植物生态学报 ›› 2022, Vol. 46 ›› Issue (9): 1109-1124.DOI: 10.17521/cjpe.2021.0296
• 研究论文 • 上一篇
收稿日期:
2021-08-16
接受日期:
2022-04-24
出版日期:
2022-09-20
发布日期:
2022-10-19
通讯作者:
杨梅
作者简介:
(fjyangmei@126.com)基金资助:
LI Wan-Nian1, LUO Yi-Min2, HUANG Ze-Yue3, YANG Mei1,*()
Received:
2021-08-16
Accepted:
2022-04-24
Online:
2022-09-20
Published:
2022-10-19
Contact:
YANG Mei
Supported by:
摘要:
研究望天树(Parashorea chinensis)在幼龄阶段分别与巨尾桉(Eucalyptus grandis × E. urophylla)、降香黄檀(Dalbergia odorifera)混交对土壤微生物群落功能特征和碳源利用的影响, 以期为濒危树种望天树人工林培育模式和桉树纯林改造中的树种选择提供科学依据。该研究采用Biolog-ECO技术对比分析了望天树混交林和纯林土壤微生物对6类碳源的利用特点和代谢活性, 探讨微生物功能多样性的差异及与土壤环境因子的关系。结果表明: (1)望天树×巨尾桉混交林的Shannon-Wiener、Simpson和McIntosh多样性指数均最高, 其土壤微生物功能多样性显著高于纯林; (2)望天树混交林的土壤微生物对碳源的利用能力和代谢活性及微生物数量高于纯林, 并随土层加深而下降; 混交林和纯林的土壤微生物对酚酸类碳源的利用程度均最高、胺类次之、多聚物最低, 不同点在于混交林和纯林分别对氨基酸类、羧酸类碳源的依赖度更高; (3)望天树混交林土壤的含水率、总孔隙度以及有机质、全氮、全钾、铵态氮、硝态氮、速效磷、速效钾等养分含量高于纯林; 并且除全磷和全钾外其他养分含量的垂直分布特征呈现出明显的表聚效应; (4)环境因子分析表明, 土壤pH、有机质、全钾和速效钾含量是造成混交林和纯林间以及不同土层间土壤微生物功能多样性和碳源利用存在明显差异的主要驱动因子。综上所述, 望天树混交造林模式对幼林土壤微生物群落及其生存环境有显著影响, 尤其与巨尾桉混交可以有效提高土壤微生物代谢活性和功能多样性, 促进凋落物和有机质的分解。与纯林相比, 望天树混交林在一定程度上改善了土壤质量和肥力, 为望天树幼树生长营造了较好的土壤环境和光照条件。
李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响. 植物生态学报, 2022, 46(9): 1109-1124. DOI: 10.17521/cjpe.2021.0296
LI Wan-Nian, LUO Yi-Min, HUANG Ze-Yue, YANG Mei. Effects of mixed young plantations of Parashorea chinensis on soil microbial functional diversity and carbon source utilization. Chinese Journal of Plant Ecology, 2022, 46(9): 1109-1124. DOI: 10.17521/cjpe.2021.0296
林分类型 Stand type | 树种组成 Tree species composition | 林龄 Stand age (a) | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Slope aspect | 坡位 Slope position | 林分密度 Stand density (plant·hm?2) | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) |
---|---|---|---|---|---|---|---|---|---|
PP | 望天树 Parashorea chinensis | 5 | 172.5 | 20 | 东南 Southeast | 中坡 Middle | 1 665 | 3.30 | 2.92 |
MPD | 望天树 P. chinensis | 5 | 179.9 | 20 | 东南 Southeast | 中坡 Middle | 1 665 | 3.30 | 3.03 |
降香黄檀 Dalbergia odorifera | 5 | 179.9 | 20 | 东南 Southeast | 中坡 Middle | 1 665 | 5.80 | 4.02 | |
MPE | 望天树 P. chinensis | 5 | 205.5 | 17 | 东南 Southeast | 中坡 Middle | 1 665 | 3.30 | 3.51 |
巨尾桉 Eucalyptus grandis × E. urophylla | 5 | 205.5 | 17 | 东南 Southeast | 中坡 Middle | 1 665 | 17.49 | 14.54 |
表1 望天树人工林林分概况
Table 1 General conditions of the Parashorea chinensis plantations
林分类型 Stand type | 树种组成 Tree species composition | 林龄 Stand age (a) | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Slope aspect | 坡位 Slope position | 林分密度 Stand density (plant·hm?2) | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) |
---|---|---|---|---|---|---|---|---|---|
PP | 望天树 Parashorea chinensis | 5 | 172.5 | 20 | 东南 Southeast | 中坡 Middle | 1 665 | 3.30 | 2.92 |
MPD | 望天树 P. chinensis | 5 | 179.9 | 20 | 东南 Southeast | 中坡 Middle | 1 665 | 3.30 | 3.03 |
