植物生态学报 ›› 2022, Vol. 46 ›› Issue (7): 811-822.DOI: 10.17521/cjpe.2021.0280
谢欢1, 张秋芳2, 陈廷廷1, 曾泉鑫1, 周嘉聪1, 吴玥1, 林惠瑛1, 刘苑苑1, 尹云锋1, 陈岳民1,*()
收稿日期:
2021-08-02
接受日期:
2021-12-09
出版日期:
2022-07-20
发布日期:
2022-01-07
通讯作者:
陈岳民
作者简介:
* (ymchen@fjnu.edu.cn)基金资助:
XIE Huan1, ZHANG Qiu-Fang2, CHEN Ting-Ting1, ZENG Quan-Xin1, ZHOU Jia-Cong1, WU Yue1, LIN Hui-Ying1, LIU Yuan-Yuan1, YIN Yun-Feng1, CHEN Yue-Min1,*()
Received:
2021-08-02
Accepted:
2021-12-09
Online:
2022-07-20
Published:
2022-01-07
Contact:
CHEN Yue-Min
Supported by:
摘要:
磷是亚热带地区植物生长的主要限制营养元素, 而氮沉降量的增加会降低土壤磷的有效性。该研究以微生物和植物细根为重点探究土壤磷转化, 揭示氮沉降背景下低磷有效性土壤的磷供应及生产力维持。通过在福州长安山模拟氮沉降实验, 设置对照(0 kg·hm-2·a-1)、低氮(40 kg·hm-2·a-1)和高氮(80 kg·hm-2·a-1) 3个处理, 收集杉木(Cunninghamia lanceolata)幼苗的土壤和根系样本, 综合分析土壤磷组分和养分含量、土壤微生物特征和植物根系特征。结果显示, 与对照处理相比, 低氮处理显著增加土壤易分解态有机磷、中等易分解态无机磷和闭蓄态磷含量, 但是显著降低原生矿物态磷和中等易分解态有机磷含量; 而高氮处理对土壤磷组分无显著影响。冗余分析表明, 土壤酸性磷酸酶活性、丛枝菌根真菌的相对丰度、土壤微生物生物量磷含量和根系生物量是解释土壤磷组分变化的重要微生物和植物因子。方差分解分析发现植物根系特征-土壤微生物特征共同解释了土壤磷组分变化的57%, 并且通过相关分析发现丛枝菌根真菌的相对丰度和根系生物量呈显著正相关关系。综上所述, 低水平的氮输入促进土壤丛枝菌根真菌的定殖, 丛枝菌根真菌和杉木根系通过协作促进中等易分解态有机磷和原生矿物态磷向易分解态磷的转换, 维持了杉木幼苗的生长。
谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性. 植物生态学报, 2022, 46(7): 811-822. DOI: 10.17521/cjpe.2021.0280
XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition. Chinese Journal of Plant Ecology, 2022, 46(7): 811-822. DOI: 10.17521/cjpe.2021.0280
图1 土壤磷(P)组分的提取流程和分类(图片内容参考自Hedley等(1982), Tiessen和Moir (2007))。
Fig. 1 Extraction procedure and classification of soil phosphorus (P) fractions (Picture content referenced from Hedley et al. (1982), Tiessen & Moir (2007)). Pi, inorganic phosphorus; Po, organic phosphorus.
