植物生态学报 ›› 2024, Vol. 48 ›› Issue (5): 577-589.DOI: 10.17521/cjpe.2023.0374 cstr: 32100.14.cjpe.2023.0374
所属专题: 入侵生态学
收稿日期:
2023-12-14
接受日期:
2024-01-23
出版日期:
2024-05-20
发布日期:
2024-01-24
通讯作者:
(基金资助:
BAI Hao-Ran1,2, HOU Meng1, LIU Yan-Jie1,*()
Received:
2023-12-14
Accepted:
2024-01-23
Online:
2024-05-20
Published:
2024-01-24
Contact:
(Supported by:
摘要:
羊草(Leymus chinensis)草原是中国草地资源中珍贵的自然财富, 其生产力受到多种全球变化因素的制约。其中, 少花蒺藜草(Cenchrus spinifex)入侵(以下简称为“入侵”)与干旱对东北松嫩草原区羊草群落影响尤为显著, 但相关机制仍较少被关注。该研究通过微宇宙控制实验, 采用两因素完全交互设计, 探究入侵与干旱对羊草群落生产力影响的作用机制。因素一是入侵处理(入侵vs对照), 因素二为水分处理(干旱vs正常水分), 每个处理设置10次重复, 实验共计40盆。结果表明: 入侵与干旱会显著降低羊草群落与优势物种羊草的地上生物量。干旱处理下土壤有效氮含量与土壤节肢动物的丰富度显著下降, 而土壤细菌与球囊霉科(Glomeraceae)丛枝菌根真菌(AMF)丰度显著增加。入侵对土壤真菌有效物种数的影响受到干旱的调节, 表现为在正常水分条件下入侵不影响土壤真菌的有效物种数, 但在干旱条件下入侵显著增加土壤真菌的有效物种数。结构方程模型结果表明, 入侵与干旱均直接抑制羊草群落生产力。干旱通过增加土壤真菌优势菌群的丰度进而间接缓解对本地群落生产力的负面影响。此外, 两者协同作用通过增加土壤真菌群落多样性抑制群落生产力。该研究为将来更好地维护草地生产力, 保护优质牧草提供理论依据。
白皓然, 侯盟, 刘艳杰. 少花蒺藜草入侵与干旱对羊草群落生产力的影响机制. 植物生态学报, 2024, 48(5): 577-589. DOI: 10.17521/cjpe.2023.0374
BAI Hao-Ran, HOU Meng, LIU Yan-Jie. Mechanisms of the invasion of Cenchrus spinifex and drought effects on productivity of Leymus chinensis community. Chinese Journal of Plant Ecology, 2024, 48(5): 577-589. DOI: 10.17521/cjpe.2023.0374
图1 少花蒺藜草入侵实验设计示意图。实验采用双因素设计: 入侵处理每盆移栽9株少花蒺藜草到本地群落, 对照处理不移栽; 水分处理设置两个水分水平(正常水分&干旱), 干旱保持土壤含水量8%-15%, 正常水分保持土壤含水量30%-40%。
Fig. 1 Experimental design chart of the invasion of Cenchrus spinifex. Two-factor design was used in this experiment, the invasive treatment transplanted nine Cenchrus spinifex plants per pot to the native community and the control treatment did not transplant. We set up two levels of water treatment (normal water & drought), drought to maintain soil moisture content 8%-15%, normal water to maintain soil moisture content 30%-40%.
固定因子 Fixed factor | df | 本地群落地上生物量 Aboveground biomass of native community (g) | 羊草地上生物量 Aboveground biomass of Leymus chinensis (g) | 物种丰富度 Species richness | 有效物种数 Effective number of species | ||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | ||
入侵 Invasion (I) | 1 | 16.220 | 0.000 | 9.508 | 0.004 | 0.239 | 0.628 | 2.678 | 0.111 |
水分 Water (W) | 1 | 16.220 | 0.000 | 9.508 | 0.004 | 0.239 | 0.628 | 2.678 | 0.111 |
I × W | 1 | 0.063 | 0.803 | 0.027 | 0.872 | 2.152 | 0.151 | 0.050 | 0.824 |
表1 入侵和水分处理及其交互作用对羊草群落地上生物量、羊草地上生物量、本地群落物种丰富度和有效物种数的影响
Table 1 Effects of invasion and water treatments and their interactions on aboveground biomass of Leymus chinensis community, aboveground biomass of Leymus chinensis, species richness and effective number of species
固定因子 Fixed factor | df | 本地群落地上生物量 Aboveground biomass of native community (g) | 羊草地上生物量 Aboveground biomass of Leymus chinensis (g) | 物种丰富度 Species richness | 有效物种数 Effective number of species | ||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | ||
入侵 Invasion (I) | 1 | 16.220 | 0.000 | 9.508 | 0.004 | 0.239 | 0.628 | 2.678 | 0.111 |
水分 Water (W) | 1 | 16.220 | 0.000 | 9.508 | 0.004 | 0.239 | 0.628 | 2.678 | 0.111 |
I × W | 1 | 0.063 | 0.803 | 0.027 | 0.872 | 2.152 | 0.151 | 0.050 | 0.824 |
固定因子 Fixed factor | df | 细菌 Bacteria | 真菌 Fungi | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
绝对丰度 Absolute abundance | 丰富度 Richness | 有效物种数 Effective number of species | 绝对丰度 Absolute abundance | 丰富度 Richness | 有效物种数 Effective number of species | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | ||
入侵 Invasion (I) | 1 | 2.204 | 0.157 | 0.894 | 0.359 | 0.384 | 0.544 | 1.089 | 0.312 | 0.688 | 0.419 | 3.364 | 0.085 |
水分 Water (W) | 1 | 7.017 | 0.018 | 0.002 | 0.967 | 1.357 | 0.261 | 1.334 | 0.265 | 0.016 | 0.899 | 0.062 | 0.806 |
I × W | 1 | 0.014 | 0.907 | 0.013 | 0.910 | 0.077 | 0.784 | 0.034 | 0.857 | 0.318 | 0.581 | 5.624 | 0.031 |
表2 入侵和水分处理及其交互作用对细菌和真菌的绝对丰度、丰富度、有效物种数的影响
Table 2 Effects of invasion and water treatments and their interactions on absolute abundance, richness, effective number of species of bacteria and fungi
固定因子 Fixed factor | df | 细菌 Bacteria | 真菌 Fungi | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
绝对丰度 Absolute abundance | 丰富度 Richness | 有效物种数 Effective number of species | 绝对丰度 Absolute abundance | 丰富度 Richness | 有效物种数 Effective number of species | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | ||
入侵 Invasion (I) | 1 | 2.204 | 0.157 | 0.894 | 0.359 | 0.384 | 0.544 | 1.089 | 0.312 | 0.688 | 0.419 | 3.364 | 0.085 |
水分 Water (W) | 1 | 7.017 | 0.018 | 0.002 | 0.967 | 1.357 | 0.261 | 1.334 | 0.265 | 0.016 | 0.899 | 0.062 | 0.806 |
I × W | 1 | 0.014 | 0.907 | 0.013 | 0.910 | 0.077 | 0.784 | 0.034 | 0.857 | 0.318 | 0.581 | 5.624 | 0.031 |
固定因子 Fixed factor | df | 细菌 Bacteria | 真菌 Fungi | 植物病原菌 Plant pathogen | 丛枝菌根真菌 Arbuscular mycorrhizal fungi | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
亚硝化球菌科Nitrososphaeraceae | 毛霉菌科Trichomeriaceae | 丛赤壳科 Nectriaceae | 串珠镰孢菌属 Gibberella | 球囊霉科 Glomeraceae | 多氏囊霉属Dominikia | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | ||
入侵 Invasion (I) | 1 | 0.249 | 0.625 | 1.501 | 0.238 | 0.822 | 0.378 | 0.766 | 0.394 | 0.107 | 0.747 | 0.167 | 0.688 |
水分 Water (W) | 1 | 0.604 | 0.448 | 0.074 | 0.789 | 0.795 | 0.386 | 0.626 | 0.441 | 5.136 | 0.038 | 0.427 | 0.523 |
I × W | 1 | 0.464 | 0.506 | 2.602 | 0.126 | 1.667 | 0.215 | 1.805 | 0.198 | 0.115 | 0.739 | 0.192 | 0.667 |
表3 入侵和水分处理及其交互作用对土壤优势菌群丰度的影响
Table 3 Effects of invasion and water treatments and their interactions on relative abundance of soil dominant microorganisms
固定因子 Fixed factor | df | 细菌 Bacteria | 真菌 Fungi | 植物病原菌 Plant pathogen | 丛枝菌根真菌 Arbuscular mycorrhizal fungi | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
亚硝化球菌科Nitrososphaeraceae | 毛霉菌科Trichomeriaceae | 丛赤壳科 Nectriaceae | 串珠镰孢菌属 Gibberella | 球囊霉科 Glomeraceae | 多氏囊霉属Dominikia | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | ||
入侵 Invasion (I) | 1 | 0.249 | 0.625 | 1.501 | 0.238 | 0.822 | 0.378 | 0.766 | 0.394 | 0.107 | 0.747 | 0.167 | 0.688 |
水分 Water (W) | 1 | 0.604 | 0.448 | 0.074 | 0.789 | 0.795 | 0.386 | 0.626 | 0.441 | 5.136 | 0.038 | 0.427 | 0.523 |
I × W | 1 | 0.464 | 0.506 | 2.602 | 0.126 | 1.667 | 0.215 | 1.805 | 0.198 | 0.115 | 0.739 | 0.192 | 0.667 |
图4 入侵和水分(W)对微生物群落优势菌的影响(平均值±标准误)。A, 亚硝化球菌科。B, 毛霉菌科。C, 丛赤壳科。D, 串珠镰孢菌属。E, 球囊霉科。F, 多氏囊霉属。*, p < 0.05。
Fig. 4 Effects of invasion and water (W) on dominant microorganisms in microbial communities (mean ± SE). A, Nitrososphaeraceae. B, Trichomeriaceae. C, Nectriaceae. D, Gibberella. E, Glomeraceae. F, Dominikia. *, p < 0.05.
固定因子 Fixed factor | df | 土壤节肢动物群落 Soil arthropod | 土壤线虫 Soil nematode | ||||||
---|---|---|---|---|---|---|---|---|---|
丰富度 Richness | 有效物种数 Effective number of species | 丰富度 Richness | 有效物种数 Effective number of species | ||||||
F | p | F | p | F | p | F | p | ||
入侵 Invasion (I) | 1 | 0.250 | 0.599 | 0.032 | 0.851 | 1.237 | 0.228 | 0.709 | 0.389 |
水分 Water (W) | 1 | 15.442 | 0.000 | 0.146 | 0.690 | 0.811 | 0.326 | 1.995 | 0.155 |
I × W | 1 | 0.046 | 0.821 | 0.702 | 0.379 | 0.409 | 0.477 | 2.748 | 0.075 |
表4 入侵和水分处理及其交互作用对土壤节肢动物群落丰富度、土壤节肢动物群落有效物种数、土壤线虫丰富度、土壤线虫有效物种数的影响
Table 4 Effects of invasion and water treatments and their interactions on soil arthropod richness, soil arthropod effective number of species, soil nematode richness and soil nematode effective number of species
固定因子 Fixed factor | df | 土壤节肢动物群落 Soil arthropod | 土壤线虫 Soil nematode | ||||||
---|---|---|---|---|---|---|---|---|---|
丰富度 Richness | 有效物种数 Effective number of species | 丰富度 Richness | 有效物种数 Effective number of species | ||||||
F | p | F | p | F | p | F | p | ||
入侵 Invasion (I) | 1 | 0.250 | 0.599 | 0.032 | 0.851 | 1.237 | 0.228 | 0.709 | 0.389 |
水分 Water (W) | 1 | 15.442 | 0.000 | 0.146 | 0.690 | 0.811 | 0.326 | 1.995 | 0.155 |
I × W | 1 | 0.046 | 0.821 | 0.702 | 0.379 | 0.409 | 0.477 | 2.748 | 0.075 |
图6 入侵与水分及其相互作用对细菌绝对丰度、真菌有效物种数、丛枝菌根真菌优势菌球囊霉科菌、土壤节肢动物群落丰富度、土壤有效氮含量和群落生产力影响的结构方程模型。在图中, 箭头表示路径, 在正方形(■)处连接到路径的线表示交互作用; 沿着路径的数字是标准化系数。对于模型, Satorra-Bentler校正χ² = 13.535, p = 0.561, 说明模型中不存在缺失路径。比较拟合指数(CFI)在对假设模型和独立模型比较时取得, 其值在0-1之间, 愈接近0表示拟合愈差, 愈接近1表示拟合愈好。近似误差均方根(RMSEA)是评价模型不拟合的指数, 如果接近0表示拟合良好, 相反, 离0愈远表示拟合愈差。标准化均方根残差值(SRMR), SRMR愈小, 表示模型拟合度愈高。SRMR = 0表示完美拟合, SRMR < 0.05一般为良好的拟合标准, SRMR < 0.08一般为可接受的拟合标准。
Fig. 6 Structural equation modeling of the invasion and water and their interactions on absolute bacterial abundance, effective number of species (ENS) of fungi, Glomeraceae, soil arthropod richness, soil available nitrogen content (AN) and native community productivity. In the diagram, arrows indicate paths, lines connect to the paths at the squares (■) indicate interactions; numbers along the paths are standardized coefficients. For the model, Satorra-Bentler corrected χ² = 13.535, p = 0.561, indicating there were no missing paths in the model. Comparative fit index (CFI) is obtained when comparing the hypothetical model and the independent model, and its value is between 0 and 1, closer to 0 means worse fit, and closer to 1 means better fit. Root-mean-square error of approximation (RMSEA) is the index that evaluates the model to not fit, if it is close to 0, the fit is good, conversely, the further from 0, the worse the fit. Standardized root mean square residual (SRMR), SRMR = 0 means a perfect fit, SRMR < 0.05 indicates a good fit, SRMR < 0.08 represents an acceptable fit.
[1] | Aupic-Samain A, Baldy V, Delcourt N, Krogh PH, Gauquelin T, Fernandez C, Santonja M (2021). Water availability rather than temperature control soil fauna community structure and prey-predator interactions. Functional Ecology, 35, 1550-1559. |
[2] | Bardgett RD, Chan KF (1999). Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biology & Biochemistry, 31, 1007-1014. |
[3] | Bartholomeus H, Schaepman-Strub G, Blok D, Sofronov R, Udaltsov S (2012). Spectral estimation of soil properties in Siberian tundra soils and relations with plant species composition. Applied and Environmental Soil Science, 2012, 241535. DOI: 10.1155/2012/241535. |
[4] |
Baruch Z, Goldstein G (1999). Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia, 121, 183-192.
DOI PMID |
[5] | Biederman LA, Boutton TW (2009). Biodiversity and trophic structure of soil nematode communities are altered following woody plant invasion of grassland. Soil Biology & Biochemistry, 41, 1943-1950. |
[6] | Bonkowski M, Clarholm M (2012). Stimulation of plant growth through interactions of bacteria and Protozoa: testing the auxiliary microbial loop hypothesis. Acta Protozoologica, 51, 237-247. |
[7] | Bowles TM, Jackson LE, Cavagnaro TR (2018). Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Global Change Biology, 24, e171-e182. |
[8] | Brook BW, Sodhi NS, Bradshaw CJA (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23, 453-460. |
[9] | Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004). Soil biota and exotic plant invasion. Nature, 427, 731-733. |
[10] | Cao Y, Hawkins CP (2019). Weighting effective number of species measures by abundance weakens detection of diversity responses. Journal of Applied Ecology, 56, 1200-1209. |
[11] | Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grünwald T, et al. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529-533. |
[12] | Diez JM, D’Antonio CM, Dukes JS, Grosholz ED, Olden JD, Sorte CJ, Blumenthal DM, Bradley BA, Early R, Ibáñez I, Jones SJ, Lawler JJ, Miller LP (2012). Will extreme climatic events facilitate biological invasions. Frontiers in Ecology and the Environment, 10, 249-257. |
[13] |
Dijkstra FA, Augustine DJ, Brewer P, von Fischer JC (2012). Nitrogen cycling and water pulses in semiarid grasslands: Are microbial and plant processes temporally asynchronous. Oecologia, 170, 799-808.
DOI PMID |
[14] | Dong GJ (2003). Leymus chinensis, one of the seven males of forage grass. Plants, (3), 20. |
[董贵俊 (2003). 牧草七雄之一——羊草. 植物杂志, (3), 20.] | |
[15] | Engelbrecht BMJ, Tyree MT, Kursar TA (2007). Visual assessment of wilting as a measure of leaf water potential and seedling drought survival. Journal of Tropical Ecology, 23, 497-500. |
[16] | Essl F, Lenzner B, Bacher S, Bailey S, Capinha C, Daehler C, Dullinger S, Genovesi P, Hui C, Hulme PE, Jeschke JM, Katsanevakis S, Kühn I, Leung B, Liebhold A, et al. (2020). Drivers of future alien species impacts: an expert- based assessment. Global Change Biology, 26, 4880-4893. |
[17] | Fan LH, Zhou XM, Wu SL, Xiang J, Zhong XY, Tang XZ, Wang YJ (2019). Research advances on the effects of drought stress in plant rhizosphere environments. Chinese Journal of Applied and Environmental Biology, 25, 1244-1251. |
[樊利华, 周星梅, 吴淑兰, 向君, 钟晓燕, 唐雪滋, 王彦杰 (2019). 干旱胁迫对植物根际环境影响的研究进展. 应用与环境生物学报, 25, 1244-1251.] | |
[18] |
Gang CC, Wang ZQ, Yang Y, Chen YZ, Zhang YZ, Li JL, Cheng JM (2016). The NPP spatiotemporal variation of global grassland ecosystems in response to climate change over the past 100 years. Acta Prataculturae Sinica, 25(11), 1-14.
DOI |
[刚成诚, 王钊齐, 杨悦, 陈奕兆, 张艳珍, 李建龙, 程积民 (2016). 近百年全球草地生态系统净初级生产力时空动态对气候变化的响应. 草业学报, 25(11), 1-14.]
DOI |
|
[19] | Gao JH, Wang R, Song Z, Yun LL, Fu WD, Wang ZH, Ma T, Wang Y, Zhang GL (2022). Effects of Cenchrus spinifex invasion on phosphorus bacteria community diversity in rhizosphere soil. Journal of Biosafety, 31, 327-335. |
[高金会, 王然, 宋振, 郓玲玲, 付卫东, 王忠辉, 马涛, 王伊, 张国良 (2022). 少花蒺藜草入侵对根际土壤磷细菌群落多样性的影响. 生物安全学报, 31, 327-335.] | |
[20] | Gao Q, Zhu W, Schwartz M, Ganjurjav H, Wan YF, Qin XB, Ma X, Williamson M, Li Y (2016). Climatic change controls productivity variation in global grasslands. Scientific Reports, 6, 26958. DOI: 10.1038/srep26958. |
[21] | Geng QH, Song LP, Lin CF, Zhang YY, Wang AH (2021). Study on the method of seed dormancy breaking in non- heading Chinese cabbage. Hubei Agricultural Sciences, 60(21), 76-80. |
[耿启华, 宋莉萍, 林处发, 张余洋, 汪爱华 (2021). 小白菜种子休眠破除方法研究. 湖北农业科学, 60(21), 76-80.] | |
[22] | Guo YF (2023). Relationship Between Plant Community Diversity and Productivity in Desert Steppe Under Controlled Precipitation. Master degree dissertation, Northwest Normal University, Lanzhou. |
[郭亚飞 (2023). 控制降水下荒漠草原植物群落多样性与生产力的关系研究. 硕士学位论文, 西北师范大学, 兰州.] | |
[23] | Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2, 1221-1230. |
[24] |
Hartmann M, Brunner I, Hagedorn F, Bardgett RD, Stierli B, Herzog C, Chen XM, Zingg A, Graf-Pannatier E, Rigling A, Frey B (2017). A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. Molecular Ecology, 26, 1190-1206.