降香黄檀 Dalbergia odorifera | 5 | 179.9 | 20 | 东南 Southeast | 中坡 Middle | 1 665 | 5.80 | 4.02 | |
MPE | 望天树 P. chinensis | 5 | 205.5 | 17 | 东南 Southeast | 中坡 Middle | 1 665 | 3.30 | 3.51 |
巨尾桉 Eucalyptus grandis × E. urophylla | 5 | 205.5 | 17 | 东南 Southeast | 中坡 Middle | 1 665 | 17.49 | 14.54 |
图1 不同林型望天树人工林的土壤微生物数量(平均值±标准差)。MPD, 望天树和降香黄檀混交林; MPE, 望天树和巨尾桉混交林; PP, 望天树纯林。不同大写字母表示同一土壤层次不同林分类型之间差异显著(p < 0.05), 不同小写字母表示同一林分类型不同土壤层次之间差异显著(p <0.05)。
Fig. 1 Quantity of soil microorganism in different stand types of Parashorea chinensis plantation (mean ± SD). MPD, mixed plantation of P. chinensis and Dalbergia odorifera; MPE, mixed plantation of P. chinensis and Eucalyptus grandis × E. urophylla; PP, pure plantation of P. chinensis. Different uppercase letters indicate that there is significant difference between different forest types in the same soil layer (p < 0.05), and different lowercase letters indicate that there is significant difference between different soil layers of the same forest type (p < 0.05).
图2 不同林型土壤微生物平均吸光值(AWCD)的变化。MPD, 望天树和降香黄檀混交林; MPE, 望天树和巨尾桉混交林; PP, 望天树纯林。
Fig. 2 Changes of soil microbial average well color development (AWCD) in the different stand types. MPD, mixed plantation of Parashorea chinensis and Dalbergia odorifera; MPE, mixed plantation of P. chinensis and Eucalyptus grandis × E. urophylla; PP, pure plantation of P. chinensis.
图3 不同林型下土壤微生物群落对6类碳源的利用特征(平均值±标准差)。MPD, 望天树和降香黄檀混交林; MPE, 望天树和巨尾桉混交林; PP, 望天树纯林。不同大写字母表示同一土壤层次不同林分类型之间差异显著(p < 0.05), 不同小写字母表示同一林分类型不同土壤层次之间差异显著(p < 0.05)。
Fig. 3 Characteristics of utilization of six soil carbon sources by soil microbial communities in different stand types (mean ± SD). MPD, mixed plantation of P. chinensis and Dalbergia odorifera; MPE, mixed plantation of P. chinensis and Eucalyptus grandis × E. urophylla; PP, pure plantation of P. chinensis. Different uppercase letters indicate that there is significant difference between different forest types in the same soil layer (p < 0.05), and different lowercase letters indicate that there is significant difference between different soil layers of the same forest type (p < 0.05).
图4 望天树人工林的土壤微生物功能多样性指数比较分析(平均值±标准差)。MPD, 望天树和降香黄檀混交林; MPE, 望天树和巨尾桉混交林; PP, 望天树纯林。不同大写字母表示同一土壤层次不同林分类型之间差异显著(p < 0.05),不同小写字母表示同一林分类型不同土壤层次之间差异显著(p <0.05)。
Fig. 4 Comparative analysis of soil microbial functional diversity index of Parashorea chinensis plantations (mean ± SD). MPD, mixed plantation of Parashorea chinensis and Dalbergia odorifera; MPE, mixed plantation of Parashorea chinensis and Eucalyptus grandis × E. urophylla; PP, pure plantation of Parashorea chinensis. Different uppercase letters indicate that there is significant difference between different forest types in the same soil layer (p < 0.05), and different lowercase letters indicate that there is significant difference between different soil layers of the same forest type (p < 0.05).
理化指标 Physicochemical index | 土层 Soil layer (cm) | PP | MPD | MPE |
---|---|---|---|---|
pH | 0-20 | 4.79 ± 0.021Aa | 4.28 ± 0.120Ba | 4.33 ± 0.042Ba |
20-40 | 4.31 ± 0.184Aa | 4.26 ± 0.120Aa | 4.30 ± 0.050Aa | |
土壤密度 Soil density (g·cm-3) | 0-20 | 1.51 ± 0.004Ba | 1.55 ± 0.003Aa | 1.45 ± 0.003Ca |
20-40 | 1.37 ± 0.003Bb | 1.40 ± 0.002Ab | 1.37 ± 0.001Bb | |
土壤含水率 Soil water content (%) | 0-20 | 0.14 ± 0.003Bb | 0.12 ± 0.002Cb | 0.18 ± 0.001Aa |
20-40 | 0.16 ± 0.002Aa | 0.14 ± 0.001Ba | 0.16 ± 0.001Ab | |
土壤总孔隙度 Total soil porosity (%) | 0-20 | 0.43 ± 0.001Bb | 0.41 ± 0.001Cb | 0.45 ± 0.001Ab |
20-40 | 0.48 ± 0.001Aa | 0.47 ± 0.001Ba | 0.48 ± 0.001Aa | |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 0-20 | 16.73 ± 1.05ABa | 15.32 ± 1.77Ba | 18.22 ± 0.27Aa |
20-40 | 7.39 ± 0.59Bb | 9.34 ± 0.13Ab | 7.35 ± 1.11Bb |
表2 不同林型望天树人工林的土壤理化性质(平均值±标准差)
Table 2 Soil physicochemical properties of different types of Parashorea chinensis plantations (mean ± SD)
理化指标 Physicochemical index | 土层 Soil layer (cm) | PP | MPD | MPE |
---|---|---|---|---|
pH | 0-20 | 4.79 ± 0.021Aa | 4.28 ± 0.120Ba | 4.33 ± 0.042Ba |
20-40 | 4.31 ± 0.184Aa | 4.26 ± 0.120Aa | 4.30 ± 0.050Aa | |
土壤密度 Soil density (g·cm-3) | 0-20 | 1.51 ± 0.004Ba | 1.55 ± 0.003Aa | 1.45 ± 0.003Ca |
20-40 | 1.37 ± 0.003Bb | 1.40 ± 0.002Ab | 1.37 ± 0.001Bb | |
土壤含水率 Soil water content (%) | 0-20 | 0.14 ± 0.003Bb | 0.12 ± 0.002Cb | 0.18 ± 0.001Aa |
20-40 | 0.16 ± 0.002Aa | 0.14 ± 0.001Ba | 0.16 ± 0.001Ab | |
土壤总孔隙度 Total soil porosity (%) | 0-20 | 0.43 ± 0.001Bb | 0.41 ± 0.001Cb | 0.45 ± 0.001Ab |
20-40 | 0.48 ± 0.001Aa | 0.47 ± 0.001Ba | 0.48 ± 0.001Aa | |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 0-20 | 16.73 ± 1.05ABa | 15.32 ± 1.77Ba | 18.22 ± 0.27Aa |
20-40 | 7.39 ± 0.59Bb | 9.34 ± 0.13Ab | 7.35 ± 1.11Bb |
图5 不同林型望天树人工林的土壤养含量特征(平均值±标准差)。MPD, 望天树和降香黄檀混交林; MPE, 望天树和巨尾桉混交林; PP, 望天树纯林。不同大写字母表示不同林分类型间差异显著(p < 0.05), 不同小写字母表示不同土层间差异显著(p < 0.05)。
Fig. 5 Characteristics of soil nutrient contents in different types of Parashorea chinensis plantations (mean ± SD). MPD, mixed plantation of P. chinensis and Dalbergia odorifera; MPE, mixed plantation of P. chinensis and Eucalyptus grandis × E. urophylla; PP, pure plantation of P. chinensis. AK, available potassium content; AP, available phosphorus content; SOM, soil organic matter content; TK, total potassium content; TN, total nitrogen content; TP, total phosphorus content. Different uppercase letters indicate significant differences among different forest types (p < 0.05), and different lowercase letters indicate significant differences between different soil layers (p < 0.05).
图6 不同林型望天树人工林的土壤酶活性(平均值±标准差)。MPD, 望天树和降香黄檀混交林; MPE, 望天树和巨尾桉混交林; PP, 望天树纯林。不同大写字母表示不同林分类型间差异显著(p < 0.05), 不同小写字母表示不同土层间差异显著(p < 0.05)。
Fig. 6 Soil enzyme activities of different stand types of Parashorea chinensis plantations (mean ± SD). MPD, mixed plantation of P. chinensis and Dalbergia odorifera; MPE, mixed plantation of P. chinensis and Eucalyptus grandis × E. urophylla; PP, pure plantation of P. chinensis. Different uppercase letters indicate significant differences among different forest types (p < 0.05), and different lowercase letters indicate significant differences between different soil layers (p < 0.05).
图7 土壤微生物群落功能多样性与重要环境因子的主成分分析(PCA)。MPD, 望天树和降香黄檀混交林; MPE, 望天树和巨尾桉混交林; PP, 望天树纯林。ACPA, 酸性磷酸酶活性; Actinomycete, 放线菌数量; AK, 速效钾含量; AP, 速效磷含量; Bacteria, 细菌数量; Density, 土壤密度; Fungus, 真菌数量; MCT index, 均匀度指数; NH4+-N, 铵态氮含量; NO3--N, 硝态氮含量; Porosity, 孔隙度; SA, 蔗糖酶活性; Shannon index, 丰富度指数; Simpon index, 优势度指数; SOM, 土壤有机质含量; TK, 全钾含量; TN, 全氮含量; TP, 全磷含量; UA, 脲酶活性; Water content, 含水率。
Fig. 7 Principal component analysis (PCA) of soil microbial community functional diversity and important environmental factors. MPD, mixed plantation of Parashorea chinensis and Dalbergia odorifera; MPE, mixed plantation of P. chinensis and Eucalyptus grandis × E. urophylla; PP, pure plantation of P. chinensis. ACPA, acid phosphatase activity; Actinomycete, actinomycetes quantity; AK, available potassium content; AP, available phosphorus content; Bacteria, bacteria quantity; Density, soil density; Fungus, fungi quantity; MCT index, evenness index; NH4+-N, ammonium nitrogen content; NO3--N, nitrate nitrogen content; SA, sucrase activity; Shannon index, richness index; Simpon index, dominance index; SOM, soil organic matter content; TK, total potassium content; TN, total nitrogen content; TP, total phosphorus content; UA, urease activity; Water content, soil water content。
林型 Stand type | 主成分得分 Principal component score | 综合得分 Comprehensive score | 综合排名 Comprehensive ranking | ||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | |||
PP | -0.738 | -0.725 | 0.182 | 0.014 | -0.159 | -0.285 | 3 |
MPD | -0.301 | 0.995 | -0.109 | 0.176 | 0.085 | 0.169 | 1 |
MPE | 1.039 | -0.269 | -0.073 | -0.190 | 0.074 | 0.116 | 2 |
表3 不同林型望天树人工幼林土壤微生物微环境的主成分综合得分
Table 3 Principal component comprehensive scores of soil ecological functions of different stand types of Parashorea chinensis plantations
林型 Stand type | 主成分得分 Principal component score | 综合得分 Comprehensive score | 综合排名 Comprehensive ranking | ||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | |||
PP | -0.738 | -0.725 | 0.182 | 0.014 | -0.159 | -0.285 | 3 |
MPD | -0.301 | 0.995 | -0.109 | 0.176 | 0.085 | 0.169 | 1 |
MPE | 1.039 | -0.269 | -0.073 | -0.190 | 0.074 | 0.116 | 2 |
图8 土壤微生物群落碳源利用与环境因子的冗余分析(RDA)。MPD, 望天树和降香黄檀混交林; MPE, 望天树和巨尾桉混交林; PP, 望天树纯林。C1, 碳水化合物类; C2, 氨基酸类; C3, 羧酸类; C4, 多聚物类; C5, 酚酸类; C6, 胺类。AK, 速效钾含量; AP, 速效磷含量; NO3--N, 硝态氮含量; SOM, 土壤有机质含量; TK, 全钾含量; TN, 全氮含量; TP, 全磷含量。
Fig. 8 Redundancy analysis (RDA) of soil microbial community carbon source utilization and environmental factors. MPD, mixed plantation of P. chinensis and Dalbergia odorifera; MPE, mixed plantation of P. chinensis and Eucalyptus grandis × E. urophylla; PP, pure plantation of P. chinensis. C1, carbohydrate; C2, amino acid; C3, carboxylic acid; C4, polymer; C5, phenolic acid; C6, amine. AK, available potassium content; AP, available phosphorus content; NO3--N, nitrate nitrogen content; SOM, soil organic matter content; TK, total potassium content; TN, total nitrogen content; TP, total phosphorus content.
[1] | An R, Ma FY, Cui HR, Qin GH, Huang YL, Tian Q (2019). Analysis of bacterial community structure and diversity characteristics of mixed forest of Robinia pseudoacacia and Ailanthus altissima and there pure forest in the Yellow River Delta. Acta Ecologica Sinica, 39, 7960-7967. |
安然, 马风云, 崔浩然, 秦光华, 黄雅丽, 田琪 (2019). 黄河三角洲刺槐臭椿混交林与纯林土壤细菌群落结构和多样性特征分析. 生态学报, 39, 7960-7967.] | |
[2] |
Atapattu AJ, Xia SW, Cao M, Zhang WF, Mishra S, Yang XD (2020). Can dominant canopy species leaf litter determine soil nutrient heterogeneity? A case study in a tropical rainforest in southwest China. Journal of Soil Science and Plant Nutrition, 20, 2479-2489.
DOI URL |
[3] |
Blagodatskaya E, Kuzyakov Y (2013). Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biology & Biochemistry, 67, 192-211.
DOI URL |
[4] |
Bonner MTL, Allen DE, Brackin R, Smith TE, Lewis T, Shoo LP, Schmidt S (2020). Tropical rainforest restoration plantations are slow to restore the soil biological and organic carbon characteristics of old growth rainforest. Microbial Ecology, 79, 432-442.
DOI PMID |
[5] |
Brussaard L, de Ruiter PC, Brown GG (2007). Soil biodiversity for agricultural sustainability. Agriculture Ecosystems & Environment, 121, 233-244.
DOI URL |
[6] | Chen CF, Wu SR, Qin L, Fan YC, Tan L, Guo WF (2016). Soil microbial carbon source utilization and functional diversity of typical native broadleaved plantations in south subtropical China. Chinese Journal of Ecology, 35, 1132-1139. |
[陈超凡, 吴水荣, 覃林, 范垚城, 谭玲, 郭文福 (2016). 南亚热带典型乡土阔叶人工林土壤微生物碳源利用及功能多样性. 生态学杂志, 35, 1132-1139.] | |
[7] | Chen LL, Wang DX, Yu F, Wang ZJ, Huang YK, Zhang HW (2014). The relationship among microbial quantities, enzyme activities and nutrients in soil of pine-oak mixed forest. Chinese Journal of Soil Science, 45, 77-84. |
[陈莉莉, 王得祥, 于飞, 王兆杰, 黄雅昆, 张洪武 (2014). 松栎混交林土壤微生物数量与土壤酶活性及土壤养分关系的研究. 土壤通报, 45, 77-84.] | |
[8] |
Chen XL, Wang D, Chen X, Wang J, Diao JJ, Zhang JY, Guan QW (2015). Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation. Applied Soil Ecology, 92, 35-44.
DOI URL |
[9] | Chen YK, Tan XM, Li M, Xu HC, Mo XQ, Xiao N, You YM, Huang XM, Wen YG, Zhu HG (2021). Effects of mixture of valuable nitrogen-fixing tree species Dalbergia odorifera and second-generation Eucalyptus urophylla on structure and function of soil microbial community in subtropical China. Guihaia, 41, 1476-1485. |
[陈永康, 谭许脉, 李萌, 徐浩成, 莫雪青, 肖纳, 尤业明, 黄雪蔓, 温远光, 朱宏光 (2021). 珍贵固氮树种降香黄檀与二代巨尾桉混交种植对土壤微生物群落结构和功能的影响. 广西植物, 41, 1476-1485.] | |
[10] |
Deng J, Zhou Y, Bai X, Luo J, Yin Y, Zhu W (2019). Soil microbial functional diversity responses to different revegetation types in Baishilazi Nature Reserve. Polish Journal of Environmental Studies, 28, 3675-3686.
DOI URL |
[11] | Deng JJ, Zhou YB, Yin Y, Zhang SZ, Zhu WX (2017). Effects of mixed Pinus tabuliformis and Quercus mongolica plantation on the functional diversity of soil microbial community. Chinese Journal of Ecology, 36, 3028-3035. |
邓娇娇, 周永斌, 殷有, 朱文旭 (张淞著, 2017). 油松和蒙古栎混交对土壤微生物群落功能多样性的影响. 生态学杂志, 36, 3028-3035.] | |
[12] |
Dossa GGO, Jin YQ, Lue XT, Tang JW, Harrison RD (2019). Small roots of Parashorea chinensis Wang Hsie decompose slower than twigs. Forests, 10, 301. DOI: 10.3390/ f10040301.
DOI |
[13] |
Garau G, Morillas L, Roales J, Castaldi P, Mangia NP, Spano D, Mereu S (2019). Effect of monospecific and mixed Mediterranean tree plantations on soil microbial community and biochemical functioning. Applied Soil Ecology, 140, 78-88.
DOI URL |
[14] |
Gillespie LM, Hättenschwiler S, Milcu A, Wambsganss J, Shihan A, Fromin N (2021). Tree species mixing affects soil microbial functioning indirectly via root and litter traits and soil parameters in European forests. Functional Ecology, 35, 2190-2204.
DOI URL |
[15] | Gong JH, