植物生态学报 ›› 2023, Vol. 47 ›› Issue (11): 1483-1492.DOI: 10.17521/cjpe.2023.0011
所属专题: 全球变化与生态系统; 生态系统碳水能量通量
葛萍1,2, 李昂2, 王银柳2, 姜良超2, 牛国祥2, 哈斯木其尔2, 王彦兵2, 薛建国2, 赵威1,*(), 黄建辉2,*()
收稿日期:
2023-01-12
接受日期:
2023-05-12
出版日期:
2023-11-20
发布日期:
2023-12-22
通讯作者:
(Zhao W, 基金资助:
GE Ping1,2, LI Ang2, WANG Yin-Liu2, JIANG Liang-Chao2, NIU Guo-Xiang2, HASI Muqi’er2, WANG Yan-Bing2, XUE Jian-Guo2, ZHAO Wei1,*(), HUANG Jian-Hui2,*()
Received:
2023-01-12
Accepted:
2023-05-12
Online:
2023-11-20
Published:
2023-12-22
Contact:
(Zhao W, Supported by:
摘要:
为了研究氮沉降对内蒙古额尔古纳草甸草原主要温室气体(CO2、CH4和N2O)排放通量的影响, 该研究通过添加NH4NO3模拟氮沉降, 并设置6个氮添加水平(0、2、5、10、20、50 g·m-2·a-1), 同时考虑到草地利用方式的影响, 设置刈割和不刈割2个处理水平。分别于2020年和2021年的生长季(5-9月), 采用静态箱-气相色谱法测定了3种温室气体的排放通量。主要结果有: 1)生长季内3种温室气体的排放通量对氮添加的响应呈明显的非线性, 但响应格局在3种温室气体之间存在明显的差异。2)当氮添加量达到5-10 g·m-2·a-1时, CO2的通量达到峰值, 表现出显著的饱和性特征; CH4的吸收在低氮添加(0-5 g·m-2·a-1)时受到促进, 且这种促进作用随着氮添加量的增加而增强, 但氮添加量达到5-10 g·m-2·a-1时, 对CH4吸收的促进作用逐渐减弱, 且高氮添加(50 g·m-2·a-1)显著抑制CH4的吸收; N2O的排放通量对氮添加的响应总体也随氮添加量的增加而显著增加, 但响应模式与幅度存在年际差异。3)刈割仅在2021年对CH4的吸收具有显著的促进作用。4)综合两年的结果, CO2排放通量与降水量和硝态氮含量显著正相关, 与pH显著负相关。CH4吸收通量与降水量和铵态氮含量显著正相关, 与pH显著负相关。N2O排放通量与土壤温度和铵态氮含量显著正相关, 与硝态氮含量显著负相关。上述研究结果表明, 大气氮沉降增加对温室气体排放的影响具有普遍的非线性特征, 但不同温室气体的通量格局存在一定的差异。该研究结果对控制氮肥用量、选择合适的草地利用方式、评估草地生态系统变暖潜势具有重要意义。
葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应. 植物生态学报, 2023, 47(11): 1483-1492. DOI: 10.17521/cjpe.2023.0011
GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe. Chinese Journal of Plant Ecology, 2023, 47(11): 1483-1492. DOI: 10.17521/cjpe.2023.0011
图1 2020和2021年呼伦贝尔草甸草原实验样地的月降水量和平均气温。
Fig. 1 Monthly precipitation and mean air temperature of the experimental site across 2020 and 2021 in Hulun Buir meadow steppe.
图2 草甸草原CO2排放通量随氮添加后天数的动态变化(平均值±标准误)。A、B, 2020年。C、D, 2021年。N0、N2、N5、N10、N20、N50分别表示为0、2、5、10、20、50 g·m-2·a-1的氮添加。
Fig. 2 Dynamics of CO2 emission flux with days after nitrogen (N) addition in a meadow steppe (mean ± SE). A, B, Year 2020. C, D, Year 2021. N0, N2, N5, N10, N20, N50 represent N addition of 0, 2, 5, 10, 20, 50 g·m-2·a-1, respectively.
图3 草甸草原平均CO2排放通量随氮添加水平的变化(平均值±标准误)。A、B, 2020年。C、D, 2021年。**, p < 0.01。
Fig. 3 Variation of the mean CO2 emission flux with nitrogen (N) addition levels in a meadow steppe (mean ± SE). A, B, Year 2020. C, D, Year 2021. **, p < 0.01.
