植物生态学报 ›› 2023, Vol. 47 ›› Issue (1): 51-64.DOI: 10.17521/cjpe.2021.0500
收稿日期:
2021-12-31
接受日期:
2022-05-12
出版日期:
2023-01-20
发布日期:
2022-07-15
通讯作者:
*丁明军(dingmj@jxnu.edu.cn)
基金资助:
ZHU Yu-Ying1, ZHANG Hua-Min2, DING Ming-Jun1,3,*(), YU Zi-Ping1
Received:
2021-12-31
Accepted:
2022-05-12
Online:
2023-01-20
Published:
2022-07-15
Contact:
*DING Ming-Jun(dingmj@jxnu.edu.cn)
Supported by:
摘要:
青藏高原是全球气候变化的敏感区, 特殊的自然环境孕育了极端脆弱的植被及其生态系统, 已成为研究植被对气候变化响应的一个理想区域。植被易受气候变化的影响且响应可能因季节和植被类型而异。该研究将标准化降水蒸散指数(SPEI)和MODIS归一化植被指数(NDVI)分别作为干湿度和植被绿度指标, 采用Sen’s斜率估计、BFAST模型和相关分析, 分析了2000-2018年青藏高原植被绿度变化的时空格局特征, 并探讨了植被绿度对干湿变化的响应。结果表明: 2000-2018年青藏高原植被绿度呈上升趋势, 但变化速率空间差异显著。大部分高原地区植被绿度于2012-2015年间存在突变, 突变后普遍呈上升趋势, 以藏北地区最为突出。青藏高原植被生长季NDVI与不同时间尺度SPEI整体呈正相关关系, 且在生长季的中后期相关性逐渐增强。青藏高原植被对SPEI的响应表现出一定的年内周期性, 草本植被(草甸和草原)区尤为显著。相对于森林和灌丛植被, 草本植被对SPEI响应更为敏感, 且在生长季的不同阶段对不同时间尺度的SPEI的响应存在明显差异。
朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应. 植物生态学报, 2023, 47(1): 51-64. DOI: 10.17521/cjpe.2021.0500
ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau. Chinese Journal of Plant Ecology, 2023, 47(1): 51-64. DOI: 10.17521/cjpe.2021.0500
图1 青藏高原生态区及气象站点空间分布。IB1, 果洛那曲高寒灌丛草甸带; IC1, 青南高寒草甸草原带; IC2, 羌塘高寒草原带; ID1, 昆仑高寒荒漠带; IIAB1, 川西藏东山地针叶林带; IIC1, 藏南山地灌丛草原带; IIC2, 青东祁连山地草原带; IID1, 阿里山地半荒漠、荒漠带; IID2, 柴达木山地荒漠带; IID3, 昆仑山北翼山地荒漠带; OA1, 东喜马拉雅南麓山地常绿阔叶林带。生态分区参考郑度(2008)。
Fig. 1 Spatial distribution of ecosystem zones and stations on the Qingzang Plateau. IB1, Golog-Nagqu high-cold shrub-meadow zone; IC1, southern Qinghai high-cold meadow steppe zone; IC2, Qiangtang high-cold steppe zone; ID1, Kunlun high-cold desert zone; IIAB1, Western Sichuan-eastern Xizang montane coniferous forest zone; IIC1, Southern Xizang montane shrub-steppe zone; IIC2, Eastern Qinghai-Qilian montane steppe zone; IID1, Ngari montane desert-steppe and desert zone; IID2, Qaidam montane desert zone; IID3, Northern slopes of Kunlun montane desert zone; OA1, Southern slopes of Himalaya montane evergreen broadleaved forest zone. Ecosystem zones were referred from Zheng (2008).
图2 2000-2018年青藏高原植被绿度变化。NDVI, 归一化植被指数; slope, 斜率。
Fig. 2 Temporal change of vegetation greenness on the Qingzang Plateau from 2000 to 2018. NDVI, normalized difference vegetation index.
