植物生态学报 ›› 2023, Vol. 47 ›› Issue (2): 206-215.DOI: 10.17521/cjpe.2022.0120
罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令*()
收稿日期:
2022-04-06
接受日期:
2022-09-20
出版日期:
2023-02-20
发布日期:
2023-02-28
通讯作者:
*(基金资助:
LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling*()
Received:
2022-04-06
Accepted:
2022-09-20
Online:
2023-02-20
Published:
2023-02-28
Contact:
*(Supported by:
摘要:
为了解氮添加背景下土壤真菌和细菌对不同种源入侵植物生长的影响, 该实验以本地和入侵地种源不同种群乌桕(Triadica sebifera)为研究对象, 通过氮添加处理, 施用细菌抑制剂(链霉素)和真菌抑制剂(扑海因)调控土壤细菌、真菌活性, 探究土壤细菌和真菌对不同种源乌桕生长的影响, 以揭示乌桕成功入侵机制, 为有效预测和管理入侵植物提供理论依据。结果表明: 1)入侵地种源乌桕在株高、叶片数和生物量方面均显著高于本地种源, 入侵地种源乌桕相较于本地种源具有显著生长优势。2)添加细菌和真菌抑制剂显著降低了乌桕地上生物量, 且乌桕生长对土壤细菌的依赖性更强。3)氮添加及其与土壤细菌和真菌的交互作用对于乌桕生长和资源分配有显著影响, 增强了乌桕对资源的竞争优势, 可能是影响乌桕入侵成功的重要因素。
罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响. 植物生态学报, 2023, 47(2): 206-215. DOI: 10.17521/cjpe.2022.0120
LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition. Chinese Journal of Plant Ecology, 2023, 47(2): 206-215. DOI: 10.17521/cjpe.2022.0120
种源 Origin | 种群 Population | 经度 Longitude | 纬度 Latitude |
---|---|---|---|
中国 China | 江西 Jiangxi | 117.12° E | 28.45° N |
江苏 Jiangsu | 118.37° E | 31.23° N | |
浙江 Zhejiang | 118.20° E | 27.12° N | |
广西 Guangxi | 110.45° E | 24.80° N | |
美国 USA | Georgia | 81.01° W | 32.01° N |
Texas | 95.03° W | 29.78° N | |
Louisiana | 93.15° W | 30.23° N | |
Florida | 82.22° W | 29.35° N |
表1 不同乌桕种源地理分布信息
Table 1 Locations of native and invasive Triadica sebifera populations used in the study
种源 Origin | 种群 Population | 经度 Longitude | 纬度 Latitude |
---|---|---|---|
中国 China | 江西 Jiangxi | 117.12° E | 28.45° N |
江苏 Jiangsu | 118.37° E | 31.23° N | |
浙江 Zhejiang | 118.20° E | 27.12° N | |
广西 Guangxi | 110.45° E | 24.80° N | |
美国 USA | Georgia | 81.01° W | 32.01° N |
Texas | 95.03° W | 29.78° N | |
Louisiana | 93.15° W | 30.23° N | |
Florida | 82.22° W | 29.35° N |
处理 Treatment | 自由度 df | 株高 Plant height | 叶片数 Leaf number | 叶面积 Leaf area | 比叶面积 Specific leaf area | 叶面积比 Leaf area ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
O | 1 | 20.87 | <0.000 1 | 7.55 | <0.000 1 | 11.29 | <0.000 1 | 16.20 | <0.000 1 | 25.67 | <0.000 1 |
P | 6 | 15.54 | <0.000 1 | 3.07 | <0.000 1 | 2.66 | 0.016 9 | 2.24 | 0.041 3 | 4.11 | <0.000 1 |
N | 1 | 0.73 | 0.384 8 | 3.94 | 0.048 6 | 1.22 | 0.270 5 | 3.65 | 0.057 6 | 0.31 | 0.577 2 |
B | 1 | 3.02 | 0.084 0 | 0.00 | 0.995 6 | 0.84 | 0.360 1 | 0.03 | 0.871 6 | 0.00 | 0.991 9 |
F | 1 | 0.00 | 0.974 1 | 0.49 | 0.483 5 | 0.55 | 0.460 4 | 0.05 | 0.828 1 | 0.94 | 0.332 9 |