DOI PMID |
[25] | Hou M, Wang JY (2023). Functional traits of both specific alien species and receptive community but not community diversity determined the invasion success under biotic and abiotic conditions. Functional Ecology, 37, 2598-2610. |
[26] | Illeris L, Michelsen A, Jonasson S (2003). Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert. Biogeochemistry, 65, 15-29. |
[27] | Jost L (2006). Entropy and diversity. Oikos, 113, 363-375. |
[28] | Keane RM, Crawley MJ (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164-170. |
[29] | Lecain DR, Morgan JA, Schuman GE, Reeder JD, Hart RH (2002). Carbon exchange and species composition of grazed pastures and exclosures in the shortgrass steppe of Colorado. Agriculture, Ecosystems & Environment, 93, 421-435. |
[30] | Lei TJ, Feng J, Lv J, Wang JB, Song HQ, Song WL, Gao XF (2020). Net primary productivity loss under different drought levels in different grassland ecosystems. Journal of Environmental Management, 274, 111144. DOI: 10.1016/j.jenvman.2020.111144. |
[31] | Lei TJ, Wu JJ, Wang JB, Shao CL, Wang WW, Chen DP, Li XY (2022). The net influence of drought on grassland productivity over the past 50 years. Sustainability, 14, 12374. DOI: 10.3390/su141912374. |
[32] |
Lemoine NP, Smith MD (2019). Drought and small-bodied herbivores modify nutrient cycling in the semi-arid shortgrass steppe. Plant Ecology, 220, 227-239.
DOI |
[33] | Li J, Xie L (2019). Harm and control of exotic invasive organism Tribulus parviflora. Agriculture of Jilin, (22), 63. |
[李静, 谢联 (2019). 外来入侵生物少花蒺藜草的危害与防控. 吉林农业, (22), 63.] | |
[34] | Li JQ, Meng B, Chai H, Yang XC, Song WZ, Li SX, Lu A, Zhang T, Sun W (2019). Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science, 10, 499. DOI: 10.3389/fpls.2019.00499. |
[35] |
Liu J, Dai SS, Huang W, Ding JQ (2020). Aboveground herbivory increases soil nematode abundance of an invasive plant. Journal of Plant Ecology, 13, 405-412.
DOI |
[36] | Liu YJ, van Kleunen M (2017). Responses of common and rare aliens and natives to nutrient availability and fluctuations. Journal of Ecology, 105, 1111-1122. |
[37] | Liu ZL, Xu HG, Ding H (2006). Impacts of invasive alien plant Eupatorium adenophorum on soil animal communities in Kunming. Journal of Ecology and Rural Environment, 22(2), 31-35. |
[刘志磊, 徐海根, 丁晖 (2006). 外来入侵植物紫茎泽兰对昆明地区土壤动物群落的影响. 生态与农村环境学报, 22(2), 31-35.] | |
[38] |
Maciá-Vicente JG, Francioli D, Weigelt A, Albracht C, Barry KE, Buscot F, Ebeling A, Eisenhauer N, Hennecke J, Heintz-Buschart A, van Ruijven J, Mommer L (2023). The structure of root-associated fungal communities is related to the long-term effects of plant diversity on productivity. Molecular Ecology, 32, 3763-3777.
DOI PMID |
[39] |
Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, Quero JL, García-Gómez M, Gallardo A, Ulrich W, Bowker MA, Arredondo T, Barraza-Zepeda C, Bran D, Florentino A, et al. (2015). Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 112, 15684-15689.
DOI PMID |
[40] |
McCulley RL, Burke IC, Lauenroth WK (2009). Conservation of nitrogen increases with precipitation across a major grassland gradient in the Central Great Plains of North America. Oecologia, 159, 571-581.
