植物生态学报 ›› 2021, Vol. 45 ›› Issue (7): 780-789.DOI: 10.17521/cjpe.2021.0072
所属专题: 全球变化与生态系统; 生态化学计量; 微生物生态学
杨建强1, 刁华杰2,3,4, 胡姝娅4, 王常慧2,3,4,*()
收稿日期:
2021-03-04
接受日期:
2021-04-22
出版日期:
2021-07-20
发布日期:
2021-10-22
通讯作者:
王常慧
作者简介:
* wangch@ibcas.ac.cn基金资助:
YANG Jian-Qiang1, DIAO Hua-Jie2,3,4, HU Shu-Ya4, WANG Chang-Hui2,3,4,*()
Received:
2021-03-04
Accepted:
2021-04-22
Online:
2021-07-20
Published:
2021-10-22
Contact:
WANG Chang-Hui
Supported by:
摘要:
氮是陆地生态系统生产力的主要限制性因素, 土壤微生物是土壤氮转化的主要驱动因子, 随着大气氮沉降的增加, 盐渍化草地土壤微生物对不同水平氮输入的响应尚不清晰。在山西右玉黄土高原草地生态系统定位观测研究站不同水平氮添加平台(0、1、2、4、8、16、24和32 g·m-2·a-1), 在实验处理的第4年(2020年)测定生长季(5-9月)氨氧化细菌(AOB)和氨氧化古菌(AOA)丰度, 土壤真菌和细菌组成, 以及土壤微生物生物量碳(MBC)、氮(MBN)含量, 探讨土壤微生物特征对不同氮输入水平的响应机制。研究表明: (1)在2020年生长季的5-9月, 由于土壤温度和水分的差异, 取样日期显著影响氨氧化微生物、细菌和真菌的数量及MBC、MBN含量。(2)氮添加仅显著影响AOB丰度, 对MBC、MBN含量及细菌和真菌丰度的影响均不显著。(3)氮添加对AOB丰度的影响与取样日期有关, 在生长季早期和高峰期(5-8月), 24和32 g·m-2·a-1氮添加显著提高AOB丰度, 在生长季后期(9月)氮添加对AOB丰度的影响不显著。(4)土壤阳离子浓度和土壤pH对AOB丰度的变异具有较高的解释度, 分别解释了土壤微生物特征变异的21.8%和17.2%。由于不同水平氮添加并未显著改变土壤阳离子浓度和土壤pH, 土壤MBC、MBN含量, 细菌和真菌的丰度对氮输入的响应不敏感, 仅在高氮处理显著提高了AOB的丰度, 说明高氮添加可能会促进盐渍化草地土壤氮的转化速率。
杨建强, 刁华杰, 胡姝娅, 王常慧. 不同水平氮添加对盐渍化草地土壤微生物特征的影响. 植物生态学报, 2021, 45(7): 780-789. DOI: 10.17521/cjpe.2021.0072
YANG Jian-Qiang, DIAO Hua-Jie, HU Shu-Ya, WANG Chang-Hui. Effects of nitrogen addition at different levels on soil microorganisms in saline-alkaline grassland of northern China. Chinese Journal of Plant Ecology, 2021, 45(7): 780-789. DOI: 10.17521/cjpe.2021.0072
处理 Treatment | 氨氧化古菌 AOA | 氨氧化细菌 AOB | 细菌 Bacteria | 真菌 Fungal | 微生物生物量碳 MBC | 微生物生物量氮 MBN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
氮水平 N levels | 0.38 | 0.907 | 6.72 | <0.000 1 | 0.65 | 0.710 | 0.92 | 0.498 | 1.62 | 0.159 | 1.02 | 0.434 |
采样月份 Sampling month | 9.72 | <0.000 1 | 1.21 | 0.309 | 58.66 | <0.000 1 | 24.05 | <0.000 1 | 6.21 | <0.000 1 | 8.54 | <0.000 1 |
月份×氮水平 Month × N levels | 0.83 | 0.712 | 2.44 | <0.000 1 | 0.62 | 0.930 | 1.09 | 0.357 | 0.78 | 0.776 | 0.58 | 0.951 |
表1 氮(N)水平、月份及其交互作用对盐渍化草地土壤微生物特征(氨氧化古菌和氨氧化细菌、细菌、真菌丰度和微生物生物量碳、微生物生物量氮含量)的影响
Table 1 Effects of nitrogen (N) levels, month and their interactions on soil microorganism (AOA, AOB, bacteria, fungi abundance and MBC, MBN content) in saline-alkaline grassland
处理 Treatment | 氨氧化古菌 AOA | 氨氧化细菌 AOB | 细菌 Bacteria | 真菌 Fungal | 微生物生物量碳 MBC | 微生物生物量氮 MBN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
