植物生态学报 ›› 2021, Vol. 45 ›› Issue (9): 996-1005.DOI: 10.17521/cjpe.2021.0113
聂秀青1,2, 王冬1,2,*(), 周国英3, 熊丰3, 杜岩功3
收稿日期:
2021-03-26
接受日期:
2021-07-03
出版日期:
2021-09-20
发布日期:
2021-08-26
通讯作者:
王冬
作者简介:
*(dwang@caf.ac.cn)基金资助:
NIE Xiu-Qing1,2, WANG Dong1,2,*(), ZHOU Guo-Ying3, XIONG Feng3, DU Yan-Gong3
Received:
2021-03-26
Accepted:
2021-07-03
Online:
2021-09-20
Published:
2021-08-26
Contact:
WANG Dong
Supported by:
摘要:
微生物生物量及其化学计量特征是土壤养分循环的重要参数, 对预测气候变化和提高模型准确性及理解陆地生态系统养分循环都起到重要作用。为了明晰高寒生态系统土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)、微生物生物量磷(MBP)浓度及其化学计量特征, 该研究通过在三江源区高寒湿地连续两年的野外调查和室内培养, 分析了50个样点的数据, 探究三江源高寒湿地MBC、MBN、MBP浓度及其化学计量特征, 明确了土壤理化特性和微生物群落特征对其影响。结果表明: (1)三江源高寒湿地MBC、MBN和MBP浓度分别为105.11、3.79和0.78 mmol·kg-1, MBC:MBN、MBC:MBP、MBN:MBP和MBC:MBN:MBP分别为50.56、184.89、5.42和275:5:1。高寒湿地土壤的MBC浓度显著高于高寒草甸土壤, 而MBN和MBP浓度在高寒湿地和高寒草甸土壤之间没有显著差异; 高寒湿地土壤的MBC:MBN和MBC:MBP显著高于高寒草甸土壤, 而MBN:MBP在高寒湿地和高寒草甸土壤之间差异不显著。(2)土壤理化特性与MBC、MBN和MBP浓度具有显著相关性。土壤含水率与MBC:MBN和MBC:MBP存在显著负相关关系, 而土壤密度与MBC:MBN和MBC:MBP浓度存在显著正相关关系, 土壤全氮含量和MBC:MBP存在显著负相关关系, 而与MBC:MBN的相关关系不显著。土壤理化特性对MBN:MBP的影响不显著。(3)整体而言, 微生物群落结构与MBC、MBN和MBP浓度之间存在显著的相关性。微生物群落结构和MBC:MBN、MBC:MBP的关系是相似的, 总磷脂脂肪酸(PLFA)含量、革兰氏阳性菌、革兰氏阴性菌、细菌、放线菌、丛枝菌根真菌浓度和其他PLFA含量与MBC:MBN和MBC:MBP存在显著负相关关系, 而真菌:细菌与MBC:MBN和MBC:MBP之间存在显著正相关关系, 真菌浓度与MBC:MBN和MBC:MBP之间的相关关系不显著。除丛枝菌根真菌外, MBN:MBP与微生物群落结构均无显著相关关系。
聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征. 植物生态学报, 2021, 45(9): 996-1005. DOI: 10.17521/cjpe.2021.0113
NIE Xiu-Qing, WANG Dong, ZHOU Guo-Ying, XIONG Feng, DU Yan-Gong. Soil microbial biomass carbon, nitrogen, phosphorus and their stoichiometric characteristics in alpine wetlands in the Three Rivers Sources Region. Chinese Journal of Plant Ecology, 2021, 45(9): 996-1005. DOI: 10.17521/cjpe.2021.0113
植被类型 Vegetation type | MBC | MBN | MBP | MBC:MBN | MBC:MBP | MBN:MBP | MBC:MBN: MBP | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
高寒草甸 Alpine meadow | 49.25a [38.92-61.58] | 3.40a [2.83-4.12] | 0.55a [0.42-0.69] | 14.53a [12.76-16.17] | 117.02a [79.22-168.91] | 8.13a [5.64-11.79] | 118:8:1 | 本研究 This study |
高寒湿地 Alpine wetland | 105.11b [81.33-133.33] | 3.79b [2.58-5.16] | 0.78a [0.55-1.06] | 50.56b [37.33-65.33] | 184.89b [156.25-213.18] | 5.42a [4.22-6.89] | 275:5:1 | 本研究 This study |
高寒草甸 Alpine meadow | 33.5 [30.1-37.2] | 3.24 [2.69-3.89] | 0.70 [0.61-0.80] | 10.23 [9.77-10.96] | 48.0 [43.8-52.6] | 4.68 [3.98-5.50] | 47.9:4.68:1 | Chen et al., |
高寒草原 Alpine steppe | 13.5 [11.9-15.4] | 1.00 [0.79-1.29] | 0.17 [0.14-0.20] | 13.49 [12.02-15.14] | 80.0 [71.4-89.5] | 6.03 [4.79-7.41] | 81.3:6.03:1 | Chen et al., |
全球湿地平均值 Global wetland average | 111.4 [84.4-147.0] | 19.3 [14.5-25.9] | 2.4 [1.1-5.4] | 9.5 [7.7-11.8] | 130.7 [62.1-275.0] | 35.7 [14.0-91.2] | 131:14:1 | Xu et al., |
全球平均值 Global average | 56.7 | 7.5 | 1.3 | 7.6 | 42.4 | 5.6 | 42:6:1 | Xu et al., |