DOI PMID |
[41] | Neher DA, Weicht TR, Moorhead DL, Sinsabaugh RL (2004). Elevated CO2 alters functional attributes of nematode communities in forest soils. Functional Ecology, 18, 584-591. |
[42] | Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18, 1725-1737. |
[43] | Qi SS, Dai ZC, Zhai DL, Chen SC, Si CC, Huang P, Wang RP, Zhong QX, Du DL (2014). Curvilinear effects of invasive plants on plant diversity: plant community invaded by Sphagneticola trilobata. PLoS ONE, 9, e113964. DOI: 10.1371/journal.pone.0113964. |
[44] | Qiu SY, Liu SS, Wei SJ, Cui XH, Nie M, Huang JX, He Q, Ju RT, Li B (2020). Changes in multiple environmental factors additively enhance the dominance of an exotic plant with a novel trade-off pattern. Journal of Ecology, 108, 1989-1999. |
[45] | Rout ME, Callaway RM (2009). An invasive plant paradox. Science, 324, 734-735. |
[46] | Sanaullah M, Blagodatskaya E, Chabbi A, Rumpel C, Kuzyakov Y (2011). Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Applied Soil Ecology, 48, 38-44. |
[47] |
Seabloom EW, Harpole WS, Reichman OJ, Tilman D (2003). Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proceedings of the National Academy of Sciences of the United States of America, 100, 13384-13389.
DOI PMID |
[48] | Si HC, Wen SJ, Nan LL, Huo JY, Huang F, Pu H, Xu HY (2023). Influence of simulated drought stress on seedling growth and bacterial communities in the rhizosphere of sainfoin. Grassland and Turf, 43(3), 92-99. |
[司海灿, 温素军, 南丽丽, 火久艳, 黄富, 蒲涵, 徐昊玥 (2023). 干旱胁迫对红豆草幼苗生长及根际土壤细菌群落的影响. 草原与草坪, 43(3), 92-99.] | |
[49] | Sorte CJB, Ibáñez I, Blumenthal DM, Molinari NA, Miller LP, Grosholz ED, Diez JM, D’Antonio CM, Olden JD, Jones SJ, Dukes JS (2013). Poised to prosper? A cross-system comparison of climate change effects on native and non- native species performance. Ecology Letters, 16, 261-270. |
[50] | Sun ZL, Shu Q, Gao K, Zhou LY, Tian X, Guo FC, Wang HB (2020). Invasion status, adaptive mechanism and control strategy of field sandbur: a review. Acta Agrestia Sinica, 28, 1196-1202. |
[孙忠林, 淑琴, 高凯, 周立业, 田迅, 郭福纯, 王海滨 (2020). 少花蒺藜草入侵现状、适应机制和防控策略. 草地学报, 28, 1196-1202.]
DOI |
|
[51] |
Suseela V, Tharayil N (2018). Decoupling the direct and indirect effects of climate on plant litter decomposition: accounting for stress-induced modifications in plant chemistry. Global Change Biology, 24, 1428-1451.
DOI PMID |
[52] | Tang JL, Ren ZG, Zhang XY, Zhang YY, Wang ZW, Wang Z, Suo MC, Ren HY (2023). Relationships between species diversity and productivity of different functional groups in a typical steppe in Inner Mongolia. Acta Agrestia Sinica, 31, 1939-1949. |
[汤靖磊, 任治国, 张学渊, 张依尧, 王忠武, 王珍, 索明春, 任海燕 (2023). 典型草原不同功能群物种多样性与生产力关系研究. 草地学报, 31, 1939-1949.]
DOI |
|
[53] | Thompson JP, MacKenzie J, Sheedy GH (2012). Root-lesion nematode (Pratylenchus thornei) reduces nutrient response, biomass and yield of wheat in sorghum-fallow-wheat cropping systems in a subtropical environment. Field Crops Research, 137, 126-140. |
[54] |
van Kleunen M, Dawson W, Schlaepfer D, Jeschke JM, Fischer M (2010). Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecology Letters, 13, 947-958.
