植物生态学报 ›› 2023, Vol. 47 ›› Issue (5): 597-607.DOI: 10.17521/cjpe.2022.0143
• 综述 • 下一篇
赵小祥1,2, 朱彬彬1,2, 田秋香1, 林巧玲1,2, 陈龙1,2, 刘峰1,*()
收稿日期:
2022-04-14
接受日期:
2022-09-08
出版日期:
2023-05-20
发布日期:
2022-09-08
通讯作者:
*刘峰: ORCID:0000-0003-3383-7598(liufeng@wbgcas.cn)
基金资助:
ZHAO Xiao-Xiang1,2, ZHU Bin-Bin1,2, TIAN Qiu-Xiang1, LIN Qiao-Ling1,2, CHEN Long1,2, LIU Feng1,*()
Received:
2022-04-14
Accepted:
2022-09-08
Online:
2023-05-20
Published:
2022-09-08
Supported by:
摘要:
凋落物在原生生境(“主场”)中比在非原生生境(“客场”)中分解得更快的现象被称为凋落物分解的“主场优势”。探究凋落物分解的主场优势的主要影响因素及驱动机制对预测植物养分的归还过程和生态系统碳收支有重要意义。该文主要从主场优势的计算方法、影响因素及驱动机制出发, 综述了近年来凋落物分解的主场优势的研究进展, 并对未来的研究方向进行了展望。度量凋落物分解的主场优势有4种常见的计算方法, 其中采用线性模型计算主场优势在当前最为合适。凋落物质量(化学成分等)、土壤微生物群落结构是影响凋落物分解的主场优势的主要因素, 土壤动物、气候条件、分解时间、植物生活型及生长型也能改变主场优势的强度。凋落物之间质量差异越大, 产生的主场优势越大。土壤微生物群落驱动着凋落物分解的主场优势, 但其作用时常受到动物的干扰及气候的制约。此外, 带有叶际微生物的凋落物比去除了叶际微生物的凋落物有更强的主场优势。凋落物化学性质趋同假说、分解者控制假说及凋落物质量与环境相互作用假说是解释主场优势产生的主要假说, 但它们均有不足之处。该文认为凋落物和土壤微生物的协同作用可能是产生和驱动主场优势的主要机制。当前的研究存在着各因素对主场优势的影响探究不够深入、关注的生态系统类型较为单一等问题, 在未来的研究中需要进一步深入探究各因素对主场优势效应的影响及其相对贡献, 关注更多不同的生态系统类型, 从而增强对主场优势相关机制的理解。
赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展. 植物生态学报, 2023, 47(5): 597-607. DOI: 10.17521/cjpe.2022.0143
ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng. Research progress on home-field advantage of leaf litter decomposition. Chinese Journal of Plant Ecology, 2023, 47(5): 597-607. DOI: 10.17521/cjpe.2022.0143
图1 落叶阔叶林和常绿针叶林叶片凋落物分解的主场优势示意图。凋落物在原生生境(“主场”)比在非原生生境(“客场”)中分解得更快, 这种现象称为凋落物分解的“主场优势”。
Fig. 1 Schematic diagram of the home-field advantage of litter decomposition of broadleaf deciduous forests and needleleaf evergreen forests. Litter decomposes more rapidly in its native habitat (“home”) than in non-native habitats (“away”), a phenomenon called the “home-field advantage”.
图2 凋落物分解过程中叶际微生物和土壤微生物的相对变化示意图(改自Fanin等(2021))。在叶片掉落前夕(①), 叶际微生物快速生长, 然后掉落在地表(②); 在凋落物分解早期(③), 叶际微生物和土壤微生物共存; 在凋落物分解中晚期(④), 土壤微生物占主导。
Fig. 2 Schematic diagram of the relative changes of phyllosphere microbes and soil microbes during litter decomposition (adapted from Fanin et al. (2021)). On the eve of leaf drop (①), phyllosphere microbes grew and colonized rapidly and then leaf litter fell to the ground (②); in the early stage of litter decomposition (③), phyllosphere microbes and soil microbes coexisted; in the middle and late stages of litter decomposition (④), soil microbes dominated.
[1] |
Aponte C, García LV, Marañón T (2012). Tree species effect on litter decomposition and nutrient release in mediterranean oak forests changes over time. Ecosystems, 15, 1204-1218.
DOI URL |
[2] |
Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014). Thereʼs no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytologist, 204, 307-314.
DOI URL |
[3] |
Ayres E, Steltzer H, Berg S, Wall DH (2009a). Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. Journal of Ecology, 97, 901-912.
DOI URL |
[4] |
Ayres E, Steltzer H, Simmons BL, Simpson RT, Steinweg JM, Wallenstein MD, Mellor N, Parton WJ, Moore JC, Wall DH (2009b). Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology & Biochemistry, 41, 606-610.