图5 2000-2018年青藏高原植被绿度突变类型。1, 负断点上升; 2, 正断点下降; 3, 上升转下降; 4, 下降转上升。生态分区见图1。
Fig. 5 Break types of vegetation greenness on the Qingzang Plateau from 2000 to 2018. 1, Increase with negative break; 2, decrease with positive break; 3, increase to decrease; 4, decrease to increase. Ecosystem zones see Fig. 1.
图6 2000-2018年青藏高原植被绿度突变前后变化速率空间分布。A, C, 突变前。B, D, 突变后。生态分区见图1。
Fig. 6 Change rate of vegetation greenness on the Qingzang Plateau from 2000 to 2018 before and after breaks. A, C, Before breaks. B, D, After breaks. Ecosystem zones see Fig. 1.
图7 2000-2018年青藏高原植被绿度突变前后各变化速率百分比。A, 突变前。B, 突变后。
Fig. 7 Proportion of each change rate of vegetation greenness on the Qingzang Plateau from 2000 to 2018. A, Before breaks. B, After the breaks.
图8 2000-2018年青藏高原植被归一化植被指数(NDVI)和标准化降水蒸散指数(SPEI)的相关性。SPEI01、SPEI02、SPEI03、SPEI06、SPEI09、SPEI12、SPEI18、SPEI24分别代表累积时间1、2、3、6、9、12、18、24个月的干旱程度。
Fig. 8 Correlation between normalized difference vegetation index (NDVI) and standardized precipitation evapotranspiration index (SPEI) on the Qingzang Plateau during growing seasons of 2000 to 2018. SPEI01, SPEI02, SPEI03, SPEI06, SPEI09, SPEI12, SPEI18 and SPEI24 represents the drought severity in cumulative time period of 1, 2, 3, 6, 9, 12, 18 and 24 months, respectively.
图9 2000-2018年青藏高原植被归一化植被指数(NDVI)和标准化降水蒸散指数(SPEI)相关系数最大值。生态分区见图1。
Fig. 9 The maximum correlation coefficient between normalized difference vegetation index (NDVI) and standardized precipitation evapotranspiration index (SPEI) from 2000 to 2018 on the Qingzang Plateau. Ecosystem zones see Fig. 1.
图10 2000-2018年青藏高原植被归一化植被指数(NDVI)和标准化降水蒸散指数(SPEI)相关系数最大值出现时SPEI的时间尺度。生态分区见图1。
Fig. 10 Time scales of standardized precipitation evapotranspiration index (SPEI) when the maximum correlation coefficient of normalized difference vegetation index (NDVI) and SPEI appeared from 2000 to 2018 on the Qingzang Plateau. Ecosystem zones see Fig. 1.
图11 2000-2018年青藏高原年际干湿变化空间分布。生态分区见图1。
Fig. 11 Spatial distribution of interannual drought-wet variation on the Qingzang Plateau from 2000 to 2018. Ecosystem zones see Fig. 1.
[1] |
Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009). Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 106, 7063-7066.
DOI PMID |
[2] |
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684.
DOI URL |
[3] |
Berner LT, Massey R, Jantz P, Forbes BC, Macias-Fauria M, Myers-Smith I, Kumpula T, Gauthier G, Andreu-Hayles L, Gaglioti BV, Burns P, Zetterberg P, DʼArrigo R, Goetz SJ (2020). Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications, 11, 4612-4621.
DOI |
[4] |
Cao M, Woodward FI (1998). Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249-252.
DOI |
[5] |
Chaves MM, Maroco JP, Pereira JS (2003). Understanding plant responses to drought—From genes to the whole plant. Functional Plant Biology, 30, 239-264.
DOI URL |
[6] | Che ML, Chen BZ, Innes JL, Wang GY, Dou XM, Zhou TM, Zhang HF, Yan JW, Xu G, Zhao HW (2014). Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai-Tibetan Plateau from 1982 to 2011. Agricultural and Forest Meteorology, 189- 190, 81-90. |
[7] | Cheng M (2019). Spatial-temporal Variations of Vegetation Phenology and Its Effect on Water Use Efficiency in Tibetan Plateau. PhD dissertation, Nanjing University, Nanjing. 24-45. |
[ 程敏 (2019). 基于遥感监测的青藏高原植被物候及其对水分利用效率影响的时空变化特征. 博士学位论文, 南京大学, 南京. 24-45.] | |
[8] |
Choler P, Bayle A, Carlson BZ, Randin C, Filippa G, Cremonese E (2021). The tempo of greening in the European Alps: spatial variations on a common theme. Global Change Biology, 27, 5614-5628.