氮水平 N levels | 0.38 | 0.907 | 6.72 | <0.000 1 | 0.65 | 0.710 | 0.92 | 0.498 | 1.62 | 0.159 | 1.02 | 0.434 |
采样月份 Sampling month | 9.72 | <0.000 1 | 1.21 | 0.309 | 58.66 | <0.000 1 | 24.05 | <0.000 1 | 6.21 | <0.000 1 | 8.54 | <0.000 1 |
月份×氮水平 Month × N levels | 0.83 | 0.712 | 2.44 | <0.000 1 | 0.62 | 0.930 | 1.09 | 0.357 | 0.78 | 0.776 | 0.58 | 0.951 |
图1 盐渍化草地氨氧化土壤细菌(AOB)和古菌(AOA)丰度季节动态及其年际均值(平均值±标准误)。*、**、***分别表示各处理间在p < 0.05、p < 0.01及p < 0.000 1水平上差异显著; 柱形图中不同小写字母表示处理间差异显著(p < 0.05)。CK, 对照; N1, 氮添加1 g·m-2·a-1; N2, 氮添加2 g·m-2·a-1; N4, 氮添加4 g·m-2·a-1; N8, 氮添加8 g·m-2·a-1; N16, 氮添加16 g·m-2·a-1; N24, 氮添加24 g·m-2·a-1; N32, 氮添加32 g·m-2·a-1。
Fig. 1 Seasonal and inter-annual mean values (mean ± SE) of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) abundance in saline-alkaline grassland. *, ** and *** represent the differences are significant with p < 0.05, p < 0.01 and p < 0.000 1, respectively; different lowercase letters in the bar chart indicate significant differences among treatments (p < 0.05). CK, control; N1, nitrogen addition level 1 g·m-2·a-1; N2, nitrogen addition level 2 g·m-2·a-1; N4, nitrogen addition level 4 g·m-2·a-1; N8, nitrogen addition level 8 g·m-2·a-1; N16, nitrogen addition level 16 g·m-2·a-1; N24, nitrogen addition level 24 g·m-2·a-1; N32, nitrogen addition level 32 g·m-2·a-1.
图2 盐渍化草地土壤细菌和真菌组成的季节动态及年际均值(平均值±标准误)。*、**、***分别表示各处理间在p < 0.05, p < 0.01及p < 0.000 1水平上差异显著; 柱形图中不同小写字母表示处理间差异显著(p < 0.05)。CK, 对照; N1, 氮添加1 g·m-2·a-1; N2, 氮添加2 g·m-2·a-1; N4, 氮添加4 g·m-2·a-1; N8, 氮添加8 g·m-2·a-1; N16, 氮添加16 g·m-2·a-1; N24, 氮添加24 g·m-2·a-1; N32, 氮添加32 g·m-2·a-1。
Fig. 2 Seasonal and inter-annual mean values (mean ± SE) of soil bacterial and fungal in saline-alkaline grassland. *, ** and *** represent the differences among treatments are significant with p < 0.05, p < 0.01 and p < 0.000 1, respectively; different lowercase letters in the bar chart indicate significant differences among treatments (p < 0.05). CK, control; N1, nitrogen addition level 1 g·m-2·a-1; N2, nitrogen addition level 2 g·m-2·a-1; N4, nitrogen addition level 4 g·m-2·a-1; N8, nitrogen addition level 8 g·m-2·a-1; N16, nitrogen addition level 16 g·m-2·a-1; N24, nitrogen addition level 24 g·m-2·a-1; N32, nitrogen addition level 32 g·m-2·a-1.