O × N | 1 | 0.78 | 0.379 1 | 0.01 | 0.942 8 | 0.65 | 0.422 6 | 0.97 | 0.325 1 | 0.67 | 0.413 5 |
O × B | 1 | 0.99 | 0.320 8 | 0.09 | 0.761 4 | 0.16 | 0.686 1 | 0.43 | 0.510 5 | 0.26 | 0.609 7 |
O × F | 1 | 0.09 | 0.763 5 | 0.09 | 0.769 8 | 0.07 | 0.788 3 | 1.10 | 0.295 4 | 0.08 | 0.772 3 |
N × B | 1 | 0.09 | 0.765 8 | 0.01 | 0.916 5 | 3.13 | 0.078 7 | 0.21 | 0.648 3 | 0.76 | 0.383 8 |
N × F | 1 | 0.12 | 0.727 2 | 0.28 | 0.600 0 | 0.28 | 0.595 1 | 0.04 | 0.843 3 | 0.04 | 0.839 6 |
B × F | 1 | 1.03 | 0.310 7 | 2.15 | 0.144 6 | 0.54 | 0.464 2 | 2.86 | 0.092 7 | 1.17 | 0.280 6 |
O × N × B | 1 | 1.66 | 0.198 9 | 0.40 | 0.525 7 | 0.87 | 0.351 5 | 0.01 | 0.942 8 | 0.30 | 0.587 0 |
O × N × F | 1 | 0.19 | 0.666 0 | 0.06 | 0.803 8 | 0.12 | 0.726 3 | 0.00 | 0.951 0 | 0.15 | 0.703 6 |
O × B × F | 1 | 0.63 | 0.428 1 | 2.15 | 0.144 6 | 0.08 | 0.784 4 | 1.40 | 0.237 9 | 1.03 | 0.311 1 |
N × B × F | 1 | 2.92 | 0.089 0 | 0.43 | 0.511 4 | 0.02 | 0.890 3 | 2.78 | 0.097 4 | 3.15 | 0.077 7 |
O × N × B × F | 1 | 0.39 | 0.534 1 | 0.32 | 0.569 7 | 0.01 | 0.907 2 | 0.29 | 0.589 5 | 0.53 | 0.467 8 |
表2 氮添加(N)、细菌抑制剂(B)、真菌抑制剂(F)及其相互作用对不同种源(O)乌桕形态学特征的影响方差分析
Table 2 Dependence of morphological traits of Triadica sebifera with different origin (O) on nitrogen deposition (N), bacteria inhibitors (B), fungal inhibitors (F) and their interactions in ANOVAs
处理 Treatment | 自由度 df | 株高 Plant height | 叶片数 Leaf number | 叶面积 Leaf area | 比叶面积 Specific leaf area | 叶面积比 Leaf area ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
O | 1 | 20.87 | <0.000 1 | 7.55 | <0.000 1 | 11.29 | <0.000 1 | 16.20 | <0.000 1 | 25.67 | <0.000 1 |
P | 6 | 15.54 | <0.000 1 | 3.07 | <0.000 1 | 2.66 | 0.016 9 | 2.24 | 0.041 3 | 4.11 | <0.000 1 |
N | 1 | 0.73 | 0.384 8 | 3.94 | 0.048 6 | 1.22 | 0.270 5 | 3.65 | 0.057 6 | 0.31 | 0.577 2 |
B | 1 | 3.02 | 0.084 0 | 0.00 | 0.995 6 | 0.84 | 0.360 1 | 0.03 | 0.871 6 | 0.00 | 0.991 9 |
F | 1 | 0.00 | 0.974 1 | 0.49 | 0.483 5 | 0.55 | 0.460 4 | 0.05 | 0.828 1 | 0.94 | 0.332 9 |
O × N | 1 | 0.78 | 0.379 1 | 0.01 | 0.942 8 | 0.65 | 0.422 6 | 0.97 | 0.325 1 | 0.67 | 0.413 5 |
O × B | 1 | 0.99 | 0.320 8 | 0.09 | 0.761 4 | 0.16 | 0.686 1 | 0.43 | 0.510 5 | 0.26 | 0.609 7 |
O × F | 1 | 0.09 | 0.763 5 | 0.09 | 0.769 8 | 0.07 | 0.788 3 | 1.10 | 0.295 4 | 0.08 | 0.772 3 |
N × B | 1 | 0.09 | 0.765 8 | 0.01 | 0.916 5 | 3.13 | 0.078 7 | 0.21 | 0.648 3 | 0.76 | 0.383 8 |