处理 Treatment | pH | 总碳含量 Total carbon (C) content (g·kg-1) | 总氮含量 Total N content (g·kg-1) | 有效氮含量 Available N content (mg·kg-1) | 可溶性有机碳含量 Dissolved organic C content (mg·kg-1) | 可溶性有机氮含量 Dissolved organic N content (mg·kg-1) |
---|---|---|---|---|---|---|
CK | 4.55 ± 0.06a | 16.30 ± 0.23a | 1.47 ± 0.03a | 7.97 ± 0.22b | 7.67 ± 0.60a | 4.61 ± 0.40b |
LN | 4.51 ± 0.06a | 16.20 ± 0.04a | 1.48 ± 0.05a | 8.58 ± 0.49a | 6.78 ± 0.44b | 6.68 ± 0.36a |
HN | 4.40 ± 0.09b | 16.61 ± 0.24a | 1.50 ± 0.02a | 8.83 ± 0.25a | 3.99 ± 0.71c | 7.24 ± 0.71a |
p | 0.03 | 0.06 | 0.57 | 0.01 | <0.01 | <0.01 |
表1 施氮对福州长安山土壤理化性质的影响
Table 1 Effects of nitrogen (N) addition on soil physical and chemical properties at the Fuzhou Changʼan Mountain in Fujian Province
处理 Treatment | pH | 总碳含量 Total carbon (C) content (g·kg-1) | 总氮含量 Total N content (g·kg-1) | 有效氮含量 Available N content (mg·kg-1) | 可溶性有机碳含量 Dissolved organic C content (mg·kg-1) | 可溶性有机氮含量 Dissolved organic N content (mg·kg-1) |
---|---|---|---|---|---|---|
CK | 4.55 ± 0.06a | 16.30 ± 0.23a | 1.47 ± 0.03a | 7.97 ± 0.22b | 7.67 ± 0.60a | 4.61 ± 0.40b |
LN | 4.51 ± 0.06a | 16.20 ± 0.04a | 1.48 ± 0.05a | 8.58 ± 0.49a | 6.78 ± 0.44b | 6.68 ± 0.36a |
HN | 4.40 ± 0.09b | 16.61 ± 0.24a | 1.50 ± 0.02a | 8.83 ± 0.25a | 3.99 ± 0.71c | 7.24 ± 0.71a |
p | 0.03 | 0.06 | 0.57 | 0.01 | <0.01 | <0.01 |
图2 施氮(N)对福州长安山土壤磷(P)组分含量的影响(平均值±标准差)。不同小写字母表示处理间差异显著(p < 0.05)。CK, 对照; HN, 高氮; LN, 低氮。
Fig. 2 Effects of nitrogen (N) addition on soil phosphorus (P) components contents at the Fuzhou Changʼan Mountain in Fujian Province (mean ± SD). Different lowercase letters mean significant difference among different treatments (p < 0.05). CK, control; HN, high nitrogen; LN, low nitrogen. Pi, inorganic phosphorus; Po, organic phosphorus.
处理 Treatment | 子囊菌门 Ascomycota | 担子菌门 Basidiomycotaota | 被孢菌门 Mortierellomycota | 未定义 Unclassified | 罗兹菌门 Rozellomycota | 球囊菌门 Glomeromycota | 其他 Other |
---|---|---|---|---|---|---|---|
CK | 38.73 ± 9.28a | 26.04 ± 7.02a | 11.94 ± 3.16a | 11.18 ± 1.03a | 9.87 ± 6.22a | 0.27 ± 0.01b | 1.97 ± 0.56a |
LN | 39.02 ± 6.00a | 26.16 ± 3.33a | 16.86 ± 3.52a | 10.83 ± 4.13a | 4.61 ± 0.97a | 1.09 ± 0.11a | 1.43 ± 0.48a |
HN | 35.05 ± 12.21a | 37.24 ± 13.12a | 14.43 ± 2.39a | 8.11 ± 3.91a | 3.77 ± 1.27a | 0.62 ± 0.01a | 0.90 ± 0.63a |
p | 0.809 | 0.175 | 0.129 | 0.400 | 0.091 | <0.001 | 0.072 |
表2 施氮(N)对福州长安山土壤真菌群落的影响(%)(平均值±标准差)
Table 2 Effects of nitrogen addition on soil fungi community (%) at the Fuzhou Changʼan Mountain in Fujian Province (mean ± SD)
处理 Treatment | 子囊菌门 Ascomycota | 担子菌门 Basidiomycotaota | 被孢菌门 Mortierellomycota | 未定义 Unclassified | 罗兹菌门 Rozellomycota | 球囊菌门 Glomeromycota | 其他 Other |
---|---|---|---|---|---|---|---|
CK | 38.73 ± 9.28a | 26.04 ± 7.02a | 11.94 ± 3.16a | 11.18 ± 1.03a | 9.87 ± 6.22a | 0.27 ± 0.01b | 1.97 ± 0.56a |
LN | 39.02 ± 6.00a | 26.16 ± 3.33a | 16.86 ± 3.52a | 10.83 ± 4.13a | 4.61 ± 0.97a | 1.09 ± 0.11a | 1.43 ± 0.48a |
HN | 35.05 ± 12.21a | 37.24 ± 13.12a | 14.43 ± 2.39a | 8.11 ± 3.91a | 3.77 ± 1.27a | 0.62 ± 0.01a | 0.90 ± 0.63a |
p | 0.809 | 0.175 | 0.129 | 0.400 | 0.091 | <0.001 | 0.072 |
处理 Treatment | 酸性磷酸单酯酶 Acid phosphomonoesterase (nmol·g-1·h-1) | 酸性磷酸双酯酶 Acid phosphodiesterase (nmol·g-1·h-1) | 微生物生物量碳含量 Microbial biomass carbon content (mg·kg-1) | 微生物生物量氮含量 Microbial biomass N content (mg·kg-1) | 微生物生物量磷含量 Microbial biomass phosphorus content (mg·kg-1) |
---|---|---|---|---|---|
CK | 24.68 ± 2.44b | 1.67 ± 0.08a | 215.42 ± 21.87c | 29.59 ± 1.40a | 41.07 ± 3.31a |
LN | 48.89 ± 4.08a | 1.72 ± 0.05a | 273.59 ± 18.53b | 26.45 ± 0.98b | 21.75 ± 2.09b |
HN | 19.59 ± 2.90c | 1.19 ± 0.03b | 358.27 ± 20.05a | 27.62 ± 0.95b | 20.78 ± 6.45b |
p | <0.001 | <0.001 | <0.001 | 0.003 | <0.001 |
表3 施氮对福州长安山土壤酶活性和微生物生物量养分含量的影响(平均值±标准差)
Table 3 Effects of nitrogen (N) addition on soil enzymes activity and microbial biomass nutrient content at the Fuzhou Changʼan Mountain in Fujian Province (mean ± SD)
处理 Treatment | 酸性磷酸单酯酶 Acid phosphomonoesterase (nmol·g-1·h-1) | 酸性磷酸双酯酶 Acid phosphodiesterase (nmol·g-1·h-1) | 微生物生物量碳含量 Microbial biomass carbon content (mg·kg-1) | 微生物生物量氮含量 Microbial biomass N content (mg·kg-1) | 微生物生物量磷含量 Microbial biomass phosphorus content (mg·kg-1) |
---|---|---|---|---|---|
CK | 24.68 ± 2.44b | 1.67 ± 0.08a | 215.42 ± 21.87c | 29.59 ± 1.40a | 41.07 ± 3.31a |
LN | 48.89 ± 4.08a | 1.72 ± 0.05a | 273.59 ± 18.53b | 26.45 ± 0.98b | 21.75 ± 2.09b |
HN | 19.59 ± 2.90c | 1.19 ± 0.03b | 358.27 ± 20.05a | 27.62 ± 0.95b | 20.78 ± 6.45b |
p | <0.001 | <0.001 | <0.001 | 0.003 | <0.001 |
处理 Treatment | 根系生物量 Root biomass (g·plant-1) | 根系总碳含量 Root total carbon content (g·kg-1) | 根系总氮含量 Root total N content (g·kg-1) | 根系总磷含量 Root total phosphorous content (g·kg-1) | 侵染率 Root colonization rate (%) | 直径 root diameter (mm) | 比根长 Specific root length (m·g-1) | 比表面积 Specific root surface area (cm·g-1) | 组织密度 Root tissue density (g·cm-3) |
---|---|---|---|---|---|---|---|---|---|
CK | 2.79 ± 0.46b | 459.61 ± 4.62b | 9.61 ± 1.20a | 1.66 ± 0.23a | 58.23 ± 8.71c | 0.82 ± 0.13a | 36.13 ± 6.39a | 554.02 ± 25.53a | 0.20 ± 0.10a |
LN | 4.01 ± 0.39a | 467.72 ± 8.98a | 10.01 ± 0.98a | 1.37 ± 0.19ab | 80.09 ± 4.13b | 0.69 ± 0.44a | 35.36 ± 9.58a | 265.01 ± 62.72b | 0.62 ± 0.37a |
HN | 3.06 ± 0.49b | 470.08 ± 5.63a | 8.63 ± 1.18a | 1.31 ± 0.11b | 89.67 ± 4.69a | 0.39 ± 0.12a | 36.68 ± 12.59a | 342.53 ± 63.65b | 0.44 ± 0.21a |
p | 0.003 | <0.001 | 0.180 | 0.023 | <0.001 | 0.079 | 0.978 | <0.001 | 0.062 |
表4 施氮对福州长安山植物根系特征的影响(平均值±标准差)
Table 4 Effects of nitrogen (N) addition on plant roots traits at the Fuzhou Changʼan Mountain in Fujian Province (mean ± SD)
处理 Treatment | 根系生物量 Root biomass (g·plant-1) | 根系总碳含量 Root total carbon content (g·kg-1) | 根系总氮含量 Root total N content (g·kg-1) | 根系总磷含量 Root total phosphorous content (g·kg-1) | 侵染率 Root colonization rate (%) | 直径 root diameter (mm) | 比根长 Specific root length (m·g-1) | 比表面积 Specific root surface area (cm·g-1) | 组织密度 Root tissue density (g·cm-3) |
---|---|---|---|---|---|---|---|---|---|
CK | 2.79 ± 0.46b | 459.61 ± 4.62b | 9.61 ± 1.20a | 1.66 ± 0.23a | 58.23 ± 8.71c | 0.82 ± 0.13a | 36.13 ± 6.39a | 554.02 ± 25.53a | 0.20 ± 0.10a |
LN | 4.01 ± 0.39a | 467.72 ± 8.98a | 10.01 ± 0.98a | 1.37 ± 0.19ab | 80.09 ± 4.13b | 0.69 ± 0.44a | 35.36 ± 9.58a | 265.01 ± 62.72b | 0.62 ± 0.37a |
HN | 3.06 ± 0.49b | 470.08 ± 5.63a | 8.63 ± 1.18a | 1.31 ± 0.11b | 89.67 ± 4.69a | 0.39 ± 0.12a | 36.68 ± 12.59a | 342.53 ± 63.65b | 0.44 ± 0.21a |
p | 0.003 | <0.001 | 0.180 | 0.023 | <0.001 | 0.079 | 0.978 | <0.001 | 0.062 |
图4 土壤微生物特征(A)和植物根系特征(B)对福州长安山土壤磷(P)组分影响的冗余分析(RDA)。
Fig. 4 Redundancy analysis (RDA) of soil microbial (A) and plant roots characteristics (B) on soil phosphorus (P) components at the Fuzhou Changʼan Mountain in Fujian Province. AcP, acid phosphomonolase; AMF, arbuscular mycorrhizal fungi; FRD, fine root diameter; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial biomass phosphorus; PD, acid phosphodiesterase; Pi, inorganic phosphorus; Po, organic phosphorus; RC, root colonization; RM, root biomass; RTC, root total carbon; RTD, special root density; RTN, root total nitrogen; RTP, root total phosphorous; SRA, special root area; SRL, special root length.
图5 方差分解分析显示由植物变量和微生物变量解释土壤磷组分变异百分比。
Fig. 5 Variation-partitioning analysis showing the percentages of the variance in soil phosphorus components explained by plant and microorganism variables.