图3 盐渍化草地土壤微生物生物量碳(MBC)、氮(MBN)含量的季节动态及年际均值(平均值±标准误)。*、**、***分别表示各处理间在p < 0.05, p < 0.01及p < 0.000 1水平上差异显著; 柱形图中不同小写字母表示处理间差异显著(p < 0.05)。CK, 对照; N1, 氮添加1 g·m-2·a-1; N2, 氮添加2 g·m-2·a-1; N4, 氮添加4 g·m-2·a-1; N8, 氮添加8 g·m-2·a-1; N16, 氮添加16 g·m-2·a-1; N24, 氮添加24 g·m-2·a-1; N32, 氮添加32 g·m-2·a-1。
Fig. 3 Seasonal and inter-annual mean values (mean ± SE) of soil microbial biomass carbon (MBC) and nitrogen (MBN) content in saline-alkaline grassland. *, ** and *** represent the differences among treatments are significant with p < 0.05, p < 0.01 and p < 0.000 1, respectively; different lowercase letters in the bar chart indicate significant differences among treatments (p < 0.05). CK, control; N1, nitrogen addition level 1 g·m-2·a-1; N2, nitrogen addition level 2 g·m-2·a-1; N4, nitrogen addition level 4 g·m-2·a-1; N8, nitrogen addition level 8 g·m-2·a-1; N16, nitrogen addition level 16 g·m-2·a-1; N24, nitrogen addition level 24 g·m-2·a-1; N32, nitrogen addition level 32 g·m-2·a-1.
因子 Factor | AOA | AOB | Bacteria | Fungi | MBC | MBN | ST | SM | pH | Ca2+ | K+ | Mg2+ | Na+ | STC | CO32- | HCO3- | Cl- | STA | NH4+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AOB | 0.23 | ||||||||||||||||||
细菌 Bacteria | -0.49** | -0.03 | |||||||||||||||||
真菌 Fungi | 0.47** | 0.09 | -0.06 | ||||||||||||||||
MBC | -0.19 | -0.01 | 0.33* | 0.11 | |||||||||||||||
MBN | 0.09 | 0.14 | 0.19 | 0.23 | 0.44** | ||||||||||||||
ST | -0.26 | -0.61** | -0.06 | -0.19 | -0.21 | -0.47** | |||||||||||||
SM | -0.26 | -00.19 | 0.03 | -0.17 | 0.24 | 0.37** | 0.00 | ||||||||||||
pH | -0.36* | -0.63** | 0.10 | -0.10 | 0.14 | -0.07 | 0.53** | 0.42** | |||||||||||
Ca2+ | 0.42** | 0.58** | -0.28 | 0.21 | -0.29* | -0.05 | -0.37** | -0.34* | -0.61** | ||||||||||
K+ | 0.04 | -0.03 | 0.01 | 0.02 | -0.02 | -0.08 | 0.22 | -0.17 | 0.10 | -0.02 | |||||||||
Mg2+ | 0.42** | -0.32* | -0.36* | 0.06 | 0.01 | -0.01 | 0.29* | 0.23 | 0.34* | -0.36* | 0.17 | ||||||||
Na+ | -0.47** | -0.46** | 0.07 | -0.29* | 0.15 | 0.05 | 0.25 | 0.62** | 0.77** | -0.51** | -0.09 | 0.17 | |||||||
STC | 0.52** | -0.11 | -0.50** | 0.09 | -0.13 | -0.03 | 0.17 | 0.21 | 0.24 | 0.09 | 0.27 | 0.85** | 0.19 | ||||||
CO32- | -0.45** | -0.27 | 0.28 | -0.21 | 0.08 | -0.11 | 0.23 | 0.21 | 0.39** | -0.26 | -0.20 | -0.24 | 0.34* | -0.31* | |||||
