植物生态学报 ›› 2024, Vol. 48 ›› Issue (7): 817-827.DOI: 10.17521/cjpe.2023.0238 cstr: 32100.14.cjpe.2023.0238
所属专题: 美丽中国建设
• 综述 • 下一篇
龙吉兰1, 蒋铮2, 刘定琴1, 缪宇轩1, 周灵燕1, 冯颖1, 裴佳宁1, 刘瑞强3, 周旭辉3, 伏玉玲1,*()
收稿日期:
2023-08-18
接受日期:
2024-01-16
出版日期:
2024-07-20
发布日期:
2024-04-24
通讯作者:
* 伏玉玲(基金资助:
LONG Ji-Lan1, JIANG Zheng2, LIU Ding-Qin1, MIAO Yu-Xuan1, ZHOU Ling-Yan1, FENG Ying1, PEI Jia-Ning1, LIU Rui-Qiang3, ZHOU Xu-Hui3, FU Yu-Ling1,*()
Received:
2023-08-18
Accepted:
2024-01-16
Online:
2024-07-20
Published:
2024-04-24
Contact:
* FU Yu-Ling(Supported by:
摘要:
根系分泌物是植物与土壤进行物质能量交换和信息传递的重要媒介, 同时也是植物响应外界环境变化的主要形式, 在土壤碳库动态中发挥着重要作用。伴随着全球气候变化而频繁发生的极端干旱事件对植物地上地下生长过程都产生了深刻的影响, 然而, 由于根-土界面交互作用的复杂性, 以及根系分泌物收集手段与装置的不完善, 人们对干旱条件下根系分泌物及其介导的根际激发效应的响应及机制的认知尚存在较大的局限性。基于此, 该文结合国内外生态学领域的研究前沿动态, 论述了干旱下植物根系分泌物数量及组分的动态变化, 重点阐述了根系分泌物介导的根际激发效应及其机制, 在此基础上展望了未来根系分泌物研究中的重点关注方向, 以期为未来全球气候变化条件下土壤碳汇的评估提供科学依据。
龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展. 植物生态学报, 2024, 48(7): 817-827. DOI: 10.17521/cjpe.2023.0238
LONG Ji-Lan, JIANG Zheng, LIU Ding-Qin, MIAO Yu-Xuan, ZHOU Ling-Yan, FENG Ying, PEI Jia-Ning, LIU Rui-Qiang, ZHOU Xu-Hui, FU Yu-Ling. Effects of drought on plant root exudates and associated rhizosphere priming effect: review and prospect. Chinese Journal of Plant Ecology, 2024, 48(7): 817-827. DOI: 10.17521/cjpe.2023.0238
研究地点 Study site | 研究类型 Study type | 研究对象 Study object | 干旱/对照(恢复) Drought/control (recovery) | 干旱时间 Drought duration | 根系分泌速率 变化范围 Variation range of root exudation rate | 参考文献 Reference |
---|---|---|---|---|---|---|
中国浙江 Zhejiang, China | 野外实验 Field experiment | 木荷 Schima superba | 减少70%的降雨/正常降雨 70% lower rainfall/normal rainfall | 10 a | -0.271↓ | Jiang et al., |
米槠 Castanopsis carlesii | -0.217↓ | |||||
苦槠 Castanopsis sclerophylla | -0.142↓ | |||||
柯 Lithocarpus glaber | -0.034= | |||||
德国 Germany | 野外实验 Field experiment | 欧洲水青冈 Fagus sylvatica | 减少70%的降雨/正常降雨 70% lower rainfall/normal rainfall | 5 a | 0.071= | Brunn et al., |
欧洲云杉 Picea abies | 0.308↑ | |||||
波兰 Poland | 盆栽实验 Pot experiment | 无梗花栎 Quercus petraea | 25% SWC/55% SWC | 31 d | -0.665↓ | Staszel et al., |
美国 America | 盆栽实验 Pot experiment | 格兰马草 Bouteloua gracilis | 50% WHC, 25% WHC/100% WHC | 30 d | 0.506, 50%WHC= 3.007, 25%WHC↑ | Ulrich et al., |
西班牙 Spain | 盆栽实验 Pot experiment | 欧洲赤松 Pinus sylvestris | 10% SWC/20% SWC | 14-17周 14-17 weeks | 0.375= | Preece et al., |
冬青栎 Quercus ilex | 0.091↑ | |||||
英国 Britain | 盆栽实验 Pot experiment | 绒毛草 Holcus lanatus | 20% WHC/60% WHC | 14 d | 0.783↑ | de Vries et al., |