82.3 [69.2-97.7] | 10.9 [9.1-12.9] | 1.4 [1.1-1.6] | 8.6 [8.3-8.9] | 59.5 [55.9-63.1] | 6.9 [6.5-7.3] | 60:7:1 | Cleveland & Liptzin, |
表1 高寒生态系统和全球陆地生态系统的土壤微生物生物量化学计量特征(平均值和95%的置信区间)
Table 1 Stoichiometric characteristics of soil microbial biomass (results are shown as means and 95% confidence intervals) in alpine ecosystems and global biomes
植被类型 Vegetation type | MBC | MBN | MBP | MBC:MBN | MBC:MBP | MBN:MBP | MBC:MBN: MBP | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
高寒草甸 Alpine meadow | 49.25a [38.92-61.58] | 3.40a [2.83-4.12] | 0.55a [0.42-0.69] | 14.53a [12.76-16.17] | 117.02a [79.22-168.91] | 8.13a [5.64-11.79] | 118:8:1 | 本研究 This study |
高寒湿地 Alpine wetland | 105.11b [81.33-133.33] | 3.79b [2.58-5.16] | 0.78a [0.55-1.06] | 50.56b [37.33-65.33] | 184.89b [156.25-213.18] | 5.42a [4.22-6.89] | 275:5:1 | 本研究 This study |
高寒草甸 Alpine meadow | 33.5 [30.1-37.2] | 3.24 [2.69-3.89] | 0.70 [0.61-0.80] | 10.23 [9.77-10.96] | 48.0 [43.8-52.6] | 4.68 [3.98-5.50] | 47.9:4.68:1 | Chen et al., |
高寒草原 Alpine steppe | 13.5 [11.9-15.4] | 1.00 [0.79-1.29] | 0.17 [0.14-0.20] | 13.49 [12.02-15.14] | 80.0 [71.4-89.5] | 6.03 [4.79-7.41] | 81.3:6.03:1 | Chen et al., |
全球湿地平均值 Global wetland average | 111.4 [84.4-147.0] | 19.3 [14.5-25.9] | 2.4 [1.1-5.4] | 9.5 [7.7-11.8] | 130.7 [62.1-275.0] | 35.7 [14.0-91.2] | 131:14:1 | Xu et al., |
全球平均值 Global average | 56.7 | 7.5 | 1.3 | 7.6 | 42.4 | 5.6 | 42:6:1 | Xu et al., |
82.3 [69.2-97.7] | 10.9 [9.1-12.9] | 1.4 [1.1-1.6] | 8.6 [8.3-8.9] | 59.5 [55.9-63.1] | 6.9 [6.5-7.3] | 60:7:1 | Cleveland & Liptzin, |
图2 三江源地区高寒湿地土壤理化特性对土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)和微生物生物量磷(MBP)浓度的影响。
Fig. 2 Effects of soil physical and chemical properties on microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) concentration in alpine wetlands in the Three Rivers Sources Region.
图3 三江源地区高寒湿地土壤理化特性对微生物生物量化学计量比的影响。MBC, 微生物生物量碳; MBN, 微生物生物量氮; MBP, 微生物生物量磷。
Fig. 3 Effects of soil physical and chemical properties on microbial biomass stoichiometry in alpine wetlands in the Three Rivers Sources Region. MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial biomass phosphorus.
图4 三江源地区高寒湿地微生物群落结构对微生物生物量碳(MBC)、微生物生物量氮(MBN)、微生物生物量磷(MBP)浓度的影响。PLFA, 总磷脂脂肪酸。
Fig. 4 Effects of soil microbial community structure on microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) in alpine wetlands in the Three Rivers Sources Region. PLFA, total phospholipid fatty acid.
图5 三江源地区高寒湿地微生物群落结构对微生物化学计量比的影响。MBC, 微生物生物量碳; MBN, 微生物生物量氮; MBP, 微生物生物量磷。PLFA, 总磷脂脂肪酸。
Fig. 5 Effects of soil microbial community structure on microbial biomass stoichiometry in alpine wetlands in the Three Rivers Sources Region. MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial biomass phosphorus. PLFA, total phospholipid fatty acid.
[1] |
Attiwill PM, Adams MA (1993). Nutrient cycling in forests. New Phytologist, 124, 561-582.
DOI PMID |
[2] | Bai JH, Ouyang H, Xu HF, Zhou CP, Gao JQ (2004). Advances in studies of wetlands in Qinghai-Tibet Plateau. Progress in Geography, 23(4), 1-9. |
[ 白军红, 欧阳华, 徐惠风, 周才平, 高俊琴 (2004). 青藏高原湿地研究进展. 地理科学进展, 23(4), 1-9.] | |
[3] |
Chen YH, Han WX, Tang LY, Tang ZY, Fang JY (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 36, 178-184.
DOI URL |
[4] | Chen YL, Chen LY, Peng YF, Ding JZ, Li F, Yang GB, Kou D, Liu L, Fang K, Zhang BB, Wang J, Yang YH (2016). Linking microbial C:N: P stoichiometry to microbial community and abiotic factors along a 3500-km grassland transect on the Tibetan Plateau. Global Ecology and Biogeography, 25, 1416-1427. |
[5] |
Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252.
DOI URL |
[6] |
Cleveland CC, Townsend AR, Schmidt SK (2002). Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems, 5, 680-691.
DOI URL |
[7] |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
DOI URL |
[8] |
Fanin N, Fromin N, Buatois B, Hättenschwiler S (2013). An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system. Ecology Letters, 16, 764-772.
DOI URL |
[9] |
Fierer N, Bradford MA, Jackson RB (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354- 1364.
PMID |
[10] | Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000). Processes governing phosphorus availability in temperate soils. Journal of Environmental Quality, 29, 15-23. |
[11] |
Frostegård A, Bååth E (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-65.
DOI URL |
[12] |
Frostegård Å, Bååth E, Tunlio A (1993). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology & Biochemistry, 25, 723-730.
DOI URL |
[13] |
Heuck C, Weig A, Spohn M (2015). Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biology & Biochemistry, 85, 119-129.
DOI URL |
[14] |
Jobbágy EG, Jackson RB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423-436.
DOI URL |
[15] |
Kaiser C, Franklin O, Dieckmann U, Richter A (2014). Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters, 17, 680-690.
DOI URL |
[16] |
Li JW, Liu YL, Hai XY, Shangguan ZP, Deng L (2019). Dynamics of soil microbial C:N:P stoichiometry and its driving mechanisms following natural vegetation restoration after farmland abandonment. Science of the Total Environment, 693, 133613. DOI: 10.1016/j.scitotenv.2019.133613.
DOI URL |
[17] |
Li P, Yang YH, Han WX, Fang JY (2014). Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems. Global Ecology and Biogeography, 23, 979-987.
DOI URL |
[18] |
Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462
DOI URL |
[19] |
Lü CQ, Tian HQ (2007). Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. Journal of Geophysical Research, 112, D22S05. DOI: 10.1029/2006JD007990.
DOI |
[20] |
Medlyn BE, Zaehle S de Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler T, Jain AK, Luo YQ, Parton W, Prentice IC, Thornton PE, Wang SS, Wang YP, Weng ES, et al. (2015). Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5, 528-534.
DOI URL |
[21] |
Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014). Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology, 5, 22. DOI: 10.3389/ fmicb.2014.00022.
DOI PMID |
[22] |
Mouginot C, Kawamura R, Matulich KL, Berlemont R, Allison SD, Amend AS, Martiny AC (2014). Elemental stoichiometry of Fungi and Bacteria strains from grassland leaf litter. Soil Biology & Biochemistry, 76, 278-285.
DOI URL |
[23] |
Mu CC, Li LL, Zhang F, Li YX, Xiao XX, Zhao Q, Zhang TJ (2018). Impacts of permafrost on above- and belowground biomass on the northern Qinghai-Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 50, e1447192. DOI: 10. 1080/15230430.2018.1447192.
DOI URL |
[24] |
Nie XQ, Wang D, Yang LC, Zhou GY (2021). Controls on variation of soil organic carbon concentration in the shrublands of the north-eastern Tibetan Plateau. European Journal of Soil Science, 72, 1817-1830.
DOI URL |
[25] | Peng XQ, Wang W (2016). Spatial pattern of soil microbial biomass carbon and its driver in temperate grasslands of Inner Mongolia. Microbiology China, 43, 1918-1930. |
[ 彭晓茜, 王娓 (2016). 内蒙古温带草原土壤微生物生物量碳的空间分布及驱动因素. 微生物学通报, 43, 1918-1930.] | |
[26] |
Powlson DS, Prookes PC, Christensen BT (1987). Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology & Biochemistry, 19, 159-164.