N × F | 1 | 0.12 | 0.727 2 | 0.28 | 0.600 0 | 0.28 | 0.595 1 | 0.04 | 0.843 3 | 0.04 | 0.839 6 |
B × F | 1 | 1.03 | 0.310 7 | 2.15 | 0.144 6 | 0.54 | 0.464 2 | 2.86 | 0.092 7 | 1.17 | 0.280 6 |
O × N × B | 1 | 1.66 | 0.198 9 | 0.40 | 0.525 7 | 0.87 | 0.351 5 | 0.01 | 0.942 8 | 0.30 | 0.587 0 |
O × N × F | 1 | 0.19 | 0.666 0 | 0.06 | 0.803 8 | 0.12 | 0.726 3 | 0.00 | 0.951 0 | 0.15 | 0.703 6 |
O × B × F | 1 | 0.63 | 0.428 1 | 2.15 | 0.144 6 | 0.08 | 0.784 4 | 1.40 | 0.237 9 | 1.03 | 0.311 1 |
N × B × F | 1 | 2.92 | 0.089 0 | 0.43 | 0.511 4 | 0.02 | 0.890 3 | 2.78 | 0.097 4 | 3.15 | 0.077 7 |
O × N × B × F | 1 | 0.39 | 0.534 1 | 0.32 | 0.569 7 | 0.01 | 0.907 2 | 0.29 | 0.589 5 | 0.53 | 0.467 8 |
处理 Treatment | 自由度 df | 叶生物量 Leaf biomass | 茎生物量 Stem biomass | 根生物量 Root biomass | 地上生物量 Aboveground biomass | 总生物量 Total biomass | 根冠比 Root shoot ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | ||
O | 1 | 5.31 | 0.022 3 | 17.09 | <0.000 1 | 17.70 | <0.000 1 | 13.80 | <0.000 1 | 17.25 | <0.000 1 | 1.37 | 0.244 0 |
P | 6 | 7.61 | <0.000 1 | 15.32 | <0.000 1 | 10.33 | <0.000 1 | 13.61 | <0.000 1 | 12.38 | <0.000 1 | 9.08 | <0.000 1 |
N | 1 | 8.21 | 0.004 6 | 0.69 | 0.406 6 | 13.40 | 0.000 3 | 2.77 | 0.097 6 | 0.49 | 0.486 5 | 57.08 | <0.000 1 |
B | 1 | 1.49 | 0.224 5 | 3.02 | 0.084 0 | 1.38 | 0.242 0 | 2.74 | 0.099 3 | 2.34 | 0.128 2 | 0.08 | 0.783 4 |
F | 1 | 1.95 | 0.164 5 | 0.10 | 0.757 7 | 0.51 | 0.475 6 | 0.10 | 0.748 4 | 0.02 | 0.890 0 | 1.41 | 0.236 1 |
O × N | 1 | 0.40 | 0.530 3 | 1.03 | 0.310 9 | 1.41 | 0.236 0 | 0.88 | 0.350 1 | 0.00 | 0.992 5 | 4.97 | 0.027 0 |
O × B | 1 | 0.71 | 0.400 2 | 0.68 | 0.410 6 | 4.81 | 0.029 5 | 0.79 | 0.375 9 | 2.37 | 0.125 2 | 3.71 | 0.055 7 |
O × F | 1 | 0.98 | 0.323 5 | 0.01 | 0.939 1 | 0.00 | 0.985 0 | 0.19 | 0.667 2 | 0.07 | 0.791 2 | 0.77 | 0.381 2 |
N × B | 1 | 0.07 | 0.785 6 | 0.40 | 0.526 3 | 0.16 | 0.685 9 | 0.11 | 0.740 9 | 0.15 | 0.701 3 | 0.12 | 0.728 7 |
N × F | 1 | 0.09 | 0.762 3 | 1.66 | 0.198 8 | 0.53 | 0.467 2 | 1.00 | 0.318 7 | 0.87 | 0.352 8 | 0.25 | 0.616 8 |
B × F | 1 | 6.52 | 0.011 5 | 2.37 | 0.125 2 | 1.23 | 0.269 0 | 4.13 | 0.043 7 | 2.96 | 0.086 9 | 0.57 | 0.452 3 |
O × N × B | 1 | 0.00 | 0.994 6 | 0.49 | 0.486 5 | 1.49 | 0.223 5 | 0.23 | 0.631 4 | 0.72 | 0.396 6 | 1.90 | 0.169 7 |
O × N × F | 1 | 0.32 | 0.569 5 | 1.04 | 0.310 3 | 2.99 | 0.085 6 | 0.84 | 0.361 3 | 1.80 | 0.181 2 | 0.99 | 0.321 1 |
O × B × F | 1 | 0.31 | 0.577 3 | 1.19 | 0.276 0 | 1.63 | 0.202 9 | 0.93 | 0.337 1 | 1.35 | 0.246 5 | 0.02 | 0.901 3 |