DOI URL |
[5] |
Bachega LR, Bouillet JP, de Cássia Piccolo M, Saint-André L, Bouvet JM, Nouvellon Y, de Moraes Gonçalves JL, Robin A, Laclau JP (2016). Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the Home Field Advantage hypothesis. Forest Ecology and Management, 359, 33-43.
DOI URL |
[6] |
Baptist F, Yoccoz NG, Choler P (2010). Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant and Soil, 328, 397-410.
DOI URL |
[7] |
Bardgett RD, Whittaker JB, Frankland JC (1993). The diet and food preferences of Onychiurus procampatus (Collembola) from upland grassland soils. Biology and Fertility of Soils, 16, 296-298.
DOI URL |
[8] | Berg B, McClaugherty C (2005). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer, Berlin. |
[9] |
Bradford MA, Tordoff GM, Eggers T, Jones TH, Newington JE (2002). Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos, 99, 317-323.
DOI URL |
[10] |
Chomel M, Guittonny-Larchevêque M, DesRochers A, Baldy V (2015). Home field advantage of litter decomposition in pure and mixed plantations under boreal climate. Ecosystems, 18, 1014-1028.
DOI URL |
[11] |
Crowther TW, Boddy L, Hefin Jones T, (2012). Functional and ecological consequences of saprotrophic fungus-grazer interactions. The ISME Journal, 6, 1992-2001.
DOI |
[12] |
de Toledo Castanho C, de Oliveira AA (2008). Relative effect of litter quality, forest type and their interaction on leaf decomposition in south-east Brazilian forests. Journal of Tropical Ecology, 24, 149-156.
DOI URL |
[13] |
Fanin N, Fromin N, Bertrand I (2016). Functional breadth and home-field advantage generate functional differences among soil microbial decomposers. Ecology, 97, 1023-1037.
PMID |
[14] |
Fanin N, Lin D, Freschet GT, Keiser AD, Augusto L, Wardle DA, Veen GFC (2021). Home-field advantage of litter decomposition: from the phyllosphere to the soil. New Phytologist, 231, 1353-1358.
DOI PMID |
[15] |
Freschet GT, Aerts R, Cornelissen JHC (2012). Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. Journal of Ecology, 100, 619-630.
DOI URL |
[16] |
Fukami T (2015). Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1-23.
DOI URL |
[17] |
Gessner MO, Chauvet E, Dobson M (1999). A perspective on leaf litter breakdown in streams. Oikos, 85, 377-384.
DOI URL |
[18] |
Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000). Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6, 751-765.
DOI URL |
[19] |
Gießelmann UC, Martins KG, Brändle M, Schädler M, Marques R, Brandl R (2011). Lack of home-field advantage in the decomposition of leaf litter in the Atlantic Rainforest of Brazil. Applied Soil Ecology, 49, 5-10.
DOI URL |
[20] |
Hättenschwiler S, Coq S, Barantal S, Handa IT (2011). Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytologist, 189, 950-965.
PMID |
[21] |
Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006). Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology, 87, 2288-2297.
DOI PMID |
[22] |
Ibrahima A, Joffre R, Gillon D (1995). Changes in litter during the initial leaching phase: an experiment on the leaf litter of Mediterranean species. Soil Biology & Biochemistry, 27, 931-939.
DOI URL |
[23] |
Jewell MD, Shipley B, Paquette A, Messier C, Reich PB (2015). A traits-based test of the home-field advantage in mixed-species tree litter decomposition. Annals of Botany, 116, 781-788.
DOI PMID |
[24] |
Kagata H, Ohgushi T (2013). Home-field advantage in decomposition of leaf litter and insect frass. Population Ecology, 55, 69-76.
DOI URL |
[25] |
Keiser AD, Bradford MA (2017). Climate masks decomposer influence in a cross-site litter decomposition study. Soil Biology & Biochemistry, 107, 180-187.
DOI URL |
[26] |
Keiser AD, Keiser DA, Strickland MS, Bradford MA (2014). Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology, 102, 603-609.
DOI URL |
[27] |
Laforest-Lapointe I, Paquette A, Messier C, Kembel SW (2017). Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature, 546, 145-147.
DOI URL |
[28] | Li TY, Kang FF, Han HR, Gao J, Song XS, Yu S, Zhao JL, Yu XW (2015). Responses of soil microbial carbon metabolism to the leaf litter composition in Liaohe River Nature Reserve of northern Hebei Province, China. Chinese Journal of Applied Ecology, 26, 715-722. |
[立天宇, 康峰峰, 韩海荣, 高晶, 宋小帅, 于舒, 赵金龙, 于晓文 (2015). 冀北辽河源自然保护区土壤微生物碳代谢对阔叶林叶凋落物组成的响应. 应用生态学报, 26, 715-722.] | |
[29] |
Li YB, Li Q, Yang JJ, Lü XT, Liang WJ, Han XG, Martijn Bezemer T (2017). Home-field advantages of litter decomposition increase with increasing N deposition rates: a litter and soil perspective. Functional Ecology, 31, 1792-1801.
DOI URL |
[30] |
Li Y, Veen GFC, Gera Hol WH, Vandenbrande S, Emilia Hannula S, ten Hooven FC, Li Q, Liang W, Martjn Bezemer T, (2020). “Home” and “away” litter decomposition depends on the size fractions of the soil biotic community. Soil Biology & Biochemistry, 144, 107783. DOI: 10.1016/j.soilbio.2020.107783.
DOI |
[31] |
Lin D, Dou P, Yang G, Qian S, Wang H, Zhao L, Yang Y, Mi X, Ma K, Fanin N (2020). Home-field advantage of litter decomposition differs between leaves and fine roots. New Phytologist, 227, 995-1000.
DOI PMID |
[32] |
Lin D, Pang M, Fanin N, Wang H, Qian S, Zhao L, Yang Y, Mi X, Ma K (2019). Fungi participate in driving home-field advantage of litter decomposition in a subtropical forest. Plant and Soil, 434, 467-480.
DOI |
[33] |
Lindow SE, Brandl MT (2003). Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69, 1875-1883.
DOI PMID |
[34] |
Liu H, Brettell LE, Singh B (2020). Linking the phyllosphere microbiome to plant health. Trends in Plant Science, 25, 841-844.
DOI PMID |
[35] |
Milcu A, Manning P (2011). All size classes of soil fauna and litter quality control the acceleration of litter decay in its home environment. Oikos, 120, 1366-1370.
DOI URL |
[36] |
Negrete-Yankelevich S, Fragoso C, Newton AC, Russell G, Heal OW (2008). Species-specific characteristics of trees can determine the litter macroinvertebrate community and decomposition process below their canopies. Plant and Soil, 307, 83-97.
DOI URL |
[37] |
Newell K (1984). Interaction between two decomposer basidiomycetes and a collembolan under Sitka spruce: grazing and its potential effects on fungal distribution and litter decomposition. Soil Biology & Biochemistry, 16, 235-239.
DOI URL |
[38] |
Osono T (2002). Phyllosphere fungi on leaf litter of Fagus crenata: occurrence, colonization, and succession. Canadian Journal of Botany, 80, 460-469.
DOI URL |
[39] |
Osono T (2006). Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Canadian Journal of Microbiology, 52, 701-716.
PMID |
[40] |
Osono T, Takeda H (1999). Decomposing ability of interior and surface fungal colonizers of beech leaves with reference to lignin decomposition. European Journal of Soil Biology, 35, 51-56.
DOI URL |
[41] |
Palozzi JE, Lindo Z (2017). Pure and mixed litters of Sphagnum and Carex exhibit a home-field advantage in Boreal peatlands. Soil Biology & Biochemistry, 115, 161-168.
DOI URL |
[42] |
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364.
DOI PMID |
[43] |
Perez G, Aubert M, Decaëns T, Trap J, Chauvat M (2013). Home-field advantage: a matter of interaction between litter biochemistry and decomposer biota. Soil Biology & Biochemistry, 67, 245-254.
DOI URL |
[44] |
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
DOI PMID |
[45] |
Prescott CE, Zabek LM, Staley CL, Kabzems R (2000). Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type, and litter mixtures. Canadian Journal of Forest Research, 30, 1742-1750.
DOI URL |
[46] |
Rothstein DE, Vitousek PM, Simmons BL (2004). An exotic tree alters decomposition and nutrient cycling in a Hawaiian montane forest. Ecosystems, 7, 805-814.
DOI URL |
[47] |
Schmitt L, Perfecto I (2021). Coffee leaf litter decomposition: short term home-field advantage in shaded coffee agro- ecosystems. Applied Soil Ecology, 161, 103854. DOI: 10.1016/j.apsoil.2020.103854.
DOI |
[48] |
St. John MG, Orwin. KH, Dickie. IA (2011). No “home” versus “away” effects of decomposition found in a grassland- forest reciprocal litter transplant study. Soil Biology & Biochemistry, 43, 1482-1489.
DOI URL |
[49] |
Sterkenburg E, Clemmensen KE, Ekblad A, Finlay RD, Lindahl BD (2018). Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. The ISME Journal, 12, 2187-2197.
DOI |
[50] |
Strickland MS, Keiser AD, Bradford MA (2015). Climate history shapes contemporary leaf litter decomposition. Biogeochemistry, 122, 165-174.