DOI URL |
[27] | Qin DH (2014). Eco-preservation and Sustain Development in the Three Rivers Source Region of the Tibetan Plateau. Science Press, Beijing. 25-26. |
[ 秦大河 (2014). 三江源区生态保护与可持续发展. 科学出版社, 北京. 25-26.] | |
[28] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[29] |
Strickland MS, Rousk J (2010). Considering fungal: bacterial dominance in soils-Methods, controls, and ecosystem implications. Soil Biology & Biochemistry, 42, 1385-1395.
DOI URL |
[30] | Sun HL, Zheng D, Yao TD, Zhang YL (2012). Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica, 67, 3-12. |
[ 孙鸿烈, 郑度, 姚檀栋, 张镱锂 (2012). 青藏高原国家生态安全屏障保护与建设. 地理学报, 67, 3-12.]
DOI |
|
[31] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limation: mechanisms, implication, and nitrogen-phosphorus interaction. Ecological Applications, 20, 5-15.
DOI URL |
[32] | Wang CT, Long RJ, Wang GX, Liu W, Wang QL, Zhang L, Wu PF (2010). Relationship between plant communities, characters, soil physical and chemical properties, and soil microbiology in alpine meadows. Acta Prataculturae Sinica, 19, 25-34. |
[ 王长庭, 龙瑞军, 王根绪, 刘伟, 王启兰, 张莉, 吴鹏飞 (2010). 高寒草甸群落地表植被特征与土壤理化性状、土壤微生物之间的相关性研究. 草业学报, 19, 25-34.] | |
[33] |
Xu X, Thornton PE, Post WM (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 22, 737-749.
DOI URL |
[34] |
Yang MX, Nelson FE, Shiklomanov NI, Guo DL, Wan GN (2010). Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth-Science Reviews, 103, 31-44.
DOI URL |
[35] | Yang WJ, Wang YB, Liu X, Sun Z (2019). Nutrient evaluation of the soil in the Qinghai-Tibet Plateau based on BP neural network. Journal of Glaciology and Geocryology, 41, 215- 226. |
[ 杨文静, 王一博, 刘鑫, 孙哲 (2019). 基于BP神经网络的青藏高原土壤养分评价. 冰川冻土, 41, 215- 226.] | |
[36] |
Yang YH (2018). Ecological processes in alpine ecosystems under changing environment. Chinese Journal of Plant Ecology, 42, 1-5.
DOI URL |
[ 杨元合 (2018). 全球变化背景下的高寒生态过程. 植物生态学报, 42, 1-5.]
DOI |
|
[37] |
Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008). Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 14, 1592-1599.
DOI URL |
[38] | Yao TD, Chen FH, Cui P, Ma YM, Xu BQ, Zhu LP, Zhang F, Wang WC, Ai LK, Yang XX (2017). From Tibetan Plateau to third pole and pan-third pole. Bulletin of Chinese Academy of Sciences, 9, 924-931. |
姚檀栋, 陈发虎, 崔鹏, 马耀明, 徐柏青, 朱立平, 张凡, 王伟财, 艾丽坤, 杨晓新 (2017). 从青藏高原到第三极和泛第三极. 中国科学院院刊, 9, 924-931.] | |
[39] |
Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015). The application of ecological stoichiometry to plant-microbial- soil organic matter transformations. Ecological Monographs, 85, 133-155.
DOI URL |
[40] |
Zhou ZH, Wang CK (2015). Reviews and syntheses: soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China's forest ecosystems. Biogeosciences, 12, 6751-6760.
DOI URL |
[41] |
Zhou ZH, Wang CK (2016). Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry. Chinese Journal of Plant Ecology, 40, 620-630.
DOI URL |
周正虎, 王传宽 (2016). 微生物对分解底物碳氮磷化学计量的响应和调节机制. 植物生态学报, 40, 620-630.]
DOI |
[1] | 朱玉英 张华敏 丁明军 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 林马震 黄勇 李洋 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 0-0. |
[3] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[4] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[5] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[6] | 王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析[J]. 植物生态学报, 2022, 46(8): 961-970. |
[7] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[8] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[9] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[10] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[11] | 郑周涛 张扬建. 1982–2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[12] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[13] | 高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素[J]. 植物生态学报, 2021, 45(9): 1006-1023. |
[14] | 刘攀, 王文颖, 周华坤, 毛旭锋, 刘艳方. 青藏高原人工草地土壤可溶性氮组分与植被生产力动态变化过程[J]. 植物生态学报, 2021, 45(5): 562-572. |
[15] | 陈哲, 汪浩, 王金洲, 石慧瑾, 刘慧颖, 贺金生. 基于物候相机归一化植被指数估算高寒草地植物地上生物量的季节动态[J]. 植物生态学报, 2021, 45(5): 487-495. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19