DOI PMID |
[9] | Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990). STL: a seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6, 3-73. |
[10] |
Cook BI, Smerdon JE, Seager R, Coats S (2014). Global warming and 21st century drying. Climate Dynamics, 43, 2607-2627.
DOI URL |
[11] | Crafts A (1968). Water deficits and physiological processes// Kozlowski TT. Water Deficits and Plant Growth. Plant Water Consumption and Response: Vol. II. Academic Press, New York. 85-133. |
[12] |
Dai AG (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52-58.
DOI |
[13] |
de Jong R, Verbesselt J, Zeileis A, Schaepman ME (2013). Shifts in global vegetation activity trends. Remote Sensing, 5, 1117-1133.
DOI URL |
[14] |
Deng CL, Zhang BQ, Cheng LY, Hu LQ, Chen FH (2019). Vegetation dynamics and their effects on surface water- energy balance over the Three-North Region of China. Agricultural and Forest Meteorology, 275, 79-90.
DOI URL |
[15] |
Ding JZ, Yang T, Zhao YT, Liu D, Wang XY, Yao YT, Peng SS, Wang T, Piao SL (2018). Increasingly important role of atmospheric aridity on Tibetan alpine grasslands. Geophysical Research Letters, 45, 2852-2859.
DOI URL |
[16] | Douglas EM, Vogel RM, Kroll CN (2000). Trends in floods and low flows in the United States: impact of spatial correlation. Journal of Hydrology, 240, 90-105. |
[17] |
Du J, Zhao C, Shu J, Jiaerheng A, Yuan X, Yin J, Fang S, He P (2016). Spatiotemporal changes of vegetation on the Tibetan Plateau and relationship to climatic variables during multiyear periods from 1982-2012. Environmental Earth Sciences, 75, 77. DOI: 10.1007/s12665-015-4818-4.
DOI |
[18] |
Guo H, Bao A, Ndayisaba F, Liu T, Jiapaer G, El-Tantawi AM, de Maeyer P (2018). Space-time characterization of drought events and their impacts on vegetation in Central Asia. Journal of Hydrology, 564, 1165-1178.
DOI URL |
[19] |
Huang F, Xu SL (2016). Spatio-temporal variations of rain-use efficiency in the west of Songliao Plain, China. Sustainability, 8, 308. DOI: 10.3390/su8040308.
DOI |
[20] | Huang WL, Zhang Q, Kong DD, Gu XH, Sun P, Hu P (2019). Response of vegetation phenology to drought in Inner Mongolia from 1982 to 2013. Acta Ecologica Sinica, 39, 4953-4965. |
[ 黄文琳, 张强, 孔冬冬, 顾西辉, 孙鹏, 胡畔 (2019). 1982—2013年内蒙古地区植被物候对干旱变化的响应. 生态学报, 39, 4953-4965.] | |
[21] |
Ji L, Peters AJ (2003). Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment, 87, 85-98.
DOI URL |
[22] |
Jiang P, Ding WG, Yuan Y, Ye WF (2020). Diverse response of vegetation growth to multi-time-scale drought under different soil textures in China’s pastoral areas. Journal of Environmental Management, 274, 110992. DOI: 10.1016/j.jenvman.2020.110992.
DOI |
[23] |
Jönsson P, Eklundh L (2002). Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 40, 1824-1832.
DOI URL |
[24] |
Jönsson P, Eklundh L (2004). TIMESAT—A program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30, 833-845.
DOI URL |
[25] |
Kang WP, Wang T, Liu SL (2018). The response of vegetation phenology and productivity to drought in semi-arid regions of northern China. Remote Sensing, 10, 727. DOI: 10.3390/rs10050727.