酸模 Rumex acetosa | 0.141= | |||||
阿根廷 Argentina | 培养皿 Culture dish | 落花生 Arachis hypogaea (SEMIA6144) | Hoagland solution (-0.28 MPa)/ Hoagland solution (-0.07 MPa) | 7 d | 0.270↑ | Cesari et al., |
落花生 Arachis hypogaea (Az39) | 0.250↑ | |||||
西班牙 Spain | 盆栽实验 Pot experiment | 冬青栎 Quercus ilex | 0.3%-22.6% SWC/20%-24.7% SWC | 21 d | 0.213↑ | Preece et al., |
德国 Germany | 盆栽实验 Pot experiment | 大麦 Hordeum vulgare (cv. Golden Promise) | 减少33%的降雨/正常降雨 33% lower rainfall/normal rainfall | 91 d | -0.251= | Calvo et al., |
大麦 Hordeum vulgare (cv. Bambina) | -0.164= | |||||
澳大利亚 Australia | 盆栽实验 Pot experiment | 向日葵 Helianthus annuus | 40% WHC/65% WHC | 14 d | 2.207↑ | Canarini et al., |
大豆 Glycine max | 0.495= | |||||
加拿大 Canada | 盆栽实验 Pot experiment | 颤杨 Populus tremuloides | 减少90%的水量/最佳水量 90% less water/optimum water | 42 d | 0.930= | Karst et al., |
美国 America | 盆栽实验 Pot experiment | 冰草 Agropyron cristatum | 减少75%的水量/最佳水量 75% less water/optimum water | 35 d | 0.680↑ | Henry et al., |
表1 干旱对根系分泌物的影响研究
Table 1 Effects of drought on root exudates
研究地点 Study site | 研究类型 Study type | 研究对象 Study object | 干旱/对照(恢复) Drought/control (recovery) | 干旱时间 Drought duration | 根系分泌速率 变化范围 Variation range of root exudation rate | 参考文献 Reference |
---|---|---|---|---|---|---|
中国浙江 Zhejiang, China | 野外实验 Field experiment | 木荷 Schima superba | 减少70%的降雨/正常降雨 70% lower rainfall/normal rainfall | 10 a | -0.271↓ | Jiang et al., |
米槠 Castanopsis carlesii | -0.217↓ | |||||
苦槠 Castanopsis sclerophylla | -0.142↓ | |||||
柯 Lithocarpus glaber | -0.034= | |||||
德国 Germany | 野外实验 Field experiment | 欧洲水青冈 Fagus sylvatica | 减少70%的降雨/正常降雨 70% lower rainfall/normal rainfall | 5 a | 0.071= | Brunn et al., |
欧洲云杉 Picea abies | 0.308↑ | |||||
波兰 Poland | 盆栽实验 Pot experiment | 无梗花栎 Quercus petraea | 25% SWC/55% SWC | 31 d | -0.665↓ | Staszel et al., |
美国 America | 盆栽实验 Pot experiment | 格兰马草 Bouteloua gracilis | 50% WHC, 25% WHC/100% WHC | 30 d | 0.506, 50%WHC= 3.007, 25%WHC↑ | Ulrich et al., |
西班牙 Spain | 盆栽实验 Pot experiment | 欧洲赤松 Pinus sylvestris | 10% SWC/20% SWC | 14-17周 14-17 weeks | 0.375= | Preece et al., |
冬青栎 Quercus ilex | 0.091↑ | |||||
英国 Britain | 盆栽实验 Pot experiment | 绒毛草 Holcus lanatus | 20% WHC/60% WHC | 14 d | 0.783↑ | de Vries et al., |
酸模 Rumex acetosa | 0.141= | |||||
阿根廷 Argentina | 培养皿 Culture dish | 落花生 Arachis hypogaea (SEMIA6144) | Hoagland solution (-0.28 MPa)/ Hoagland solution (-0.07 MPa) | 7 d | 0.270↑ | Cesari et al., |