HCO3- | 0.25 | 0.05 | -0.27 | -0.13 | -0.10 | 0.02 | 0.08 | 0.16 | 0.14 | 0.11 | 0.39** | 0.39** | 0.22 | 0.59** | -0.47** | ||||
Cl- | 0.06 | -0.06 | 0.03 | -0.26 | -0.07 | 0.01 | 0.01 | 0.03 | 0.03 | 0.14 | 0.12 | 0.09 | 0.06 | 0.22 | -0.03 | 0.21 | |||
STA | 0.19 | 0.00 | -0.24 | -0.19 | -0.10 | 0.00 | 0.13 | 0.21 | 0.22 | 0.08 | 0.39** | 0.38** | 0.29* | 0.59** | -0.33* | 0.98** | 0.30* | ||
NH4+ | 0.26 | 0.05 | -0.12 | 0.32* | -0.20 | -0.17 | -0.19 | -0.21 | -0.15 | 0.33* | -0.09 | -0.19 | -0.29* | -0.10 | -0.33* | 0.08 | -0.19 | 0.01 | |
NO3- | -0.09 | -0.11 | 0.17 | 0.05 | 0.37** | -0.02 | -0.18 | -0.04 | -0.03 | -0.02 | -0.03 | -0.11 | 0.08 | -0.09 | -0.16 | 0.03 | -0.03 | 0.00 | 0.22 |
表2 土壤微生物特征与土壤微环境、土壤阳离子和阴离子浓度的Pearson相关性
Table 2 Pearson correlation between soil microorganisms and soil microenvironment, soil cations and anions concentration
因子 Factor | AOA | AOB | Bacteria | Fungi | MBC | MBN | ST | SM | pH | Ca2+ | K+ | Mg2+ | Na+ | STC | CO32- | HCO3- | Cl- | STA | NH4+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AOB | 0.23 | ||||||||||||||||||
细菌 Bacteria | -0.49** | -0.03 | |||||||||||||||||
真菌 Fungi | 0.47** | 0.09 | -0.06 | ||||||||||||||||
MBC | -0.19 | -0.01 | 0.33* | 0.11 | |||||||||||||||
MBN | 0.09 | 0.14 | 0.19 | 0.23 | 0.44** | ||||||||||||||
ST | -0.26 | -0.61** | -0.06 | -0.19 | -0.21 | -0.47** | |||||||||||||
SM | -0.26 | -00.19 | 0.03 | -0.17 | 0.24 | 0.37** | 0.00 | ||||||||||||
pH | -0.36* | -0.63** | 0.10 | -0.10 | 0.14 | -0.07 | 0.53** | 0.42** | |||||||||||
Ca2+ | 0.42** | 0.58** | -0.28 | 0.21 | -0.29* | -0.05 | -0.37** | -0.34* | -0.61** | ||||||||||
K+ | 0.04 | -0.03 | 0.01 | 0.02 | -0.02 | -0.08 | 0.22 | -0.17 | 0.10 | -0.02 | |||||||||
Mg2+ | 0.42** | -0.32* | -0.36* | 0.06 | 0.01 | -0.01 | 0.29* | 0.23 | 0.34* | -0.36* | 0.17 | ||||||||
Na+ | -0.47** | -0.46** | 0.07 | -0.29* | 0.15 | 0.05 | 0.25 | 0.62** | 0.77** | -0.51** | -0.09 | 0.17 | |||||||
STC | 0.52** | -0.11 | -0.50** | 0.09 | -0.13 | -0.03 | 0.17 | 0.21 | 0.24 | 0.09 | 0.27 | 0.85** | 0.19 | ||||||
CO32- | -0.45** | -0.27 | 0.28 | -0.21 | 0.08 | -0.11 | 0.23 | 0.21 | 0.39** | -0.26 | -0.20 | -0.24 | 0.34* | -0.31* | |||||