DOI PMID |
[55] | von Storch H (2004). A global problem. Nature, 429, 244-245. |
[56] | Wang KF (2017). The Invasion Mechanism and Control Measures of Cenchrus spinifex. PhD dissertation, Shenyang Agricultural University, Shenyang. |
王坤芳 (2017). 草甸草原少花蒺藜草入侵机制及防控措施研究. 博士学位论文, 沈阳农业大学, 沈阳.] | |
[57] | Wu JW, Wang JG, Li WJ (2023). Influence of Alternanthera philoxeroides invasion on plant community diversity and its risk evaluation. Journal of Weed Science, 41(2), 21-28. |
[吴佳伟, 王加国, 李苇洁 (2023). 空心莲子草入侵对植物群落多样性影响及风险评估. 杂草学报, 41(2), 21-28.] | |
[58] | Wu ST (2011). Effects of Mikania micrantha on plant community and physical-chemical properties of soil. Hubei Agricultural Sciences, 50, 3711-3713. |
[吴双桃 (2011). 薇甘菊对入侵地植物群落及土壤理化性质的影响. 湖北农业科学, 50, 3711-3713.] | |
[59] | Xu J, Li QF, Wang SY (2012). Distribution pattern of seed band for alien invasive species of Cenchrus incertus. Journal of Arid Land Resources and Environment, 26(11), 184-187. |
[徐军, 李青丰, 王树彦 (2012). 科尔沁沙地外来入侵植物光梗蒺藜草的种子库分布格局. 干旱区资源与环境, 26(11), 184-187.] | |
[60] | Yang GW, Ryo M, Roy J, Hempel S, Rillig MC (2021). Plant and soil biodiversity have non-substitutable stabilizing effects on biomass production. Ecology Letters, 24, 1582-1593. |
[61] | Yang XY (2018). Genetic Diversity and Molecular Phylogeography of the Invasive Plant Cenchrus calyculatu in Inner Mongolia. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. |
[杨新英 (2018). 内蒙古入侵植物光梗蒺藜草遗传多样性与分子系统地理学研究. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[62] | Yu WB, Li SP (2020). Modern coexistence theory as a framework for invasion ecology. Biodiversity Science, 28, 1362-1375. |
[于文波, 黎绍鹏 (2020). 基于现代物种共存理论的入侵生态学概念框架. 生物多样性, 28, 1362-1375.] | |
[63] | Zhang M (2023). Effects of Invasion Degree of Xanthium stumarium on Native X. sibiricum, Soil Nitrogen Transformation and Nitrifying Bacteria. Master degree dissertation, Shenyang Agricultural University, Shenyang. |
[张明 (2023). 瘤突苍耳入侵程度对本地苍耳、土壤氮转化和硝化菌的影响. 硕士学位论文, 沈阳农业大学, 沈阳.] | |
[64] | Zhang RH, Zhou P, Wei YQ, Liu N, Zhang YJ (2023a). Defoliation enhances the positive effects of soil microbial diversity on plant productivity. Functional Ecology, 37, 3027-3039. |
[65] | Zhang X, Oduor AMO, Liu YJ (2023b). Invasive plants have greater growth than co-occurring natives in live soil subjected to a drought-rewetting treatment. Functional Ecology, 37, 513-522. |
[66] | Zhang X, Zhang T, Liu YJ (2023c). Effects of arbuscular mycorrhizal fungi on plant invasion success driven by nitrogen fluctuations. Journal of Applied Ecology, 60, 2425-2436. |
[67] | Zhou QL, Wang ZW, Qi FL, Yang DZ, Men HY, Sun B, Qi N, Cui X, Wang YC (2021). Biological and ecological characteristics of Cenchrus pauciflorus and the integrated control strategies. Chinese Journal of Ecology, 40, 2593-2600. |
[周全来, 王正文, 齐凤林, 杨达志, 门红艳, 孙彪, 齐楠, 崔雪, 王永翠 (2021). 少花蒺藜草生物生态学特征与综合防除策略. 生态学杂志, 40, 2593-2600.] |
[1] | 黄砺成 莫兴国. 海河流域生态系统净初级生产力对气象干旱的响应与弹性[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 吴风燕 吴永胜 冯骥 陈晓涵 卢丽媛 席查斯娜 王超宇 孟元发 尹强. 鄂尔多斯高原3种固沙灌木水分利用效率时空变化特征[J]. 植物生态学报, 2024, 48(9): 0-0. |
[3] | 王音 同小娟 张劲松 李俊 孟平 刘沛荣 张静茹. 干旱对栓皮栎人工林碳水通量及其耦合的影响[J]. 植物生态学报, 2024, 48(9): 0-0. |
[4] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[5] | 张鹏, 焦亮, 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩. 干旱强度影响祁连山西段不同海拔青海云杉的生长恢复[J]. 植物生态学报, 2024, 48(8): 977-987. |
[6] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[7] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[8] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[9] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[10] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[11] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[12] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[13] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[14] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[15] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19