落花生 Arachis hypogaea (Az39) | 0.250↑ | |||||
西班牙 Spain | 盆栽实验 Pot experiment | 冬青栎 Quercus ilex | 0.3%-22.6% SWC/20%-24.7% SWC | 21 d | 0.213↑ | Preece et al., |
德国 Germany | 盆栽实验 Pot experiment | 大麦 Hordeum vulgare (cv. Golden Promise) | 减少33%的降雨/正常降雨 33% lower rainfall/normal rainfall | 91 d | -0.251= | Calvo et al., |
大麦 Hordeum vulgare (cv. Bambina) | -0.164= | |||||
澳大利亚 Australia | 盆栽实验 Pot experiment | 向日葵 Helianthus annuus | 40% WHC/65% WHC | 14 d | 2.207↑ | Canarini et al., |
大豆 Glycine max | 0.495= | |||||
加拿大 Canada | 盆栽实验 Pot experiment | 颤杨 Populus tremuloides | 减少90%的水量/最佳水量 90% less water/optimum water | 42 d | 0.930= | Karst et al., |
美国 America | 盆栽实验 Pot experiment | 冰草 Agropyron cristatum | 减少75%的水量/最佳水量 75% less water/optimum water | 35 d | 0.680↑ | Henry et al., |
[1] | Allard-Massicotte R, Tessier L, Lécuyer F, Lakshmanan V, Lucier J-F, Garneau D, Caudwell L, Vlamakis H, Bais HP, Beauregard PB (2016). Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. mBio, 7, e01664-16. DOI: 10.1128/mBio.01664-16. |
[2] | Blagodatskaya E, Kuzyakov Y (2013). Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biology & Biochemistry, 67, 192-211. |
[3] |
Brimecombe MJ, de Leij FAAM, Lynch JM (1999). Effect of introduced Pseudomonas fluorescens strains on soil nematode and protozoan populations in the rhizosphere of wheat and pea. Microbial Ecology, 38, 387-397.
PMID |
[4] |
Brunn M, Hafner BD, Zwetsloot MJ, Weikl F, Pritsch K, Hikino K, Ruehr NK, Sayer EJ, Bauerle TL (2022). Carbon allocation to root exudates is maintained in mature temperate tree species under drought. New Phytologist, 235, 965-977.
DOI PMID |
[5] | Callesen I, Liski J, Raulund-Rasmussen K, Olsson MT, Tau-Strand L, Vesterdal L, Westman CJ (2003). Soil carbon stores in Nordic well-drained forest soils-relationships with climate and texture class. Global Change Biology, 9, 358-370. |
[6] |
Calvo OC, Franzaring J, Schmid I, Fangmeier A (2019). Root exudation of carbohydrates and cations from barley in response to drought and elevated CO2. Plant and Soil, 438, 127-142.
DOI |
[7] |
Calvo OC, Franzaring J, Schmid I, Müller M, Brohon N, Fangmeier A (2017). Atmospheric CO2 enrichment and drought stress modify root exudation of barley. Global Change Biology, 23, 1292-1304.
DOI PMID |
[8] |
Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019). Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science, 10, 157. DOI: 10.3389/fpls.2019.00157.
PMID |
[9] | Canarini A, Merchant A, Dijkstra FA (2016). Drought effects on Helianthus annuus and Glycine max metabolites: from phloem to root exudates. Rhizosphere, 2, 85-97. |
[10] | Cesari A, Paulucci N, López-Gómez M, Hidalgo-Castellanos J, Plá CL, Dardanelli MS (2019). Restrictive water condition modifies the root exudates composition during peanut-PGPR interaction and conditions early events, reversing the negative effects on plant growth. Plant Physiology & Biochemistry, 142, 519-527. |
[11] | Chai YN, Schachtman DP (2022). Root exudates impact plant performance under abiotic stress. Trends in Plant Science, 27, 80-91. |
[12] | Chari NR, Taylor BN (2022). Soil organic matter formation and loss are mediated by root exudates in a temperate forest. Nature Geoscience, 15, 1011-1016. |
[13] | Chen YL, Yao ZM, Sun Y, Wang EZ, Tian CJ, Sun Y, Liu J, Sun CY, Tian L (2022). Current studies of the effects of drought stress on root exudates and rhizosphere microbiomes of crop plant species. International Journal of Molecular Sciences, 23, 2374. DOI: 10.3390/ijms23042374. |
[14] |
Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201, 31-44.
DOI PMID |
[15] | de Vries FT, Brown C, Stevens CJ (2016). Grassland species root response to drought: consequences for soil carbon and nitrogen availability. Plant and Soil, 409, 297-312. |
[16] |
de Vries FT, Williams A, Stringer F, Willcocks R, McEwing R, Langridge H, Straathof AL (2019). Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytologist, 224, 132-145.
DOI PMID |
[17] |
Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML, Moore DJP, Oren R, Palmroth S, Phillips RP, Pippen JS, et al. (2011). Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters, 14, 349-357.
DOI PMID |
[18] |
Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015). Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biology, 21, 2082-2094.
DOI PMID |
[19] |
Gagné-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016). Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Frontiers in Plant Science, 7, 584. DOI: 10.3389/fpls.2016.00584.
PMID |
[20] |
Gargallo-Garriga A, Preece C, Sardans J, Oravec M, Urban O, Peñuelas J (2018). Root exudate metabolomes change under drought and show limited capacity for recovery. Scientific Reports, 8, 12696. DOI: 10.1038/s41598-018-30150-0.
PMID |
[21] | Ghatak A, Schindler F, Bachmann G, Engelmeier D, Bajaj P, Brenner M, Fragner L, Varshney RK, Subbarao GV, Chaturvedi P, Weckwerth W (2022). Root exudation of contrasting drought-stressed pearl millet genotypes conveys varying biological nitrification inhibition (BNI) activity. Biology & Fertility of Soils, 58, 291-306. |
[22] |
Guenet B, Camino-Serrano M, Ciais P, Tifafi M, Maignan F, Soong JL, Janssens IA (2018). Impact of priming on global soil carbon stocks. Global Change Biology, 24, 1873-1883.
DOI PMID |
[23] |
Hagedorn F, Joseph J, Peter M, Luster J, Pritsch K, Geppert U, Kerner R, Molinier V, Egli S, Schaub M, Liu J, Li M, Sever K, Weiler M, Siegwolf RTW, et al. (2016). Recovery of trees from drought depends on belowground sink control. Nature Plants, 2, 16111. DOI: 10.1038/nplants.2016.111.
PMID |
[24] |
Hartmann H, Moura CF, Anderegg WRL, Ruehr NK, Salmon Y, Allen CD, Arndt SK, Breshears DD, Davi H, Galbraith D, Ruthrof KX, Wunder J, Adams HD, Bloemen J, Cailleret M, et al. (2018). Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytologist, 218, 15-28.
DOI PMID |
[25] |
Henry A, Doucette W, Norton J, Bugbee B (2007). Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. Journal of Environmental Quality, 36, 904-912.
DOI PMID |
[26] |
Henry C, John GP, Pan R, Bartlett MK, Fletcher LR, Scoffoni C, Sack L (2019). A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nature Communications, 10, 3398. DOI: 10.1038/s41467-019-11006-1.