根系生物量 Root biomass | 直径 Root diameter | 比根长 Specific root length | 比表面积 Specific root surface area | 组织密度 Root tissue density | 侵染率 Root colonization rate | 根系总碳含量 Root total carbon content | |
---|---|---|---|---|---|---|---|
酸性磷酸单酯酶活性 Acid phosphomonoesterase activity | 0.713** | 0.264 | -0.009 | -0.287 | -0.434 | 0.064 | 0.267 |
酸性磷酸双酯酶活性 Acid phosphodiesterase activity | 0.306 | 0.541* | 0.001 | 0.400 | -0.585* | -0.590* | -0.417 |
丛枝菌根真菌相对丰度 Mycorrhizal Fungi relative abundance | 0.789** | 0.013 | 0.032 | -0.668** | -0.112 | 0.485 | 0.625* |
微生物生物量碳含量 Microbial biomass carbon content | 0.007 | -0.639* | -0.042 | -0.713** | 0.537* | 0.740** | 0.796** |
微生物生物量氮含量 Microbial biomass nitrogen content | -0.566* | 0.061 | -0.068 | 0.687** | 0.041 | -0.589* | -0.642** |
微生物生物量磷含量 Microbial biomass phosphorus content | -0.439 | 0.362 | 0.119 | 0.829** | -0.177 | 0.855** | -0.894** |
表5 福州长安山土壤微生物特征和植物根系特征的相关系数
Table 5 Correlation coefficients between soil microbial and plant roots characteristics at the Fuzhou Changʼan Mountain in Fujian Province
根系生物量 Root biomass | 直径 Root diameter | 比根长 Specific root length | 比表面积 Specific root surface area | 组织密度 Root tissue density | 侵染率 Root colonization rate | 根系总碳含量 Root total carbon content | |
---|---|---|---|---|---|---|---|
酸性磷酸单酯酶活性 Acid phosphomonoesterase activity | 0.713** | 0.264 | -0.009 | -0.287 | -0.434 | 0.064 | 0.267 |
酸性磷酸双酯酶活性 Acid phosphodiesterase activity | 0.306 | 0.541* | 0.001 | 0.400 | -0.585* | -0.590* | -0.417 |
丛枝菌根真菌相对丰度 Mycorrhizal Fungi relative abundance | 0.789** | 0.013 | 0.032 | -0.668** | -0.112 | 0.485 | 0.625* |
微生物生物量碳含量 Microbial biomass carbon content | 0.007 | -0.639* | -0.042 | -0.713** | 0.537* | 0.740** | 0.796** |
微生物生物量氮含量 Microbial biomass nitrogen content | -0.566* | 0.061 | -0.068 | 0.687** | 0.041 | -0.589* | -0.642** |
微生物生物量磷含量 Microbial biomass phosphorus content | -0.439 | 0.362 | 0.119 | 0.829** | -0.177 | 0.855** | -0.894** |
图6 土壤磷(P)组分对施氮(N)的响应概念图。“ ”、“ ”、“ ”分别表示土壤微生物、植物根系指标含量显著增加、降低和无显著变化。“ ”和“ ”分别表示土壤各P组分显著增加和降低。Pi, 无机P; Po, 有机P。
Fig. 6 A conceptual diagram of the responses of soil phosphorus (P) components to nitrogen (N) addition and the regulation effect of soil microbes and plant root systems. “ ”、“ ”、“ ” represent that the contents of soil microbial and plant root index show significant increase, decrease, and no significant change, respectively. “ ” and “ ” represent that soil phosphorus components show significant increase and decrease, respectively. Pi, inorganic phosphorus; Po, organic phosphorus.
[1] | Ackerman D, Millet DB, Chen X (2019). Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 33, 100-107. |
[2] |
Aoki M, Fujii K, Kitayama K (2012). Environmental control of root exudation of low-molecular weight organic acids in tropical rainforests. Ecosystems, 15, 1194-1203.
DOI URL |
[3] | Bing HJ, Wu YH, Zhou J, Sun HY, Luo J, Wang JP, Yu D (2016). Stoichiometric variation of carbon, nitrogen, and phosphorus in soils and its implication for nutrient limitation in alpine ecosystem of eastern Tibetan Plateau. Journal of Soils & Sediments, 16, 405-416. |
[4] |
Braun S, Thomas VFD, Quiring R, Flückiger W (2010). Does nitrogen deposition increase forest production? The role of phosphorus. Environmental Pollution, 158, 2043-2052.
DOI URL |
[5] |
Brookes PC, Powlson DS, Jenkinson DS (1982). Measurement of microbial biomass phosphorus in soil. Soil Biology & Biochemistry, 14, 319-329.
DOI URL |
[6] |
Cao JL, Lin TC, Yang ZJ, Zheng Y, Xie L, Xiong DC, Yang YS (2020). Warming exerts a stronger effect than nitrogen addition on the soil arbuscular mycorrhizal fungal community in a young subtropical Cunninghamia lanceolata plantation. Geoderma, 367, DOI: 10.1016/j.geoderma.2020.114273.
DOI |
[7] |
Fan YX, Zhong XJ, Lin F, Liu CC, Yang LM, Wang MH, Chen GS, Chen YM, Yang YS (2019). Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 337, 246-255.
DOI URL |
[8] |
Fujii K, Aoki M, Kitayama K (2013). Reprint of “Biodegradation of low molecular weight organic acids in rhizosphere soils from a tropical montane rain forest”. Soil Biology & Biochemistry, 56, 3-9.
DOI URL |
[9] |
George TS, Turner BL, Gregory PJ, Cade-Menun BJ, Richardson AE (2006). Depletion of organic phosphorus from Oxisols in relation to phosphatase activities in the rhizosphere. European Journal of Soil Science, 57, 47-57.
DOI URL |
[10] |
Goswami S, Fisk MC, Vadeboncoeur MA, Garrison-Johnston M, Yanai RD, Fahey TJ (2018). Phosphorus limitation of aboveground production in northern hardwood forests. Ecology, 99, 438-449.
DOI URL |
[11] | Guo W, Geng ZZ, Chen Z, Li Q, Yang YX, Shen S, Jin DM, Wang CG (2018). Effects of nitrogen addition on mycorrhizal fungi community structure and diversity of Pinus koraiensis and Fraxinus mandshurica in Changbai Mountain. Ecology and Environmental Sciences, 27, 10-17. |
[郭伟, 耿珍珍, 陈朝, 李晴, 杨颜熙, 申思, 金大明, 王存国 (2018). 模拟氮沉降增加对长白山红松和水曲柳菌根真菌群落结构及多样性的影响. 生态环境学报, 27, 10-17.] | |
[12] |
Hedley MJ, Stewart JWB, Chauhan BS (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46, 970-976.
DOI URL |
[13] |
Helfenstein J, Tamburini F, von Sperber C, Massey MS, Pistocchi C, Chadwick OA, Vitousek PM, Kretzschmar R, Frossard E (2018). Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nature Communications, 9, 3226. DOI: 10.1038/s41467-018-05731-2.
DOI PMID |
[14] |
Heuck C, Smolka G, Whalen ED, Frey S, Gundersen P, Moldan F, Fernandez IJ, Spohn M (2018). Effects of long-term nitrogen addition on phosphorus cycling in organic soil horizons of temperate forests. Biogeochemistry, 141, 167-181.
DOI URL |
[15] |
Hou E, Chen C, Kuang Y, Zhang Y, Heenan M, Wen D (2016). A structural equation model analysis of phosphorus transformations in global unfertilized and uncultivated soils. Global Biogeochemical Cycles, 30, 1300-1309.
DOI URL |
[16] |
Huang WJ, Zhou GY, Liu JX, Duan HL, Liu XZ, Fang X, Zhang DQ (2014). Shifts in soil phosphorus fractions under elevated CO2and N addition in model forest ecosystems in subtropical China. Plant Ecology, 215, 1373-1384.
DOI URL |
[17] | James M, Bernard M (1997). Reviews: working with mycorrhizas in forestry and agriculture. New Phytologist, 135, 788. |
[18] | Jia LQ, Chen GS, Zhang LH, Chen TT, Jiang Q, Chen YH, Fan AL, Wang X (2019). Plastic responses of fine root morphological traits of Castanopsis fabri and Castanopsis carlesii to short-term nitrogen addition. Chinese Journal of Applied Ecology, 30, 4003-4011. |
[贾林巧, 陈光水, 张礼宏, 陈廷廷, 姜琦, 陈宇辉, 范爱连, 王雪 (2019). 罗浮栲和米槠细根形态功能性状对短期氮添加的可塑性响应. 应用生态学报, 30, 4003-4011.]
DOI |
|
[19] |
Kramer-Walter KR, Laughlin DC (2017). Root nutrient concentration and biomass allocation are more plastic than morphological traits in response to nutrient limitation. Plant and Soil, 416, 539-550.
DOI URL |
[20] |
Lambers H, Raven JA, Shaver GR, Smith SE (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23, 95-103.
DOI URL |
[21] |
Li L, McCormack ML, Chen FS, Wang HM, Ma ZQ, Guo DL (2019). Different responses of absorptive roots and arbuscular mycorrhizal fungi to fertilization provide diverse nutrient acquisition strategies in Chinese fir. Forest Ecology and Management, 433, 64-72.
DOI URL |
[22] |
Lin GG, Gao MX, Zeng DH, Fang YT (2020). Aboveground conservation acts in synergy with belowground uptake to alleviate phosphorus deficiency caused by nitrogen addition in a larch plantation. Forest Ecology and Management, 473, 118309. DOI: 10.1016/j.foreco.2020.118309.
DOI URL |
[23] |
Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193, 696-704.
DOI PMID |
[24] |
Oehl F, Oberson A, Probst M, Fliessbach A, Roth HR, Frossard E (2001). Kinetics of microbial phosphorus uptake in cultivated soils. Biology and Fertility of Soils, 34, 31-41.
DOI URL |
[25] |
Ostonen I, Truu M, Helmisaari HS, Lukac M, Borken W, Vanguelova E, Godbold DL, Lõhmus K, Zang U, Tedersoo L, Preem JK, Rosenvald K, Aosaar J, Armolaitis K, Frey J, et al. (2017). Adaptive root foraging strategies along a boreal-temperate forest gradient. New Phytologist, 215, 977-991.
DOI PMID |
[26] |
Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934. DOI: 1038/ncomms3934.
DOI PMID |
[27] |
Rennenberg H, Herschbach C (2013). Phosphorus nutrition of woody plants: many questions-few answers. Plant Biology, 15, 785-788.
DOI PMID |
[28] |
Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.
DOI URL |
[29] |
Shipley B, Meziane D (2002). The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology, 16, 326-331.
DOI URL |
[30] | Smith SE, Read DJ (2008). Mycorrhizal Symbiosis. 3rd ed. Academic Press, Salt Lake City, USA. |
[31] | Solaiman MZ, Ezawa T, Kojima T, Saito M (1999). Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Applied and Environmental Microbiology, 65, 5604-5606. |
[32] |
Tian J, Wei K, Condron LM, Chen Z, Xu Z, Chen L (2016). Impact of land use and nutrient addition on phosphatase activities and their relationships with organic phosphorus turnover in semi-arid grassland soils. Biology and Fertility of Soils, 52, 675-683.
DOI URL |
[33] | Tiessen H, Moir JO (2007). Characterization of available P by sequential extraction//Carter MR, Gregorich EG. Soil Sampling and Methods of Analysis. 2nd ed. CRC Press, Boca Raton, USA. 293-306. |
[34] |
Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology, 61, 295-304.