N × B × F | 1 | 0.18 | 0.670 6 | 1.67 | 0.198 3 | 4.45 | 0.036 2 | 1.10 | 0.296 1 | 2.55 | 0.111 8 | 0.61 | 0.434 3 |
O × N × B × F | 1 | 0.09 | 0.760 2 | 0.57 | 0.452 7 | 1.47 | 0.227 3 | 0.16 | 0.690 2 | 0.63 | 0.426 7 | 1.13 | 0.288 2 |
表3 氮添加(N)、细菌抑制剂(B)、真菌抑制剂(F)及其相互作用对不同种源(O)乌桕生物量的影响方差分析
Table 3 Dependence of biomass of Triadica sebifera with different origin (O) on nitrogen addition (N), bacteria inhibitors (B), fungal inhibitors (F) and their interactions in ANOVAs
处理 Treatment | 自由度 df | 叶生物量 Leaf biomass | 茎生物量 Stem biomass | 根生物量 Root biomass | 地上生物量 Aboveground biomass | 总生物量 Total biomass | 根冠比 Root shoot ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | ||
O | 1 | 5.31 | 0.022 3 | 17.09 | <0.000 1 | 17.70 | <0.000 1 | 13.80 | <0.000 1 | 17.25 | <0.000 1 | 1.37 | 0.244 0 |
P | 6 | 7.61 | <0.000 1 | 15.32 | <0.000 1 | 10.33 | <0.000 1 | 13.61 | <0.000 1 | 12.38 | <0.000 1 | 9.08 | <0.000 1 |
N | 1 | 8.21 | 0.004 6 | 0.69 | 0.406 6 | 13.40 | 0.000 3 | 2.77 | 0.097 6 | 0.49 | 0.486 5 | 57.08 | <0.000 1 |
B | 1 | 1.49 | 0.224 5 | 3.02 | 0.084 0 | 1.38 | 0.242 0 | 2.74 | 0.099 3 | 2.34 | 0.128 2 | 0.08 | 0.783 4 |
F | 1 | 1.95 | 0.164 5 | 0.10 | 0.757 7 | 0.51 | 0.475 6 | 0.10 | 0.748 4 | 0.02 | 0.890 0 | 1.41 | 0.236 1 |
O × N | 1 | 0.40 | 0.530 3 | 1.03 | 0.310 9 | 1.41 | 0.236 0 | 0.88 | 0.350 1 | 0.00 | 0.992 5 | 4.97 | 0.027 0 |
O × B | 1 | 0.71 | 0.400 2 | 0.68 | 0.410 6 | 4.81 | 0.029 5 | 0.79 | 0.375 9 | 2.37 | 0.125 2 | 3.71 | 0.055 7 |
O × F | 1 | 0.98 | 0.323 5 | 0.01 | 0.939 1 | 0.00 | 0.985 0 | 0.19 | 0.667 2 | 0.07 | 0.791 2 | 0.77 | 0.381 2 |
N × B | 1 | 0.07 | 0.785 6 | 0.40 | 0.526 3 | 0.16 | 0.685 9 | 0.11 | 0.740 9 | 0.15 | 0.701 3 | 0.12 | 0.728 7 |
N × F | 1 | 0.09 | 0.762 3 | 1.66 | 0.198 8 | 0.53 | 0.467 2 | 1.00 | 0.318 7 | 0.87 | 0.352 8 | 0.25 | 0.616 8 |
B × F | 1 | 6.52 | 0.011 5 | 2.37 | 0.125 2 | 1.23 | 0.269 0 | 4.13 | 0.043 7 | 2.96 | 0.086 9 | 0.57 | 0.452 3 |
O × N × B | 1 | 0.00 | 0.994 6 | 0.49 | 0.486 5 | 1.49 | 0.223 5 | 0.23 | 0.631 4 | 0.72 | 0.396 6 | 1.90 | 0.169 7 |
O × N × F | 1 | 0.32 | 0.569 5 | 1.04 | 0.310 3 | 2.99 | 0.085 6 | 0.84 | 0.361 3 | 1.80 | 0.181 2 | 0.99 | 0.321 1 |
O × B × F | 1 | 0.31 | 0.577 3 | 1.19 | 0.276 0 | 1.63 | 0.202 9 | 0.93 | 0.337 1 | 1.35 | 0.246 5 | 0.02 | 0.901 3 |
N × B × F | 1 | 0.18 | 0.670 6 | 1.67 | 0.198 3 | 4.45 | 0.036 2 | 1.10 | 0.296 1 | 2.55 | 0.111 8 | 0.61 | 0.434 3 |
O × N × B × F | 1 | 0.09 | 0.760 2 | 0.57 | 0.452 7 | 1.47 | 0.227 3 | 0.16 | 0.690 2 | 0.63 | 0.426 7 | 1.13 | 0.288 2 |
图1 种源对乌桕形态学特征的影响(平均值±标准误)。In, 入侵地; Na, 本地。不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Effect of origin on morphological traits of Triadica sebifera (mean ± SE). In, invasive; Na, native. Different lowercase letters indicate significant differences (p < 0.05).
图2 种源对乌桕生物量指标的影响(平均值±标准误)。In, 入侵地; Na, 本地。不同小写字母表示差异显著(p < 0.05)。
Fig. 2 Effect of origin on biomass of Triadica sebifera (mean ± SE). In, invasive; Na, native. Different lowercase letters indicate significant differences (p < 0.05).
图3 氮添加(N)对乌桕生长表现的影响(平均值±标准误)。CK, 对照。不同小写字母表示差异显著(p < 0.05)。
Fig. 3 Effect of nitrogen addition (N) on growth performance of Triadica sebifera (mean ± SE). CK, control. Different lowercase letters indicate significant differences (p < 0.05).
图4 氮添加(N)和种源对乌桕根冠比的影响(平均值±标准误)。CK, 对照; In, 入侵地; Na, 本地。不同小写字母表示差异显著(p < 0.05)。
Fig. 4 Effect of nitrogen addition (N) and origin on root shoot ratio of Triadica sebifera (mean ± SE). CK, control; In, invasive; Na, native. Different lowercase letters indicate significant differences (p < 0.05).
图5 细菌抑制剂(B)和真菌抑制剂(F)对叶生物量和地上生物量的影响(平均值±标准误)。CK, 对照。不同小写字母表示差异显著(p < 0.05)。
Fig. 5 Effect of bacteria inhibitors (B) and fungal inhibitors (F) on leaf and aboveground biomass of Triadica sebifera (mean ± SE). CK, control. Different lowercase letters indicate significant differences (p < 0.05).
图6 细菌抑制剂(B)和种源对乌桕根生物量的影响(平均值±标准误)。CK, 对照; Na, 本地; In, 入侵地。不同小写字母表示差异显著(p < 0.05)。
Fig. 6 Effect of bacterial inhibitors (B) and origin on root biomass of Triadica sebifera (mean ± SE). CK, control; In, invasive; Na, native. Different lowercase letters indicate significant differences (p < 0.05).
图7 氮添加(N)、细菌抑制剂(B)和真菌抑制剂(F)对乌桕根生物量的影响(平均值±标准误)。CK, 对照。不同小写字母表示差异显著(p < 0.05)。
Fig. 7 Effect of nitrogen addition (N), bacterial inhibitors (B) and fungal inhibitors (F) on root biomass of Triadica sebifera (mean ± SE). CK, control. Different lowercase letters indicate significant differences (p < 0.05).
[1] |
Blossey B, Notzold R (1995). Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887-889.
DOI URL |
[2] | Bruce KA, Cameron GN, Harcombe PA, Jubinsky G (1997). Introduction, impact on native habitats, and management of a woody invader, the Chinese tallow tree, Sapium sebiferum (L.) Roxb. Natural Areas Journal, 17, 255-260. |
[3] |
Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J (2011). Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology, 92, 1027-1035.