PMID |
[27] | Huo CF, Luo YQ, Cheng WX (2017). Rhizosphere priming effect: a meta-analysis. Soil Biology & Biochemistry, 111, 78-84. |
[28] | Jia X, Wang WK, Chen ZH, He YH, Liu JX (2014). Concentrations of secondary metabolites in tissues and root exudates of wheat seedlings changed under elevated atmospheric CO2 and cadmium-contaminated soils. Environmental & Experimental Botany, 107, 134-143. |
[29] |
Jiang Z, Fu Y, Zhou L, He Y, Zhou G, Dietrich P, Long J, Wang X, Jia S, Ji Y, Jia Z, Song B, Liu R, Zhou X (2023). Plant growth strategy determines the magnitude and direction of drought-induced changes in root exudates in subtropical forests. Global Change Biology, 29, 3476-3488.
DOI PMID |
[30] | Jiang Z, Thakur MP, Liu R, Zhou G, Zhou L, Fu Y, Zhang P, He Y, Shao J, Gao J, Li N, Wang X, Jia S, Chen Y, Zhang C, Zhou X (2022). Soil P availability and mycorrhizal type determine root exudation in sub-tropical forests. Soil Biology & Biochemistry, 171, 108722. DOI: 10.1016/j.soilbio.2022.108722. |
[31] | Johnson DM, Domec JC, Carter Berry Z, Schwantes AM, McCulloh KA, Woodruff DR, Wayne Polley H, Wortemann R, Swenson JJ, Scott Mackay D, McDowell NG, Jackson RB (2018). Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant, Cell & Environment, 41, 576-588. |
[32] |
Karlowsky S, Augusti A, Ingrisch J, Akanda MKU, Bahn M, Gleixner G (2018). Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Frontiers in Plant Science, 9, 1593. DOI: 10.3389/fpls.2018.01593.
PMID |
[33] |
Karst J, Gaster J, Wiley E, Landhäusser SM (2017). Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiology, 37, 154-164.
DOI PMID |
[34] | Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015). Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change, 5, 588-595. |
[35] | Kuzyakov Y (2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371. |
[36] | Kuzyakov Y, Friedel JK, Stahr K (2000). Review of mechanisms and quantification of priming effects. Soil Biology & Biochemistry, 32, 1485-1498. |
[37] | Li M, Zhao XZ, Wang HY, Lu ZK, Ding GJ (2022). Effects of drought stress and ectomycorrhizal fungi on the root morphology and exudates of Pinus massoniana seedlings. Scientia Silvae Sinicae, 58(7), 63-72. |
[李敏, 赵熙州, 王好运, 卢中科, 丁贵杰 (2022). 干旱胁迫及外生菌根菌对马尾松幼苗根系形态及分泌物的影响. 林业科学, 58(7), 63-72.] | |
[38] | Li YM, Yang F, Han PL, Zhou WL, Wang JH, Yan XF, Lin JX (2022). Research progress on the mechanism of root exudates in response to abiotic stresses. Chinese Journal of Applied & Environmental Biology, 28, 1384-1392. |
[李月明, 杨帆, 韩沛霖, 周万里, 王竞红, 阎秀峰, 蔺吉祥 (2022). 植物根系分泌物响应非生物胁迫机理研究进展. 应用与环境生物学报, 28, 1384-1392.] | |
[39] | Liu Y, Ge T, Zhu Z, Liu S, Luo Y, Li Y, Wang P, Gavrichkova O, Xu X, Wang J, Wu J, Guggenberger G, Kuzyakov Y (2019). Carbon input and allocation by rice into paddy soils: a review. Soil Biology & Biochemistry, 133, 97-107. |
[40] | Lu J, Dijkstra FA, Wang P, Cheng W (2018a). Rhizosphere priming of grassland species under different water and nitrogen conditions: a mechanistic hypothesis of C-N interactions. Plant and Soil, 429, 303-319. |
[41] | Lu T, Ke M, Lavoie M, Jin Y, Fan X, Zhang Z, Fu Z, Sun L, Gillings M, Peñuelas J, Qian H, Zhu Y (2018b). Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome, 6, 231. DOI: 10.1186/s40168-018-0615-0. |
[42] | Luo DD, Wang CK, Jin Y (2021). Response mechanisms of hydraulic systems of woody plants to drought stress. Chinese Journal of Plant Ecology, 45, 925-941. |
[罗丹丹, 王传宽, 金鹰 (2021). 木本植物水力系统对干旱胁迫的响应机制. 植物生态学报, 45, 925-941.]
DOI |
|
[43] | Ma ZL (2020). Responses of root exudative carbon and nitrogen inputs to warming in an alpine scrub ecosystem on the eastern Qinghai-Tibet Plateau. Ecology & Environmental Sciences, 29, 643-649. |
[马志良 (2020). 青藏高原东缘高寒灌丛根系分泌物碳氮输入对增温的响应. 生态环境学报, 29, 643-649.]
DOI |
|
[44] | Mao MX, Zhu F (2021). Progress and perspective in research on plant resistance mediated by root exudates. Chinese Journal of Eco-Agriculture, 29, 1649-1657. |
[毛梦雪, 朱峰 (2021). 根系分泌物介导植物抗逆性研究进展与展望. 中国生态农业学报(中英文), 29, 1649-1657.] | |
[45] |
McLaughlin S, Zhalnina K, Kosina S, Northen TR, Sasse J (2023). The core metabolome and root exudation dynamics of three phylogenetically distinct plant species. Nature Communications, 14, 1649. DOI: 10.1038/s41467-023-37164-x.
PMID |
[46] | Mommer L, Hinsinger P, Prigent-Combaret C, Visser EJW (2016). Advances in the rhizosphere: stretching the interface of life. Plant and Soil, 407, 1-8. |
[47] |
Monohon SJ, Manter DK, Vivanco JM (2021). Conditioned soils reveal plant-selected microbial communities that impact plant drought response. Scientific Reports, 11, 21153. DOI: 10.1038/s41598-021-00593-z.
PMID |
[48] | Murphy CJ, Baggs EM, Morley N, Wall DP, Paterson E (2017). Nitrogen availability alters rhizosphere processes mediating soil organic matter mineralisation. Plant and Soil, 417, 499-510. |
[49] | Naylor D, Coleman-Derr D (2018). Drought stress and root-associated bacterial communities. Frontiers in Plant Science, 8, 2223. DOI: 10.3389/fpls.2017.02223. |
[50] | Oburger E, Jones DL (2018). Sampling root exudates-mission impossible? Rhizosphere, 6, 116-133. |
[51] | Ouédraogo DY, Mortier F, Gourlet-Fleury S, Freycon V, Picard N (2013). Slow-growing species cope best with drought: evidence from long-term measurements in a tropical semi-deciduous moist forest of Central Africa. Journal of Ecology, 101, 1459-1470. |
[52] |
Pan FJ, Liang YM, Zhang W, Zhao J, Wang KL (2016). Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere. Frontiers in Plant Science, 7, 687. DOI: 10.3389/fpls.2016.00687.
PMID |
[53] |
Pausch J, Kuzyakov Y (2018). Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biology, 24, 1-12.
DOI PMID |
[54] |
Phillips RP, Finzi AC, Bernhardt ES (2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters, 14, 187-194.
DOI PMID |
[55] | Piao SL, Zhang XP, Chen AP, Liu Q, Lian X, Wang XH, Peng SS, Wu XC (2019). The impacts of climate extremes on the terrestrial carbon cycle: a review. Science China Earth Sciences, 49, 1321-1334. |
[朴世龙, 张新平, 陈安平, 刘强, 连旭, 王旭辉, 彭书时, 吴秀臣 (2019). 极端气候事件对陆地生态系统碳循环的影响. 中国科学: 地球科学, 49, 1321-1334.] | |
[56] |
Preece C, Farré-Armengol G, Llusià J, Peñuelas J (2018). Thirsty tree roots exude more carbon. Tree Physiology, 38, 690-695.
DOI PMID |
[57] | Preece C, Farré-Armengol G, Verbruggen E, Peñuelas J (2021). Interactive effects of soil water content and nutrients on root exudation in two Mediterranean tree species. Soil Biology & Biochemistry, 163, 108453. DOI: 10.1016/j.soilbio.2021.108453. |
[58] | Preece C, Peñuelas J (2016). Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant & Soil, 409, 1-17. |
[59] | Pretzsch H, Grams T, Häberle KH, Pritsch K, Bauerle T, Rötzer T (2020). Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. Results of the KROOF throughfall exclusion experiment. Trees, 34, 957-970. |
[60] | Sanaullah M, Chabbi A, Rumpel C, Kuzyakov Y (2012). Carbon allocation in grassland communities under drought stress followed by 14C pulse labeling. Soil Biology & Biochemistry, 55, 132-139. |
[61] |
Schmidt JE, Bowles TM, Gaudin ACM (2016). Using ancient traits to convert soil health into crop yield: impact of selection on maize root and rhizosphere function. Frontiers in Plant Science, 7, 373. DOI: 10.3389/fpls.2016.00373.
PMID |
[62] | Staszel K, Lasota J, Błońska E (2022). Effect of drought on root exudates from Quercus petraea and enzymatic activity of soil. Scientific Reports, 12, 7635. DOI: 10.1038/s41598-022-11754-z. |
[63] |
Su B, Huang J, Fischer T, Wang Y, Kundzewicz ZW, Zhai J, Sun H, Wang A, Zeng X, Wang G, Tao H, Gemmer M, Li X, Jiang T (2018). Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proceedings of the National Academy of Sciences of the United States of America, 115, 10600-10605.
DOI PMID |
[64] | Sulman BN, Phillips RP, Oishi AC, Shevliakova E, Pacala SW (2014). Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nature Climate Change, 4, 1099-1102. |
[65] | Sun LJ, Ataka M, Han MG, Han YF, Gan DY, Xu TL, Guo YP, Zhu B (2021). Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytologist, 229, 259-271. |
[66] | Tan B, Li YH, Liu TG, Tan X, He YX, You XJ, Leong KH, Liu C, Li LG (2021). Response of plant rhizosphere microenvironment to water management in soil- and substrate-based controlled environment agriculture (CEA) systems: a review. Frontiers in Plant Science, 12, 691651. DOI: 10.3389/fpls.2021.691651. |
[67] |
Ulrich DEM, Clendinen CS, Alongi F, Mueller RC, Chu R, Toyoda J, Gallegos-Graves LV, Goemann HM, Peyton B, Sevanto S, Dunbar J (2022). Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis). Scientific Reports, 12, 12581. DOI: 10.1038/s41598-022-16408-8.
PMID |
[68] | Vranova V, Rejsek K, Skene KR, Janous D, Formanek P (2013). Methods of collection of plant root exudates in relation to plant metabolism and purpose: a review. Journal of Plant Nutrition & Soil Science, 176, 175-199. |
[69] | Wang R, Bicharanloo B, Shirvan MB, Cavagnaro TR, Jiang Y, Keitel C, Dijkstra FA (2021a). A novel 13C pulse-labelling method to quantify the contribution of rhizodeposits to soil respiration in a grassland exposed to drought and nitrogen addition. New Phytologist, 230, 857-866. |
[70] | Wang R, Cavagnaro T, Jiang Y, Keitel C, Dijkstra F (2021b). Carbon allocation to the rhizosphere is affected by drought and nitrogen addition. Journal of Ecology, 109, 3699-3709. |
[71] |
Wen Z, Li H, Shen Q, Tang X, Xiong C, Li H, Pang J, Ryan MH, Lambers H, Shen J (2019). Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytologist, 223, 882-895.
DOI PMID |
[72] |
Williams A, de Vries FT (2020). Plant root exudation under drought: implications for ecosystem functioning. New Phytologist, 225, 1899-1905.
