Kobresia pygmaea leaves to measurement temperature and their variation with steady-state light intensities. Different lowercase letters in A indicate significant differences among different temperature under 1 000 μmol·m-2·s-1 steady-state light intensity (mean ± SD, n = 55); different lowercase letters in B indicate significant differences among different measurement temperature under the same steady-state light intensity (α = 0.05; mean ± SD, n = 80). PPFD, photosynthetical active photon flux density.
图8 高山嵩草叶片光系统II反应中心开放比率(qL)的温度响应及在不同稳态作用光强的变化。A中不同小写字母表示1 000 μmol·m-2·s-1稳态光强下不同温度间差异显著(α = 0.05; 平均值±标准差, n = 55); B中不同小写字母表示相同稳态光强时不同温度间差异显著(α = 0.05; 平均值±标准差, n = 80)。
Fig. 8 Response of the fraction of open photosystem II centers (qL) in Kobresia pygmaea leaves to measurement temperature and their variation to steady-state light intensities. Different lowercase letters in A indicate significant differences among different measurement temperature under 1 000 μmol·m-2·s-1 steady-state light intensity (α = 0.05; mean ± SD, n = 55); different lowercase letters in B indicate significant differences among different measurement temperature under the same steady-state light intensity (α = 0.05; mean ± SD, n = 80). PPFD, photosynthetical active photon flux density.
PPFD | 低温 Low temperature | PPFD ×低温 PPFD × Low temperature | |||||||
---|---|---|---|---|---|---|---|---|---|
F | p | η2 | F | p | η2 | F | p | η2 | |
qL | 264.712 | 0 | 0.358 | 7.927 | 0 | 0.032 | 0.927 | 0.397 | 0.004 |
qNP | 163.739 | 0 | 0.257 | 23.102 | 0 | 0.089 | 0.848 | 0.429 | 0.004 |
ΦPSII | 417.730 | 0 | 0.468 | 22.572 | 0 | 0.087 | 0.948 | 0.388 | 0.004 |
ΦNO | 0 | 0.991 | 0 | 5.569 | 0.004 | 0.023 | 0.707 | 0.493 | 0.003 |
ΦNPQ | 476.751 | 0 | 0.501 | 33.935 | 0 | 0.125 | 0.788 | 0.455 | 0.003 |
rETR | 174.423 | 0 | 0.269 | 24.480 | 0 | 0.094 | 0.276 | 0.759 | 0.001 |
LPPFD | 417.730 | 0 | 0.468 | 22.572 | 0 | 0.087 | 0.948 | 0.388 | 0.004 |
表1 强光和低温胁迫处理间高山蒿草叶绿素荧光参数的交互效应分析
Table 1 Interaction effects analysis of high light intensity and low temperature on chlorophyll fluorescence parameters of kobresia pygmaea
PPFD | 低温 Low temperature | PPFD ×低温 PPFD × Low temperature | |||||||
---|---|---|---|---|---|---|---|---|---|
F | p | η2 | F | p | η2 | F | p | η2 | |
qL | 264.712 | 0 | 0.358 | 7.927 | 0 | 0.032 | 0.927 | 0.397 | 0.004 |
qNP | 163.739 | 0 | 0.257 | 23.102 | 0 | 0.089 | 0.848 | 0.429 | 0.004 |
ΦPSII | 417.730 | 0 | 0.468 | 22.572 | 0 | 0.087 | 0.948 | 0.388 | 0.004 |
ΦNO | 0 | 0.991 | 0 | 5.569 | 0.004 | 0.023 | 0.707 | 0.493 | 0.003 |
ΦNPQ | 476.751 | 0 | 0.501 | 33.935 | 0 | 0.125 | 0.788 | 0.455 | 0.003 |
rETR | 174.423 | 0 | 0.269 | 24.480 | 0 | 0.094 | 0.276 | 0.759 | 0.001 |
LPPFD | 417.730 | 0 | 0.468 | 22.572 | 0 | 0.087 | 0.948 | 0.388 | 0.004 |
[1] |
Baker NR (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
DOI PMID |
[2] |
Baker NR, Rosenqvist E (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, 55, 1607-1621.
DOI PMID |
[3] |
Bilger W, Björkman O (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light- induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25, 173-185.
DOI PMID |
[4] |
Costa-Broseta Á, Perea-Resa C, Castillo MC, Ruíz MF, Salinas J, León J (2019). Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation. Journal of Experimental Botany, 70, 3283-3296.
DOI PMID |
[5] | Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87-92. |
[6] |
Govindjee (2002). A role for a light-harvesting antenna complex of photosystem II in photoprotection. The Plant Cell, 14, 1663-1668.
DOI URL |
[7] |
Guarini JM, Morita C (2009). Modelling the dynamics of the electron transport rate measured by PAM fluorimetry during rapid light curve experiments. Photosynthetica, 47, 206-214.
DOI URL |
[8] |
Hendrickson L, Furbank RT, Chow WS (2004). A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Research, 82, 73-81.