HCO3- | 0.25 | 0.05 | -0.27 | -0.13 | -0.10 | 0.02 | 0.08 | 0.16 | 0.14 | 0.11 | 0.39** | 0.39** | 0.22 | 0.59** | -0.47** | ||||
Cl- | 0.06 | -0.06 | 0.03 | -0.26 | -0.07 | 0.01 | 0.01 | 0.03 | 0.03 | 0.14 | 0.12 | 0.09 | 0.06 | 0.22 | -0.03 | 0.21 | |||
STA | 0.19 | 0.00 | -0.24 | -0.19 | -0.10 | 0.00 | 0.13 | 0.21 | 0.22 | 0.08 | 0.39** | 0.38** | 0.29* | 0.59** | -0.33* | 0.98** | 0.30* | ||
NH4+ | 0.26 | 0.05 | -0.12 | 0.32* | -0.20 | -0.17 | -0.19 | -0.21 | -0.15 | 0.33* | -0.09 | -0.19 | -0.29* | -0.10 | -0.33* | 0.08 | -0.19 | 0.01 | |
NO3- | -0.09 | -0.11 | 0.17 | 0.05 | 0.37** | -0.02 | -0.18 | -0.04 | -0.03 | -0.02 | -0.03 | -0.11 | 0.08 | -0.09 | -0.16 | 0.03 | -0.03 | 0.00 | 0.22 |
图4 不同水平氮(N)添加对盐渍化草地土壤pH值(平均值±标准误)、阳离子和阴离子浓度的影响。CK, 对照; N1, 氮添加1 g·m-2·a-1; N2, 氮添加2 g·m-2·a-1; N4, 氮添加4 g·m-2·a-1; N8, 氮添加8 g·m-2·a-1; N16, 氮添加16 g·m-2·a-1; N24, 氮添加24 g·m-2·a-1; N32, 氮添加32 g·m-2·a-1。
Fig. 4 Effects of nitrogen (N) addition at different levels on soil pH value (mean ± SE), cations, and anions concentration. CK, control; N1, nitrogen addition level 1 g·m-2·a-1; N2, nitrogen addition level 2 g·m-2·a-1; N4, nitrogen addition level 4 g·m-2·a-1; N8, nitrogen addition level 8 g·m-2·a-1; N16, nitrogen addition level 16 g·m-2·a-1; N24, nitrogen addition level 24 g·m-2·a-1; N32, nitrogen addition level 32 g·m-2·a-1.
图5 土壤氨氧化古菌(AOA)和氨氧化细菌(AOB)、细菌、真菌丰度和微生物生物量碳(MBC)、氮(MBN)含量与相关因子的冗余分析。SM, 土壤含水量; ST, 土壤温度; STA, 土壤总阴离子含量; STC, 土壤总盐离子含量。
Fig. 5 Redundancy analysis (RDA) of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), bacteria, fungi abundance and microbial biomass carbon (MBC), and nitrogen (MBN) content with related factors. SM, soil moisture; ST, soil temperature; STA, soil total anions content; STC, soil total cations content.
[1] |
Bowman WD, Cleveland CC, Halada Ĺ, Hreško J, Baron JS (2008). Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 1, 767-770.
DOI URL |
[2] |
Cai JP, Luo WT, Liu HY, Feng X, Zhang YY, Wang RZ, Xu ZW, Zhang YG, Jiang Y (2017). Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland. Atmospheric Environment, 170, 312-318.
DOI URL |
[3] |
Cheng Y, Wang J, Mary B, Zhang JB, Cai ZC, Chang SX (2013). Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada. Soil Biology & Biochemistry, 57, 848-857.