DOI PMID |
[73] | Wu C, Xiong DC, Zhong XF (2021). Effects of warming on plant fine root exudates: a review. Journal of Subtropical Resources & Environment, 16, 80-85. |
[吴晨, 熊德成, 钟羡芳 (2021). 增温对植物根系分泌物特征的影响研究进展. 亚热带资源与环境学报, 16, 80-85.] | |
[74] |
Wu LK, Lin XM, Lin WX (2014). Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 38, 298-310.
DOI |
[吴林坤, 林向民, 林文雄 (2014). 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.]
DOI |
|
[75] | Xu MH, Peng F, You QG, Guo J, Tian XF, Xue X, Liu M (2015). Year-round warming and autumnal clipping lead to downward transport of root biomass, carbon and total nitrogen in soil of an alpine meadow. Environmental & Experimental Botany, 109, 54-62. |
[76] | Yan ZQ, Kang EZ, Zhang KR, Li Y, Hao YB, Wu HD, Li M, Zhang XD, Wang JZ, Yan L, Kang XM (2021). Plant and soil enzyme activities regulate CO2 efflux in alpine peatlands after 5 years of simulated extreme drought. Frontiers in Plant Science, 12, 756956. DOI: 10.3389/fpls.2021.756956. |
[77] | Yin H, Wheeler E, Phillips RP (2014). Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology & Biochemistry, 78, 213-221. |
[78] | Yin HJ, Zhang ZL, Liu Q (2018). Root exudates and their ecological consequences in forest ecosystems: problems and perspective. Chinese Journal of Plant Ecology, 42, 1055-1070. |
[尹华军, 张子良, 刘庆 (2018). 森林根系分泌物生态学研究: 问题与展望. 植物生态学报, 42, 1055-1070.]
DOI |
|
[79] | Zeng ZQ, Wu WX, Li YM, Huang C, Zhang XQ, Peñuelas J, Zhang Y, Gentine P, Li ZL, Wang XY, Huang H, Ren XS, Ge QS (2023). Increasing meteorological drought under climate change reduces terrestrial ecosystem productivity and carbon storage. One Earth, 6, 1326-1339. |
[80] | Zhang FS, Shen JB (1999). Preliminary development of the theoretical concept on rhizosphere micro-ecosystem. Review of China Agricultural Science & Technology, 1, 15-20. |
[张福锁, 申建波 (1999). 根际微生态系统理论框架的初步构建. 中国农业科技导报, 1, 15-20.] | |
[81] | Zhang XZ, Li TX, Wang YD (2007). Relationship between growth environment and root exudates of plants: a review. Chinese Journal of Soil Science, 38, 785-789. |
[张锡洲, 李廷轩, 王永东 (2007). 植物生长环境与根系分泌物的关系. 土壤通报, 38, 785-789.] | |
[82] | Zhao M, Zhao J, Yuan J, Hale L, Wen T, Huang Q, Vivanco JM, Zhou J, Kowalchuk GA, Shen Q (2021). Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant, Cell & Environment, 44, 613-628. |
[83] | Zhou GY, Li L, Wu AC (2020). Effect of drought on forest ecosystem under warming climate. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 12, 81-88. |
[周国逸, 李琳, 吴安驰 (2020). 气候变暖下干旱对森林生态系统的影响. 南京信息工程大学学报(自然科学版), 12, 81-88.] | |
[84] | Zhou GY, Zhou LY, Shao JJ, Zhou XH (2020). Effects of extreme drought on terrestrial ecosystems: review and prospects. Chinese Journal of Plant Ecology, 44, 515-525. |
[周贵尧, 周灵燕, 邵钧炯, 周旭辉 (2020). 极端干旱对陆地生态系统的影响: 进展与展望. 植物生态学报, 44, 515-525.]
DOI |
|
[85] | Zhu B, Gutknecht JLM, Herman DJ, Keck DC, Firestone MK, Cheng W (2014). Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biology & Biochemistry, 76, 183-192. |
[1] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[2] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[3] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[4] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[5] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[6] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[7] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[8] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[9] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[10] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[11] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[12] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[13] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[14] | 姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报, 2021, 45(5): 539-551. |
[15] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19