PMID |
[4] |
Chang EH, Chiu CY (2015). Changes in soil microbial community structure and activity in a cedar plantation invaded by moso bamboo. Applied Soil Ecology, 91, 1-7.
DOI URL |
[5] | Chen GS, Yang YS, Xie JS, Li L, Gao R (2004). Soil biological changes for a natural forest and two plantations in subtropical China. Pedosphere, 14, 297-304. |
[6] |
Deng BL, Liu Q, Liu XS, Zheng LY, Jiang LB, Guo XM, Liu YQ, Zhang L (2017). Effects of enhanced UV-B radiation and nitrogen deposition on the growth of invasive plant Triadica sebifera. Chinese Journal of Plant Ecology, 41, 471-479.
DOI URL |
[邓邦良, 刘倩, 刘喜帅, 郑利亚, 江亮波, 郭晓敏, 刘苑秋, 张令 (2017). UV-B辐射增强和氮沉降对入侵植物乌桕生长的影响. 植物生态学报, 41, 471-479.]
DOI |
|
[7] |
Deng BL, Liu XS, Zheng LY, Liu Q, Guo XM, Zhang L (2019). Effects of nitrogen deposition and UV-B radiation on seedling performance of Chinese tallow tree (Triadica sebifera): a photosynthesis perspective. Forest Ecology and Management, 433, 453-458.
DOI URL |
[8] | Fang HF, Feng WX, Luo LC, Gao Y, Wang BH, Shad N, Wei QX, Zou Y, Su SS, Zhang L (2021). Effects of soil microorganisms on chlorophyll fluorescence characteristics of invasive Triadica sebifera with nitrogen deposition. Acta Ecologica Sinica, 41, 9377-9387. |
[方海富, 冯为迅, 罗来聪, 高宇, 王佰慧, Shad N, 魏启轩, 邹瑜, 苏思思, 张令 (2021). 氮沉降背景下土壤微生物对入侵植物乌桕叶绿素荧光特征的影响. 生态学报, 41, 9377-9387.] | |
[9] |
Fang H, Gao Y, Zhang Q, Ma L, Wang B, Shad N, Deng W, Liu X, Liu Y, Zhang L (2022). Moso bamboo and Japanese cedar seedlings differently affected soil N2O emissions. Journal of Plant Ecology, 15, 277-285.
DOI URL |
[10] |
Fritze H, Smolander A, Levula T, Kitunen V, Mälkönen E (1994). Wood-ash fertilization and fire treatments in a Scots pine forest stand: effects on the organic layer, microbial biomass, and microbial activity. Biology and Fertility of Soils, 17, 57-63.
DOI URL |
[11] |
Huang W, Carrillo J, Ding J, Siemann E (2012). Interactive effects of herbivory and competition intensity determine invasive plant performance. Oecologia, 170, 373-382.
DOI PMID |
[12] |
Inderjit, van der Putten WH, (2010). Impacts of soil microbial communities on exotic plant invasions. Trends in Ecology & Evolution, 25, 512-519.
DOI URL |
[13] |
Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A, Baker AR, Tsigaridis K, Mihalopoulos N (2016). Past, present, and future atmospheric nitrogen deposition. Journal of the Atmospheric Sciences, 73, 2039-2047.
DOI URL |
[14] |
Li Q, Song XZ, Chang SX, Peng CH, Xiao WF, Zhang JB, Xiang WH, Li Y, Wang WF (2019). Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agricultural and Forest Meteorology, 268, 48-54.
DOI URL |
[15] |
Lucas-Borja ME, Candel D, Jindo K, Moreno JL, Andrés M, Bastida F (2012). Soil microbial community structure and activity in monospecific and mixed forest stands, under Mediterranean humid conditions. Plant and Soil, 354, 359-370.
DOI URL |
[16] |
Nijjer S, Rogers WE, Lee CTA, Siemann E (2008). The effects of soil biota and fertilization on the success of Sapium sebiferum. Applied Soil Ecology, 38, 1-11.
DOI URL |
[17] | Nijjer S, Rogers WE, Siemann E (2004). The effect of mycorrhizal inoculum on the growth of five native tree species and the invasive Chinese tallow tree (Sapium sebiferum). The Texas Journal of Science, 56, 357-368. |
[18] |
Peng Y, Peng PH, Li JJ (2016). Simulated nitrogen deposition influences the growth and competitive ability of Centaurea stoebe populations. Chinese Journal of Plant Ecology, 40, 679-685.