DOI URL |
[51] |
Strickland MS, Osburn E, Lauber C, Fierer N, Bradford MA (2009). Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. Functional Ecology, 23, 627-636.
DOI URL |
[52] |
Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE (2016). The phyllosphere: microbial jungle at the plant- climate interface. Annual Review of Ecology, Evolution, and Systematics, 47, 1-24.
DOI URL |
[53] |
Vauramo S, Setälä H (2011). Decomposition of labile and recalcitrant litter types under different plant communities in urban soils. Urban Ecosystems, 14, 59-70.
DOI URL |
[54] |
Veen GFC, Freschet GT, Ordonez A, Wardle DA (2015a). Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos, 124, 187-195.
DOI URL |
[55] |
Veen GFC, Keiser AD, van der Putten WH, Wardle DA (2018). Variation in home-field advantage and ability in leaf litter decomposition across successional gradients. Functional Ecology, 32, 1563-1574.
DOI URL |
[56] |
Veen GFC, Snoek BL, Bakx-Schotman T, Wardle DA, Putten WH (2019). Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects. Functional Ecology, 33, 1524-1535.
DOI URL |
[57] |
Veen GFC, Sundqvist MK, Wardle DA (2015b). Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Functional Ecology, 29, 981-991.
DOI URL |
[58] |
Vivanco L, Austin AT (2008). Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. Journal of Ecology, 96, 727-736.
DOI URL |
[59] |
Voříšková J, Baldrian P (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal, 7, 477-486.
DOI |
[60] |
Wallenstein MD, Haddix ML, Ayres E, Steltzer H, Magrini-Bair KA, Paul EA (2013). Litter chemistry changes more rapidly when decomposed at home but converges during decomposition-transformation. Soil Biology & Biochemistry, 57, 311-319.
DOI URL |
[61] |
Wang QK, Zhong MC, He TX (2013). Home-field advantage of litter decomposition and nitrogen release in forest ecosystems. Biology and Fertility of Soils, 49, 427-434.
DOI URL |
[62] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
DOI PMID |
[63] |
Wolfe ER, Ballhorn DJ (2020). Do foliar endophytes matter in litter decomposition? Microorganisms, 8, 446. DOI: 10.3390/microorganisms8030446.
DOI |
[64] |
Yang HL, Li YL, Ning ZY, Zhang ZQ (2019). Home-field effects of leaf litter decomposition of dominate sand-fixing shrubs in the Horqin Sandy Land. Journal of Desert Research, 39(5), 62-70.
DOI |
[杨红玲, 李玉霖, 宁志英, 张子谦 (2019). 科尔沁沙地优势固沙灌木叶片凋落物分解的主场效应. 中国沙漠, 39(5), 62-70.]
DOI |
|
[65] |
Yeung ACY, Kreutzweiser DP, Richardson JS (2019). Stronger effects of litter origin on the processing of conifer than broadleaf leaves: a test of home-field advantage of stream litter breakdown. Freshwater Biology, 64, 1755-1768.
DOI |
[66] |
Yu ZP, Huang ZQ, Wang MH, Liu RQ, Zheng LJ, Wan XH, Hu ZH, Davis MR, Lin TC (2015). Nitrogen addition enhances home-field advantage during litter decomposition in subtropical forest plantations. Soil Biology & Biochemistry, 90, 188-196.
DOI URL |
[67] |
Yuan X, Niu D, Wang Y, Boydston A, Guo D, Li X, Wen H, Qin Y, Fu H (2019). Litter decomposition in fenced and grazed grasslands: a test of the home-field advantage hypothesis. Geoderma, 354, 113876. DOI: 10.1016/j.geoderma.2019.07.034.
DOI |
[68] |
Zha TG, Zhang ZQ, Sun G, Wang GM, Yun XQ, Wang YK, Liu Y (2012). Home-field advantage of litter decomposition and its soil biological driving mechanism: a review. Acta Ecologica Sinica, 32, 7991-8000.
DOI URL |
[查同刚, 张志强, 孙阁, 王高敏, 贠小琴, 王伊琨, 刘艳 (2012). 凋落物分解主场效应及其土壤生物驱动. 生态学报, 32, 7991-8000.] | |
[69] |
Zhang DQ, Hui DF, Luo YQ, Zhou GY (2008). Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 1, 85-93.
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[3] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[4] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[5] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[6] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[7] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[8] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[9] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[10] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[11] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[12] | 姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报, 2021, 45(5): 539-551. |
[13] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[14] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[15] | 罗林, 黄艳, 梁进, 汪恩涛, 胡君, 贺合亮, 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响[J]. 植物生态学报, 2020, 44(8): 875-884. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19