PMID |
[35] |
Ushio M, Fujiki Y, Hidaka A, Kitayama K (2015). Linkage of root physiology and morphology as an adaptation to soil phosphorus impoverishment in tropical montane forests. Functional Ecology, 29, 1235-1245.
DOI URL |
[36] |
Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
DOI URL |
[37] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
DOI URL |
[38] | Wardle DA, Walker LR, Bardgett RD (2005). Response to comment on “Ecosystem properties and forest decline in contrasting long-term chronosequences”. Science, 308, 633. |
[39] |
Wright SJ, Turner BJ, Yavitt JB, Harms KE, Kaspari M, Tanner EVJ, Bujan J, Griffin EA, Mayor JR, Pasquini SC, Sheldrake M, Garcia MN (2018). Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology, 99, 1129-1138.
DOI URL |
[40] |
Xiang W, Li L, Ouyang S, Xiao W, Zeng L, Chen L, Lei P, Deng X, Zeng Y, Fang J, Forrester DI (2021). Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations. European Journal of Forest Research, 140, 317-332.
DOI URL |
[41] | Xie H, Zhang QF, Zeng QX, Li YX, Ma YP, Lin HY, Liu YY, Yin YF, Chen YM (2020). Nitrogen application drives the transformation of phosphorus fractions in Cunninghamia lanceolata plantation by changing microbial biomass phosphorus. Chinese Journal of Ecology, 39, 3934-3942. |
[谢欢, 张秋芳, 曾泉鑫, 李宇轩, 马亚培, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民 (2020). 施氮通过改变微生物生物量磷驱动杉木人工林土壤磷组分转化. 生态学杂志, 39, 3934-3942.] | |
[42] | Zeng QX, Zeng XM, Lin KM, Zhang QF, Cheng L, Zhou JC, Lin QY, Chen YM, Xu JG (2020). Responses of soil phosphorus fractions and microorganisms to nitrogen application in a subtropical Phyllostachys pubescen forest. Chinese Journal of Applied Ecology, 31, 753-760. |
[曾泉鑫, 曾晓敏, 林开淼, 张秋芳, 程蕾, 周嘉聪, 林巧玉, 陈岳民, 徐建国 (2020). 亚热带毛竹林土壤磷组分和微生物对施氮的响应. 应用生态学报, 31, 753-760.]
DOI |
|
[43] | Zhang HZ, Shi LL, Wen D, Yu KL (2016). Soil potential labile but not occluded phosphorus forms increase with forest succession. Biology & Fertility of Soils, 52, 41-51. |
[44] | Zhang W (2013). Observation of N/S Deposition Fluxes and Investigation of Simulated S Deposition Effect on Soil N2O Production of Castanopsis carlesii Forests. Master degree dissertation, Fujian Normal University, Fuzhou. 15-19. |
[章伟 (2013). N/S沉降通量观测及模拟氮沉降对米槠林土壤N2O产生影响研究. 硕士学位论文, 福建师范大学, 福州. 15-19.] |
[1] | 罗来聪 赖晓琴 白健 李爱新 方海富 唐明 胡冬南 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物 乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 张慧 曾文静 龚新桃 马泽清. 亚热带典型树种根毛特征及其共生真菌关系[J]. 植物生态学报, 2023, 47(1): 0-0. |
[3] | 姚萌 康荣华 王盎 马方园 李靳 台子晗 方运霆. 利用15N示踪技术研究乔木幼苗对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 0-0. |
[4] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[5] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[6] | 秦江环, 张春雨, 赵秀海. 基于温带针阔混交林植物-土壤反馈的Janzen- Connell假说检验[J]. 植物生态学报, 2022, 46(6): 624-631. |
[7] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[8] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
[9] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[10] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[11] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[12] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[13] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[14] | 田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说[J]. 植物生态学报, 2021, 45(7): 682-713. |
[15] | 杨建强, 刁华杰, 胡姝娅, 王常慧. 不同水平氮添加对盐渍化草地土壤微生物特征的影响[J]. 植物生态学报, 2021, 45(7): 780-789. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19