DOI PMID |
[9] | Ke YY, Chen X, Ni QQ, Zhang LL, Liu LZ, Xu H, Wei FZ, Li JC (2021). Research progress of the metabolism of reactive oxygen species and its regulation mechanisms in wheat under low temperature stress. Barley and Cereal Sciences, 38(1), 1-6. |
[柯媛媛, 陈翔, 倪芊芊, 张乐乐, 刘绿洲, 许辉, 魏凤珍, 李金才 (2021). 低温逆境胁迫下小麦ROS代谢及调控研究进展. 大麦与谷类科学, 38(1), 1-6.] | |
[10] |
Kramer DM, Johnson G, Kiirats O, Edwards GE (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 79, 209-218.
DOI PMID |
[11] | Larcher W (1980). Physiological Plant Ecology. 2nd ed. Spring-Verlag, New York. 5-60. |
[12] | Li XJ, Cui HJ (2018). Research progress on the physiological response of plants to environmental stress. Shandong Forestry Science and Technology, 48(6), 90-94. |
[李晓靖, 崔海军 (2018). 低温胁迫下植物光合生理研究进展. 山东林业科技, 48(6), 90-94.] | |
[13] | Li YK, Lin L, Zhang FW, Liang DY, Wang X, Cao GM (2010). Kobresia pygmaea community—Disclimax of alpine meadow zonal vegetation in the pressure of grazing. Journal of Mountain Science, 28, 257-265. |
[李以康, 林丽, 张法伟, 梁东营, 王溪, 曹广民 (2010). 小嵩草群落——高寒草甸地带性植被放牧压力下的偏途顶极群落. 山地学报, 28, 257-265.] | |
[14] |
Lima Neto MC, Lobo AKM, Martins MO, Fontenele AV, Silveira JAG (2014). Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas. Journal of Plant Physiology, 171, 23-30.
DOI URL |
[15] |
Liu B, Wang XY, Cao Y, Arora R, Zhou H, Xia YP (2020). Factors affecting freezing tolerance: a comparative transcriptomics study between field and artificial cold acclimations in overwintering evergreens. The Plant Journal, 103, 2279-2300.
DOI URL |
[16] | Lu CF, Jian LC, Ben GY (2000). Photosynthesis in alpine plant Lagotis brevituba and its response to freezing stress. Chinese Bulletin of Botany, 17, 559-564. |
[卢存福, 简令成, 贲桂英 (2000). 高山植物短管兔儿草光合作用特性及其对冰冻胁迫的反应. 植物学通报, 17, 559-564.] | |
[17] |
Maxwell K, Johnson GN (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51, 659-668.
DOI PMID |
[18] | Miehe G, Miehe S, Kaiser K, Liu JQ, Zhao XQ (2008). Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan Plateau. Ambio, 37, 258-265. |
[19] |
Miehe G, Schleuss PM, Seeber E, Babel W, Biermann T, Braendle M, Chen FH, Coners H, Foken T, Gerken T, Graf HF, Guggenberger G, Hafner S, Holzapfel M, Ingrisch J, et al. (2019). The Kobresia pygmaea ecosystem of the Tibetan highlands—Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem Kobresia pastures of Tibet. Science of the Total Environment, 648, 754-771.
DOI URL |
[20] |
Murchie EH, Niyogi KK (2011). Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology, 155, 86-92.
DOI PMID |
[21] |
Niyogi KK, Truong TB (2013). Evolution of flexible non- photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Current Opinion in Plant Biology, 16, 307-314.
DOI URL |
[22] |
Oxborough K, Baker NR (1997). Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components— Calculation of qP and Fv′/Fm′ without measuring Fo′. Photosynthesis Research, 54, 135-142.
DOI URL |
[23] |
Peng SM, Du QY, Lin AW, Hu B, Xiao K, Xi YL (2015). Observation and estimation of photosynthetically active radiation in Lhasa (Tibetan Plateau). Advances in Space Research, 55, 1604-1612.
DOI URL |
[24] | Sáez PL, Bravo LA, Latsague MI, Toneatti MJ, Sánchez-Olate M, Ríos DG (2013). Light energy management in micropropagated plants of Castanea sativa, effects of photoinhibition. Plant Science, 201- 202, 12-24. |
[25] | Schreiber U, Bilger W, Neubauer C (1995). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis//Schulze ED, Caldwell MM. Ecophysiology of Photosynthesis. Springer-Verlag, Berlin, Heideberg. 49-70. |
[26] | Shi SB, Li TC, Li M, Liu SZ, Li AD, Ma JP (2015). Interaction effect analysis of soil drought and strong light on PSII non-photochemical quenching in Kobresia pygmaea leaves. Plant Physiology Journal, 51, 1678-1689. |
[师生波, 李天才, 李妙, 刘世增, 李爱德, 马剑平 (2015). 土壤干旱和强光对高山嵩草叶片PSII反应中心非光化学猝灭的交互影响分析. 植物生理学报, 51, 1678-1689.] | |
[27] |
Shi SB, Zhou DW, Li TC, De KJ, Gao XZ, Ma JL, Sun T, Wang FL (2023). Responses of photosynthetic function of Kobresia pygmaea to overnight low temperature on the Qingzang Plateau. Chinese Journal of Plant Ecology, 47, 361-373.