DOI URL |
[4] |
Fierer N, Jackson RB (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103, 626-631.
PMID |
[5] |
Gruber N, Galloway JN (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293-296.
DOI URL |
[6] |
Hao TX, Zhang YY, Zhang JB, Müller C, Li KH, Zhang KP, Chu HY, Stevens C, Liu XJ (2020). Chronic nitrogen addition differentially affects gross nitrogen transformations in alpine and temperate grassland soils. Soil Biology & Biochemistry, 149. DOI: 10.1016/j.soilbio.2020.107962.
DOI |
[7] |
He JZ, Hu HW, Zhang LM (2012). Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biology & Biochemistry, 55, 146-154.
DOI URL |
[8] | He JZ, Zhang LM (2009). Advances in ammonia-oxidizing microorganisms and global nitrogen cycle. Acta Ecologica Sinica, 29, 406-415. |
[ 贺纪正, 张丽梅 (2009). 氨氧化微生物生态学与氮循环研究进展. 生态学报, 29, 406-415.] | |
[9] | Huyghe C (2010). New utilizations for the grassland areas and the forage plants: What matters. Fourrages, 203, 213-219. |
[10] |
Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A, Baker AR, Tsigaridis K, Mihalopoulos N (2016). Past, present and future atmospheric nitrogen deposition. Journal of the Atmospheric Sciences, 73, 2039-2047.
DOI URL |
[11] |
Kuypers MMM, Marchant HK, Kartal B (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16, 263-276.
DOI PMID |
[12] |
Laura RD (1976). Effects of alkali salts on carbon and nitrogen mineralization of organic matter in soil. Plant and Soil, 44, 587-596.
DOI URL |
[13] |
Li JG, Pu LJ, Han MF, Zhu M, Zhang RS, Xiang YZ (2014). Soil salinization research in China: advances and prospects. Journal of Geographical Sciences, 24, 943-960.
DOI URL |
[14] |
Li Y, Xu XH, Sun W, Shen Y, Ren TT, Huang JH, Wang CH (2019). Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China. Chinese Journal of Plant Ecology, 43, 174-184.
DOI URL |
[ 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧 (2019). 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 43, 174-184.]
DOI |
|
[15] | Liu HM, Zhang HF, Qin J, Wang H, Zhang YJ, Yang DL (2019). Effects of simulated nitrogen deposition on soil nitrogen-transforming microorganisms in Stipa baicalensis steppe. Journal of Agro-environment Science, 38, 2386-2394. |
[ 刘红梅, 张海芳, 秦洁, 王慧, 张艳军, 杨殿林 (2019). 模拟氮沉降对贝加尔针茅草原土壤氮转化微生物的影响. 农业环境科学学报, 38, 2386-2394.] | |
[16] |
Lu M, Yang YH, Luo YQ, Fang CM, Zhou XH, Chen JK, Yang X, Li B (2011). Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 189, 1040-1050.
DOI URL |
[17] |
Lucas RW, Klaminder J, Futter MN, Bishop KH, Egnell G, Laudon H, Högberg P (2011). A meta-analysis of the effects of nitrogen additions on base cations: implications for plants, soils, and streams. Forest Ecology and Management, 262, 95-104.
DOI URL |
[18] |
Luo RY, Kuzyakov Y, Liu DY, Fang JL, Luo JF, Lindsey S, He JS, Ding WX (2020). Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls. Soil Biology & Biochemistry, 144. DOI: 10.1016/j.soilbio.2020.107764.
DOI |
[19] | Martinez-Beltran J, Licona-Manzur C (2005). Overview of salinity problems in the world and FAO strategies to address the problem//Proceedings of the International Salinity Forum. Riverside, California, USA. 311-313. |
[20] |
Nicol GW, Leininger S, Schleper C, Prosser JI (2008). The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology, 10, 2966-2978.
DOI URL |
[21] |
Norman JS, Barrett JE (2014). Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil. Soil Biology & Biochemistry, 69, 141-146.