图4 草甸草原CH4吸收通量随氮添加后天数的动态变化(平均值±标准误)。A、B, 2020年。C、D, 2021年。N0、N2、N5、N10、N20、N50分别表示为0、2、5、10、20、50 g·m-2·a-1的氮添加。
Fig. 4 Dynamics of CH4 uptake flux with days after nitrogen (N) addition in a meadow steppe (mean ± SE). A, B, Year 2020. C, D, Year 2021. N0, N2, N5, N10, N20, N50 represent N addition of 0, 2, 5, 10, 20, 50 g·m-2·a-1, respectively.
图5 草甸草原平均CH4吸收通量随氮添加水平的变化(平均值±标准误)。A、B, 2020年。C、D, 2021年。*, p < 0.05。
Fig. 5 Variation of the mean CH4 uptake flux with nitrogen (N) addition levels in a meadow steppe (mean ± SE). A, B, Year 2020. C, D, Year 2021. *, p < 0.05.
图6 草甸草原N2O排放通量随氮添加后天数的动态变化(平均值±标准误)。A、B, 2020年。C、D, 2021年。N0、N2、N5、N10、N20、N50分别表示为0、2、5、10、20、50 g·m-2·a-1的氮添加。
Fig. 6 Dynamics of N2O emission flux with days after nitrogen (N) addition in a meadow steppe (mean ± SE). A, B, Year 2020. C, D, Year 2021. N0, N2, N5, N10, N20, N50 represent N addition of 0, 2, 5, 10, 20, 50 g·m-2·a-1, respectively.
图7 草甸草原平均N2O排放通量随氮添加水平的变化(平均值±标准误)。A、B, 2020年。C、D, 2021年。*, p < 0.05; **, p < 0.01。
Fig. 7 Variation of the mean N2O emission flux with nitrogen (N) addition levels in a meadow steppe (mean ± SE). A, B, Year 2020 C, D, Year 2021. *, p < 0.05; **, p < 0.01.
温室气体 GHGs | 土壤温度 Soil temperature | 降水量 Precipitation | pH | 铵态氮含量 NH+4-N content | 硝态氮含量 NO-3-N content |
---|---|---|---|---|---|
CO2 | -0.02 | 0.36** | -0.41** | 0.04 | 0.43** |
CH4 | 0.18** | 0.25** | -0.23** | 0.37** | 0.07 |
N2O | 0.59** | -0.10 | -0.02 | 0.26** | -0.23** |
表1 草甸草原温室气体通量与影响因子的相关性
Table 1 Correlation between greenhouse gas (GHG) flux and environmental factors in a meadow steppe
温室气体 GHGs | 土壤温度 Soil temperature | 降水量 Precipitation | pH | 铵态氮含量 NH+4-N content | 硝态氮含量 NO-3-N content |
---|---|---|---|---|---|
CO2 | -0.02 | 0.36** | -0.41** | 0.04 | 0.43** |
CH4 | 0.18** | 0.25** | -0.23** | 0.37** | 0.07 |
N2O | 0.59** | -0.10 | -0.02 | 0.26** | -0.23** |
[1] |
Bahn M, Knapp M, Garajova Z, Pfahringer N, Cernusca A (2006). Root respiration in temperate mountain grasslands differing in land use. Global Change Biology, 12, 995-1006.
DOI URL |
[2] |
Chen DM, Li JJ, Lan ZC, Hu SJ, Bai YF (2016). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 30, 658-669.
DOI URL |
[3] |
Chen H, Gurmesa GA, Zhang W, Zhu XM, Zheng MH, Mao QG, Zhang T, Mo JM (2016). Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: hypothesis testing. Functional Ecology, 30, 305-313.
DOI URL |
[4] |
Chen S, Hao TX, Goulding K, Misselbrook T, Liu XJ (2019). Impact of 13-years of nitrogen addition on nitrous oxide and methane fluxes and ecosystem respiration in a temperate grassland. Environmental Pollution, 252, 675-681.
DOI PMID |
[5] |
Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998). Modulation of diversity by grazing and mowing in native tallgrass prairie. Science, 280, 745-747.
PMID |
[6] | Fang HJ, Cheng SL, Yu GR, Wang YS, Xu MJ, Dang XS, Li LS, Wang L (2014). Microbial mechanisms responsible for the effects of atmospheric nitrogen deposition on methane uptake and nitrous oxide emission in forest soils: a review. Acta Ecologica Sinica, 34, 4799-4806. |
[方华军, 程淑兰, 于贵瑞, 王永生, 徐敏杰, 党旭升, 李林森, 王磊 (2014). 大气氮沉降对森林土壤甲烷吸收和氧化亚氮排放的影响及其微生物学机制. 生态学报, 34, 4799-4806.] | |
[7] |
Gu X, Wang L, Laanbroek H, Xu X, Song B, Huo Y, Chen S, Li L, Zhang L (2019). Saturated N2O emission rates occur above the nitrogen deposition level predicted for the semi-arid grasslands of Inner Mongolia, China. Geoderma, 341, 18-25.