DOI URL |
[师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳 (2023). 青藏高原高山嵩草光合功能对模拟夜间低温的响应. 植物生态学报, 47, 361-373.]
DOI |
|
[28] | Sun BG, Long RJ, Wang CT (2007). A study on the plant population phenology in Qinghai-Tibet Plateau Kobrecia pygmaea meadow. Pratacultural Science, 24, 16-20. |
[孙步功, 龙瑞军, 王长庭 (2007). 青藏高原冷龙岭南麓高寒小嵩草草甸植物种群物候学研究. 草业科学, 24, 16-20.] | |
[29] |
Tikkanen M, Mekala NR, Aro EM (2014). Photosystem II photoinhibition-repair cycle protects photosystem I from irreversible damage. Biochimica et Biophysica Acta, 1837, 210-215.
DOI PMID |
[30] |
Valizadeh-Kamran R, Toorchi M, Mogadam M, Mohammadi H, Pessarakli M (2018). Effects of freeze and cold stress on certain physiological and biochemical traits in sensitive and tolerant barley (Hordeum vulgare) genotypes. Journal of Plant Nutrition, 41, 102-111.
DOI URL |
[31] | Wang CT, Long RJ, Ding LM (2004). Study of alpine meadow of basic characteristic in Qinghai Tibet Plateau. Pratacultural Science, 21, 16-19. |
[王长庭, 龙瑞军, 丁路明 (2004). 青藏高原高寒嵩草草甸基本特征的研究. 草业科学, 21, 16-19.] | |
[32] | Wang WY, Wang QJ, Deng ZF (1998). Communities structural characteristic and plant distribution pattern in alpine Kobresia pygmaea meadow, Haibei region of Qinghai Province. Acta Phytoecologica Sinica, 22, 336-343. |
[王文颖, 王启基, 邓自发 (1998). 青海海北地区高山嵩草草甸植物群落的结构特征及其分布格局. 植物生态学报, 22, 336-343.] | |
[33] | Wang YJ, Wei XH, Yang P (2005). Effects of over-grazing on vegetation degradation of Kobresia pygmaea meadow in Nagqu, Tibet. Journal of Lanzhou University (Natural Sciences), 41, 32-38. |
[王亚军, 魏兴琥, 杨萍 (2005). 超载放牧对那曲地区高山嵩草草甸植被退化的影响. 兰州大学学报(自然科学版), 41, 32-38.] | |
[34] | Wu FZ, Wang HX, Xu GH, Zhang ZC (2015). Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress. Scientia Silvae Sinicae, 51(7), 116-128. |
[乌凤章, 王贺新, 徐国辉, 张自川 (2015). 木本植物低温胁迫生理及分子机制研究进展. 林业科学, 51(7), 116-128.] | |
[35] | Xiang HT, Zheng DF, He N, Li W, Wang ML, Wang SY (2021). Research progress on the physiological response of plants to low temperature and the amelioration effectiveness of exogenous ABA. Acta Prataculturae Sinica, 30, 208-219. |
[项洪涛, 郑殿峰, 何宁, 李琬, 王曼力, 王诗雅 (2021). 植物对低温胁迫的生理响应及外源脱落酸缓解胁迫效应的研究进展. 草业学报, 30, 208-219.]
DOI |
|
[36] | Xu DQ (2002). Photosynthetic Efficiency. Shanghai Scientific and Technical Press, Shanghai. |
[许大全 (2002). 光合作用效率. 上海科学技术出版社, 上海.] | |
[37] |
Yamori W, Hikosaka K, Way DA (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research, 119, 101-117.
DOI PMID |
[38] |
Yu BH, Lu CH (2011). Assessment of ecological vulnerability on the Tibetan Plateau. Geographical Research, 30, 2289-2295.
DOI |
[于伯华, 吕昌河 (2011). 青藏高原高寒区生态脆弱性评价. 地理研究, 30, 2289-2295.] | |
[39] | Zhang XS (1978). The plateau zonality of vegetation in Xizang. Acta Botanica Sinica, 20, 140-149. |
[张新时 (1978). 西藏高原植被的高原地带性. 植物学报, 20, 140-149.] | |
[40] | Zhou J, Zeng XY, He W, Li JY, Zhang W, Li XQ (2016). Mechanism of chilling injury in Jacaranda acutifolia Humb. et Bonpl. under chilling stress. Southwest China Journal of Agricultural Sciences, 29, 74-80. |
[周静, 曾学英, 贺维, 李佳泳, 张炜, 李晓清 (2016). 低温胁迫下蓝花楹的耐寒生理机制分析. 西南农业学报, 29, 74-80.] | |
[41] | Zhou XM (2001). Chinese Kobresia Meadow. Science Press, Beijing. |
[周兴民 (2001). 中国嵩草草甸. 科学出版社, 北京.] |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[3] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[4] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[5] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[6] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[7] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[8] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[9] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[10] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[11] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[12] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[13] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[14] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[15] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19