DOI |
[26] | Knapp AK, Charles CJW, Denton EM, La Pierre KJ, Collins SL, Smith MD (2015). Differential sensitivity to regional- scale drought in six central US grasslands. Oecologia, 177, 949-957. |
[27] | Kramer PJ (1983). Water Relations of Plants. Academic Press, San Diego, USA. |
[28] | Li YJ, Ding JL, Zhang JY, Wu PF (2019). Response of vegetation cover to drought in the northern slope of the Tianshan Mountains during 2001—2015 based on the land-use and land-cover change. Acta Ecologica Sinica, 39, 6206-6217. |
[ 李艳菊, 丁建丽, 张钧泳, 武鹏飞 (2019). 2001—2015年天山北坡植被覆盖对干旱的响应——基于土地利用/土地覆盖分析. 生态学报, 39, 6206-6217.] | |
[29] | Liu J, Wen ZM, Gang CC (2020). Normalized difference vegetation index of different vegetation cover types and its responses to climate change in the Loess Plateau. Acta Ecologica Sinica, 40, 678-691. |
[ 刘静, 温仲明, 刚成诚 (2020). 黄土高原不同植被覆被类型NDVI对气候变化的响应. 生态学报, 40, 678-691.] | |
[30] |
Liu LB, Wang Y, You NS, Liang Z, Qin DH, Li SC (2019). Changes in aridity and its driving factors in China during 1961-2016. International Journal of Climatology, 39, 50-60.
DOI URL |
[31] |
Liu SL, Zhang YQ, Cheng FY, Hou XY, Zhao S (2017). Response of grassland degradation to drought at different time-scales in Qinghai Province: sapatio-temporal characteristics, correlation, and implications. Remote Sensing, 9, 1329. DOI: 10.3390/rs9121329.
DOI |
[32] |
Lu Q, Wu SH, Zhao DS (2017). Variations in alpine grassland cover and its correlation with climate variables on the Qinghai-Tibet Plateau in 1982-2013. Scientia Geographica Sinica, 37, 292-300.
DOI |
[ 陆晴, 吴绍洪, 赵东升 (2017). 1982-2013年青藏高原高寒草地覆盖变化及与气候之间的关系. 地理科学, 37, 292-300.]
DOI |
|
[33] | Myers-Smith IH, Kerby JT, Phoenix GK, Bjerke JW, Epstein HE, Assmann JJ, John C, Andreu-Hayles L, Angers- Blondin S, Beck PSA, Berner LT, Bhatt US, Bjorkman AD, Blok D, Bryn A, et al. (2020). Complexity revealed in the greening of the Arctic. Nature Climate Change, 10, 106-117. |
[34] |
Pang GJ, Wang XJ, Yang MX (2017). Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quaternary International, 444, 87-96.
DOI URL |
[35] |
Pasho E, Camarero JJ, de Luis M, Vicente-Serrano SM (2011). Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agricultural and Forest Meteorology, 151, 1800-1811.
DOI URL |
[36] |
Piao S, Cui M, Chen A, Wang X, Ciais P, Liu J, Tang Y (2011). Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology, 151, 1599-1608.
DOI URL |
[37] | Piao S, Wang X, Park T, Chen C, Lian X, He Y, Bjerke JW, Chen A, Ciais P, Tømmervik H, Nemani RR, Myneni RB (2020). Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 1, 14-27. |
[38] | Ren JY, Peng SZ, Cao Y, Huo XY, Chen YM (2018). Spatiotemporal distribution characteristics of climate change in the Loess Plateau from 1901 to 2014. Journal of Natural Resources, 33, 621-633. |
[ 任婧宇, 彭守璋, 曹扬, 霍晓英, 陈云明 (2018). 1901—2014年黄土高原区域气候变化时空分布特征. 自然资源学报, 33, 621-633.]
DOI |
|
[39] | Salter PJ, Goode JE (1968). Crop Responses to Water at Different Stages of Growth. Commonwealth Agricultural Bureaux, Farnham Royal, Bucks, England. |
[40] |
Sheffield J, Wood EF, Roderick ML (2012). Little change in global drought over the past 60 years. Nature, 491, 435-438.
DOI |
[41] | Shi SY, Wang F, Jin K, Ding WB (2020). Response of vegetation index to meteorological drought over Loess Plateau. Journal of Arid Meteorology, 38, 1-13. |
[ 史尚渝, 王飞, 金凯, 丁文斌 (2020). 黄土高原地区植被指数对干旱变化的响应. 干旱气象, 38, 1-13.] | |
[42] |
Shi SY, Yu JJ, Wang F, Wang P, Zhang YC, Jin K (2021). Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Science of the Total Environment, 755, 142419. DOI: 10.1016/j.scitotenv.2020.142419.
DOI |
[43] |
Sullivan CY, Eastin JD (1974). Plant physiological responses to water stress. Agricultural Meteorology, 14, 113-127.
DOI URL |
[44] |
Sun YX, Liu SL, Dong YH, Dong SK, Shi FN (2020). Effects of multi-time scales drought on vegetation dynamics in Qaidam River Basin, Qinghai-Tibet Plateau from 1998 to 2015. Theoretical and Applied Climatology, 141, 117-131.
DOI |
[45] |
Tong SQ, Lai Q, Zhang JQ, Bao YH, Lusi A, Ma QY, Li XQ, Zhang F (2018). Spatiotemporal drought variability on the Mongolian Plateau from 1980-2014 based on the SPEI-PM, intensity analysis and Hurst exponent. Science of the Total Environment, 615, 1557-1565.
DOI URL |
[46] |
Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010). Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114, 106-115.
DOI URL |
[47] |
Vicente-Serrano SM (2007). Evaluating the impact of drought using remote sensing in a mediterranean, semi-arid region. Natural Hazards, 40, 173-208.
DOI URL |
[48] |
Vicente-Serrano SM, Cabello D, Tomás-Burguera M, Martin-Hernández N, Beguería S, Azorin-Molina C, Kenawy AEI (2015). Drought variability and land degradation in semiarid regions: assessment using remote sensing data and drought indices (1982-2011). Remote Sensing, 7, 4391-4423.
DOI URL |
[49] |
Vicente-Serrano SM, Gouveia C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Morán-Tejeda E, Sanchez- Lorenzo A (2013). Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America, 110, 52-57.
DOI PMID |
[50] |
Wang CZ, Guo HD, Zhang L, Liu SY, Qiu YB, Sun ZC (2015a). Assessing phenological change and climatic control of alpine grasslands in the Tibetan Plateau with MODIS time series. International Journal of Biometeorology, 59, 11-23.
DOI URL |
[51] |
Wang K, Zhang L, Qiu YB, Ji L, Tian F, Wang CZ, Wang ZY (2015b). Snow effects on alpine vegetation in the Qinghai- Tibetan Plateau. International Journal of Digital Earth, 8, 58-75.
DOI URL |
[52] |
Wang T, Zhao YZ, Wang H, Cao YN, Peng J, Cao YN (2020). Spatial and temporal changes of vegetation index and their response to temperature and precipitation in the Tibetan Plateau based on GIMMS NDVI. Journal of Glaciology and Geocryology, 42, 641-652.
DOI |
[ 王涛, 赵元真, 王慧, 曹亚楠, 彭静, 曹亚楠 (2020). 基于GIMMS NDVI的青藏高原植被指数时空变化及其气温降水响应. 冰川冻土, 42, 641-652.]
DOI |
|
[53] |
Wang XJ, Pang GJ, Yang MX (2018). Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations. International Journal of Climatology, 38, 1116-1131.
DOI URL |
[54] | Yang D, Yi GH, Zhang TB, Li JJ, Qin YB, Wen B, Liu ZY (2021). Spatiotemporal variation and driving factors of growing season NDVI in the Tibetan Plateau, China. Chinese Journal of Applied Ecology, 32, 1361-1372. |
[ 杨达, 易桂花, 张廷斌, 李景吉, 秦岩宾, 文博, 刘志宇 (2021). 青藏高原植被生长季NDVI时空变化与影响因素. 应用生态学报, 32, 1361-1372.]
DOI |
|
[55] | Yang SY, Meng D, Li XJ, Wu XL (2018). Multi-scale responses of vegetation changes relative to the SPEI meteorological drought index in North China in 2001-2014. Acta Ecologica Sinica, 38, 1028-1039. |
[ 杨思遥, 孟丹, 李小娟, 吴新玲 (2018). 华北地区2001-2014年植被变化对SPEI气象干旱指数多尺度的响应. 生态学报, 38, 1028-1039.] | |
[56] |
Zhai J, Su B, Krysanova V, Vetter T, Gao C, Jiang T (2010). Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. Journal of Climate, 23, 649-663.
DOI URL |
[57] |
Zhang Q, Kong DD, Singh VP, Shi PJ (2017). Response of vegetation to different time-scales drought across China: spatiotemporal patterns, causes and implications. Global and Planetary Change, 152, 1-11.
DOI URL |
[58] | Zhang Q, Tang HP, Cui FQ, Dai LW (2019). SPEI-based analysis of drought characteristics and trends in Hulun Buir Grassland. Acta Ecologica Sinica, 39, 7110-7123. |
[ 张钦, 唐海萍, 崔凤琪, 戴路炜 (2019). 基于标准化降水蒸散指数的呼伦贝尔草原干旱变化特征及趋势分析. 生态学报, 39, 7110-7123.] | |
[59] |
Zhang YL, Li BY, Liu LS, Zheng D (2021). Redetermine the region and boundaries of Tibetan Plateau. Geographical Research, 40, 1543-1553.
DOI |
[ 张镱锂, 李炳元, 刘林山, 郑度 (2021). 再论青藏高原范围. 地理研究, 40, 1543-1553.]
DOI |
|
[60] |
Zhang YL, Li LH, Ding MJ, Zheng D (2017). Greening of the Tibetan Plateau and its drivers since 2000. Chinese Journal of Nature, 39, 173-178.
DOI |
[ 张镱锂, 李兰晖, 丁明军, 郑度 (2017). 新世纪以来青藏高原绿度变化及动因. 自然杂志, 39, 173-178.]
DOI |
|
[61] |
Zhao AZ, Zhang AB, Cao S, Liu XF, Liu JH, Cheng DY (2018). Responses of vegetation productivity to multi- scale drought in Loess Plateau, China. Catena, 163, 165-171.
DOI URL |
[62] |
Zhao AZ, Zhang AB, Liu JH, Feng LL, Zhao YL (2019). Assessing the effects of drought and “Grain for Green” Program on vegetation dynamics in China’s Loess Plateau from 2000 to 2014. Catena, 175, 446-455.
DOI URL |
[63] | Zheng D (2008). Chinese Ecological Geographic Area System Research. The Commercial Press, Beijing. |
[ 郑度 (2008). 中国生态地理区域系统研究. 商务印书馆, 北京.] | |
[64] |
Zhong L, Ma YM, Xue YK, Piao SL (2019). Climate change trends and impacts on vegetation greening over the Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 124, 7540-7552.
DOI URL |
[65] |
Zhou DW, Fan GZ, Huang RH, Fang ZF, Liu YQ, Li HQ (2007). Interannual variability of the normalized difference vegetation index on the Tibetan Plateau and its relationship with climate change. Advances in Atmospheric Sciences, 24, 474-484.
DOI URL |
[66] |
Zhu L, Southworth J (2013). Disentangling the relationships between net primary production and precipitation in southern Africa savannas using satellite observations from 1982 to 2010. Remote Sensing, 5, 3803-3825.
DOI URL |
[1] | 师生波 周党卫 李天才 德科加 杲秀珍 马家麟 孙涛 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 0-0. |
[2] | 何敏 许秋月 夏允 杨柳明 范跃新 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 0-0. |
[3] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[4] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[5] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[6] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[7] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[8] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[9] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[10] | 王国宏, 郭柯, 谢宗强, 唐志尧, 蒋延玲, 方精云. 《中国植被志》研编规范的若干说明、补充与修订[J]. 植物生态学报, 2022, 46(3): 368-372. |
[11] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[12] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因 分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[13] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[14] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[15] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19