DOI URL |
[8] | IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[9] |
Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322.
DOI |
[10] |
Jiang CM, Yu GR, Fang HJ, Cao GM, Li YN (2010). Short- term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai- Tibetan Plateau, China. Atmospheric Environment, 44, 2920-2926.
DOI URL |
[11] |
Lal R (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1-22.
DOI URL |
[12] |
Li Y, Chapman SJ, Nicol GW, Yao H (2018). Nitrification and nitrifiers in acidic soils. Soil Biology & Biochemistry, 116, 290-301.
DOI URL |
[13] |
Liu L, Greaver TL (2009). A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecology Letters, 12, 1103-1117.
DOI URL |
[14] | Liu XY, Li ZP, Pan GX, Li LQ (2011). Greenhouse gas emission and C intensity for a long-term fertilization rice paddy in Tai Lake region, China. Journal of Agro- Environment Science, 30, 1783-1790. |
[刘晓雨, 李志鹏, 潘根兴, 李恋卿 (2011). 长期不同施肥下太湖地区稻田净温室效应和温室气体排放强度的变化. 农业环境科学学报, 30, 1783-1790.] | |
[15] |
Niu S, Classen AT, Dukes JS, Kardol P, Liu L, Luo Y, Rustad L, Sun J, Tang J, Templer PH, Thomas RQ, Tian D, Vicca S, Wang YP, Xia J, Zaehle S (2016). Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters, 19, 697-709.
DOI URL |
[16] |
Peng Y, Wang G, Li F, Yang G, Fang K, Liu L, Qin S, Zhang D, Zhou G, Fang H, Liu X, Liu C, Yang Y (2019). Unimodal response of soil methane consumption to increasing nitrogen additions. Environmental Science & Technology, 53, 4150-4160.
DOI URL |
[17] |
Scurlock JMO, Johnson K, Olson RJ (2002). Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 8, 736-753.
DOI URL |
[18] |
Tang SM, Wang K, Xiang YZ, Tian DS, Wang JS, Liu YS, Cao B, Guo D, Niu SL (2019). Heavy grazing reduces grassland soil greenhouse gas fluxes: a global meta-analysis. Science of the Total Environment, 654, 1218-1224.
DOI URL |
[19] | Wang JJ, Wang CK, Han Y (2018). Factors affecting soil respiration in stands of different ages in the Maoershan region, Northeast China. Acta Ecologica Sinica, 38, 1194-1202. |
[王家骏, 王传宽, 韩轶 (2018). 帽儿山不同年龄森林土壤呼吸速率的影响因子. 生态学报, 38, 1194-1202.] | |
[20] | Wang X, Du YG, Guo XW (2021). Effect of nitrogen deposition on grasslands nitrous oxide emission rates by meta-analysis method. Mountain Research, 39, 338-345. |
[王霞, 杜岩功, 郭小伟 (2021). Meta分析模拟氮沉降对我国北方草地氧化亚氮排放速率的影响. 山地学报, 39, 338-345.] | |
[21] |
Wang XY, Li YL, Zhao XY, Mao W, Cui D, Qu H, Lian J, Luo YQ (2012). Responses of soil respiration to different environment factors in semi-arid and arid areas. Acta Ecologica Sinica, 32, 4890-4901.
DOI URL |
[王新源, 李玉霖, 赵学勇, 毛伟, 崔夺, 曲浩, 连杰, 罗永清 (2012). 干旱半干旱区不同环境因素对土壤呼吸影响研究进展. 生态学报, 32, 4890-4901.] | |
[22] |
Wang YL, Niu GX, Wang RZ, Rousk K, Li A, Hasi M, Wang CH, Xue JG, Yang GJ, Lü XT, Jiang Y, Han XG, Huang JH (2023). Enhanced foliar 15N enrichment with increasing nitrogen addition rates: role of plant species and nitrogen compounds. Global Change Biology, 29, 1591-1605.
DOI URL |
[23] |
Wickland KP, Striegl RG, Alisa Mast M, Clow DW (2001). Carbon gas exchange at a southern Rocky Mountain wetland, 1996-1998. Global Biogeochemical Cycles, 15, 321-335.
DOI URL |
[24] |
Yang GJ, Lü XT, Stevens CJ, Zhang GM, Wang HY, Wang ZW, Zhang ZJ, Liu ZY, Han XG (2019). Mowing mitigates the negative impacts of N addition on plant species diversity. Oecologia, 189, 769-779.
DOI |
[25] | Yang HY, Zhang T, Huang YM, Duan L (2016). Effect of stimulated N deposition on N2O emission from a Stipa krylovii steppe in Inner Mongolia, China. Environmental Science, 37, 1900-1907. |
[杨涵越, 张婷, 黄永梅, 段雷(2016). 模拟氮沉降对内蒙古克氏针茅草原N2O排放的影响. 环境科学, 37, 1900-1907.] | |
[26] | Yang Y, Xiao YM, Li CB, Gao YH, Li CL, Zhou GY (2022). Effects of long-term nitrogen addition and precipitation changes on CH4 flux in an alpine steppe. Chinese Journal of Applied and Environmental Biology, 28, 1542-1548. |
[杨阳, 肖元明, 李长斌, 高永恒, 李春丽, 周国英 (2022). 长期氮添加和降水格局改变对高寒草原CH4通量的影响. 应用与环境生物学报, 28, 1542-1548.] | |
[27] |
Yang Y, Xiao YM, Li CB, Wang B, Gao YH, Zhou GY (2021). Nitrogen addition, rather than altered precipitation, stimulates nitrous oxide emissions in an alpine steppe. Ecology and Evolution, 11, 15153-15163.
DOI PMID |
[28] |
Yang YH, Zhang DY, Wei B, Liu Y, Feng XH, Mao C, Xu WJ, He M, Wang L, Zheng ZH, Wang YY, Chen LY, Peng YF (2023). Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input. Chinese Journal of Plant Ecology, 47, 1-24.
DOI URL |
[杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰(2023). 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制. 植物生态学报, 47, 1-24.]
DOI |
|
[29] |
Ying J, Li XX, Wang NN, Lan ZC, He JZ, Bai YF (2017). Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biology & Biochemistry, 107, 10-18.
DOI URL |
[30] | Zhang JL, Li J, Zhao JN, Liu HM, Wang Y, Yang DL (2017). Effects of nitrogen addition on greenhouse gas flux in a Stipa baicalensis grassland in Inner Mongolia. Journal of Agro-Environment Science, 36, 1640-1648. |
[张金玲, 李洁, 赵建宁, 刘红梅, 王宇, 杨殿林 (2017). 氮素添加对贝加尔针茅草原温室气体通量的影响. 农业环境科学学报, 36, 1640-1648.] | |
[31] |
Zhang LH, Hou LY, Gou DF, Li LH, Xu XF (2017). Interactive impacts of nitrogen input and water amendment on growing season fluxes of CO2, CH4, and N2O in a semiarid grassland, Northern China. Science of the Total Environment, 578, 523-534.
DOI URL |
[32] |
Zhang PL, Fang HJ, Cheng SL, Xu MJ, Li LS, Dang XS (2013). The early effects of nitrogen addition on CH4 uptake in an alpine meadow soil on the Eastern Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 33, 4101-4110.
DOI URL |
[张裴雷, 方华军, 程淑兰, 徐敏杰, 李林森, 党旭升 (2013). 增氮对青藏高原东缘高寒草甸土壤甲烷吸收的早期影响. 生态学报, 33, 4101-4110.] | |
[33] | Zhang XL, Tan YL, Li A, Ren TT, Chen SP, Wang LX, Huang JH (2015). Water and nitrogen availability co-control ecosystem CO2 exchange in a semiarid temperate steppe. Scientific Reports, 5, 15549. DOI: 10.1038/srep15549. |
[34] |
Zhou LY, Zhou XH, Zhang BC, Lu M, Luo YQ, Liu LL, Li B (2014). Different responses of soil respiration and its components to nitrogen addition among biomes: a meta- analysis. Global Change Biology, 20, 2332-2343.
DOI URL |
[35] |
Zhou XH, Wan SQ, Luo YQ (2007). Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 13, 761-775.
DOI URL |
[1] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[2] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[3] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[4] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[5] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[6] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[7] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[8] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[9] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[10] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[11] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[12] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[13] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[14] | 杨建强, 刁华杰, 胡姝娅, 王常慧. 不同水平氮添加对盐渍化草地土壤微生物特征的影响[J]. 植物生态学报, 2021, 45(7): 780-789. |
[15] | 武运涛, 杨森, 王欣, 黄俊胜, 王斌, 刘卫星, 刘玲莉. 草地土壤有机质不同组分氮库对长期氮添加的响应[J]. 植物生态学报, 2021, 45(7): 790-798. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19