DOI URL |
[彭扬, 彭培好, 李景吉 (2016). 模拟氮沉降对矢车菊属植物Centaurea stoebe种群生长和竞争能力的影响. 植物生态学报, 40, 679-685.]
DOI |
|
[19] |
Pereira e Silva MC, Semenov AV, Schmitt H, van Elsas JD, Salles JF (2013). Microbe-mediated processes as indicators to establish the normal operating range of soil functioning. Soil Biology & Biochemistry, 57, 995-1002.
DOI URL |
[20] | Qi XX, Zhang SY, Lin F, Zhang LL, Yang DL, Huangfu CH, Wang H (2019). Effect of Flaveria bidentis invasion on plant community and soil microbial community of different invaded soil. Acta Ecologica Sinica, 39, 8472-8482. |
[祁小旭, 张思宇, 林峰, 张玲玲, 杨殿林, 皇甫超河, 王慧 (2019). 黄顶菊对不同入侵地植物群落及土壤微生物群落的影响. 生态学报, 39, 8472-8482.] | |
[21] |
Qin WC, Tao ZB, Wang YJ, Liu YJ, Huang W (2021). Research progress and prospect on the impacts of resource pulses on alien plant invasion. Chinese Journal of Plant Ecology, 45, 573-582.
DOI URL |
[秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟 (2021). 资源脉冲对外来植物入侵影响的研究进展和展望. 植物生态学报, 45, 573-582.] | |
[22] |
Reinhart KO, Callaway RM (2006). Soil biota and invasive plants. New Phytologist, 170, 445-457.
DOI PMID |
[23] |
Sun SM, Chen JX, Feng WW, Zhang C, Huang K, Guan M, Sun JK, Liu MC, Feng YL (2021). Plant strategies for nitrogen acquisition and their effects on exotic plant invasions. Biodiversity Science, 29, 72-80.
DOI URL |
[孙思邈, 陈吉欣, 冯炜炜, 张昶, 黄凯, 管铭, 孙建坤, 刘明超, 冯玉龙 (2021). 植物氮形态利用策略及对外来植物入侵性的影响. 生物多样性, 29, 72-80.] | |
[24] |
Tang JQ, Guo XC, Lu XY, Liu MC, Zhang HY, Feng YL, Kong DL (2020). A review on the effects of invasive plants on mycorrhizal fungi of native plants and their underlying mechanisms. Chinese Journal of Plant Ecology, 44, 1095-1112.
DOI URL |
[唐金琦, 郭小城, 鲁新瑜, 刘明超, 张海艳, 冯玉龙, 孔德良 (2020). 外来入侵植物对本地植物菌根真菌的影响及其机制. 植物生态学报, 44, 1095-1112.] | |
[25] |
Theoharides KA, Dukes JS (2007). Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176, 256-273.
DOI PMID |
[26] |
Valladares-Padua C (2006). Importance of knowledge-intensive economic development to conservation of biodiversity in developing countries. Conservation Biology, 20, 700-701.
PMID |
[27] | Wu H, Ding JQ (2014). Recent progress in invasion ecology. Chinese Science Bulletin, 59, 438-448. |
[吴昊, 丁建清 (2014). 入侵生态学最新研究动态. 科学通报, 59, 438-448.] | |
[28] |
Xu H, Hu CC, Xu SQ, Sun XC, Liu XY (2018). Effects of exotic plant invasion on soil nitrogen availability. Chinese Journal of Plant Ecology, 42, 1120-1130.
DOI |
[许浩, 胡朝臣, 许士麒, 孙新超, 刘学炎 (2018). 外来植物入侵对土壤氮有效性的影响. 植物生态学报, 42, 1120-1130.]
DOI |
|
[29] |
Yang Q, Li B, Siemann E (2015). The effects of fertilization on plant-soil interactions and salinity tolerance of invasive Triadica sebifera. Plant and Soil, 394, 99-107.
DOI URL |
[30] | Zhang HL, Bai NL, Zheng XQ, Li SX, Zhang JQ, Zhang HY, Zhou S, Sun HF, Lyu WG (2021). Effects of straw returning and fertilization on soil bacterial and fungal community structures and diversities in rice-wheat rotation soil. Chinese Journal of Eco-Agriculture, 29, 531-539. |
[张翰林, 白娜玲, 郑宪清, 李双喜, 张娟琴, 张海韵, 周胜, 孙会峰, 吕卫光 (2021). 秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响. 中国生态农业学报, 29, 531-539.] | |
[31] | Zhang KD, Lin YT (1991). Chinese Sapium sebiferum. China Forestry Publishing House, Beijing. |
[张克迪, 林一天 (1991). 中国乌桕. 中国林业出版社, 北京.] | |
[32] | Zhang L, Wang H, Chen NN, Zou JW (2012). Effects of soil biotic communities on the seedling performance of native and invasive provenances of Triadica sebifera. Journal of Biosafety, 21, 41-45. |
[张令, 王泓, 陈楠楠, 邹建文 (2012). 土壤微生物对不同种源乌桕生长的影响. 生物安全学报, 21, 41-45.] | |
[33] |
Zhang L, Zhang YJ, Wang H, Zou JW, Siemann E (2013). Chinese tallow trees (Triadica sebifera) from the invasive range outperform those from the native range with an active soil community or phosphorus fertilization. PLoS ONE, 8, e74233. DOI: 10.1371/journal.pone.0074233.
DOI |
[34] | Zheng X, Jiang LB, Deng BL, Liu Q, Liu XS, Zheng LY, Guo XM, Liu YQ, Zhang L (2018). Effects of enhanced UV-B radiation and nitrogen deposition on chlorophyll fluorescence parameters of invasive plant Triadica sebifera. Acta Agriculturae Zhejiangensis, 30, 248-254. |
[郑翔, 江亮波, 邓邦良, 刘倩, 刘喜帅, 郑利亚, 郭晓敏, 刘苑秋, 张令 (2018). UV-B辐射增强和氮沉降对不同种源地乌桕叶绿素荧光参数的影响. 浙江农业学报, 30, 248-254.]
DOI |
|
[35] |
Zou J, Rogers WE, DeWalt SJ, Siemann E (2006). The effect of Chinese tallow tree (Sapium sebiferum) ecotype on soil-plant system carbon and nitrogen processes. Oecologia, 150, 272-281.
PMID |
[36] |
Zou J, Rogers WE, Siemann E (2007). Differences in morphological and physiological traits between native and invasive populations of Sapium sebiferum. Functional Ecology, 21, 721-730.
DOI URL |
[1] | 何斐 李川 Shah Faisal 卢谢敏 王莹 王梦 阮佳 魏梦琳 马星光 王卓 姜浩. 丛枝菌根菌丝桥介导的刺槐‖魔芋碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 0-0. |
[2] | 杨佳绒 戴冬 陈俊芳 刘娟 吴宪 刘啸林 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 0-0. |
[3] | 胡同欣 李蓓 李光新 任玥霄 丁海磊 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落结构的影响[J]. 植物生态学报, 2023, 47(6): 0-0. |
[4] | 李冠军 陈珑 余雯静 苏亲桂 吴承祯 苏军 李键. 固培内生真菌对土壤盐胁迫下短枝木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 0-0. |
[5] | 张雅琪 庞丹波 陈林 曹萌豪 何文强 李学斌. 荒漠草原土壤氨氧化细菌(AOB)群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 0-0. |
[6] | 张慧, 曾文静, 龚新桃, 马泽清. 亚热带典型树种根毛特征及其与共生真菌的关系[J]. 植物生态学报, 2023, 47(1): 88-100. |
[7] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[8] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[9] | 夏体泽, 李露双, 杨汉奇. 屏边空竹分布区海拔上下边界的土壤真菌群落特征[J]. 植物生态学报, 2022, 46(7): 823-833. |
[10] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[11] | 秦江环, 张春雨, 赵秀海. 基于温带针阔混交林植物-土壤反馈的Janzen- Connell假说检验[J]. 植物生态学报, 2022, 46(6): 624-631. |
[12] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[13] | 单婷婷, 陈彤垚, 陈晓梅, 郭顺星, 王爱荣. 菌根真菌与兰科植物氮营养关系的研究进展[J]. 植物生态学报, 2022, 46(5): 516-528. |
[14] | 谢育杭, 贾璞, 郑修坛, 李金天, 束文圣, 王宇涛. 驯化对作物微生物组多样性和群落结构的影响及作用途径[J]. 植物生态学报, 2022, 46(3): 249-266. |
[15] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19