DOI URL |
[22] |
Rath KM, Fierer N, Murphy DV, Rousk J (2019). Linking bacterial community composition to soil salinity along environmental gradients. The ISME Journal, 13, 836-846.
DOI URL |
[23] |
Rath KM, Rousk J (2015). Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biology & Biochemistry, 81, 108-123.
DOI URL |
[24] |
Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4, 1340-1351.
DOI URL |
[25] |
Tian DS, Niu SL (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. DOI: 10.1088/1748-9326/10/2/024019.
DOI URL |
[26] |
Wang C, Butterbach-Bahl K, He N, Wang Q, Xing X, Han X (2015). Nitrogen addition and mowing affect microbial nitrogen transformations in a C4 grassland in Northern China. European Journal of Soil Science, 66, 485-495.
DOI URL |
[27] |
Wei L, Su JS, Jing GH, Zhao J, Liu J, Cheng JM, Jin JW (2018). Nitrogen addition decreased soil respiration and its components in a long-term fenced grassland on the Loess Plateau. Journal of Arid Environments, 152, 37-44.
DOI URL |
[28] |
Xu XH, Diao HJ, Tan CY, Hao J, Shen Y, Dong KH, Wang CH (2021). Response of soil net nitrogen mineralization to different levels of nitrogen addition in a saline-alkaline grassland of northern China. Chinese Journal of Plant Ecology, 45, 85-95.
DOI URL |
[ 徐小惠, 刁华杰, 覃楚仪, 郝杰, 申颜, 董宽虎, 王常慧 (2021). 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应. 植物生态学报, 45, 85-95.] | |
[29] |
Yang C, Wang XZ, Miao FH, Li ZY, Tang W, Sun J (2020). Assessing the effect of soil salinization on soil microbial respiration and diversities under incubation conditions. Applied Soil Ecology, 155, 103671. DOI: 10.1016/j.apsoil.2020.103671.
DOI URL |
[30] |
Yang JS, Zhan C, Li YZ, Zhou D, Yu Y, Yu JB (2018). Effect of salinity on soil respiration in relation to dissolved organic carbon and microbial characteristics of a wetland in the Liaohe River estuary, Northeast China. Science of the Total Environment, 642, 946-953.
DOI URL |
[31] |
Ying JY, Li XX, Wang NN, Lan ZC, He JZ, Bai YF (2017). Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biology & Biochemistry, 107, 10-18.
DOI URL |
[32] |
Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007). Microbial biomass and activity in salt affected soils under arid conditions. Applied Soil Ecology, 35, 319-328.
DOI URL |
[33] | Zhang L, Huang JH, Bai YF, Han XG (2009). Effect of nitrogen addition on net nitrogen mineralization in Leymus chinensis grassland, Inner Mongolia, China. Chinese Journal of Plant Ecology, 33, 563-569. |
[ 张璐, 黄建辉, 白永飞, 韩兴国 (2009). 氮素添加对内蒙古羊草草原净氮矿化的影响. 植物生态学报, 33, 563-569.]
DOI |
|
[34] |
Zhao S, Liu JJ, Banerjee S, Zhou N, Zhao ZY, Zhang K, Tian CY (2018). Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Scientific Reports, 8, 4550. DOI: 10.1038/s41598-018-22788-7.
DOI URL |
[35] |
Zhou XH, Weng ES, Luo YQ (2008). Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2, and precipitation changes. Ecological Applications, 18, 453-466.
DOI URL |
[36] |
Zhou ZH, Wang CK, Zheng MH, Jiang LF, Luo YQ (2017). Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology & Biochemistry, 115, 433-441.
DOI URL |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[4] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[5] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[6] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[7] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[8] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[9] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[10] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[11] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[12] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[13] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[14] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[15] | 张仲富, 王四海, 杨卫, 陈剑. 蒜头果根际细菌群落结构与功能特征对其健康状态的响应[J]. 植物生态学报, 2023, 47(7): 1020-1031. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19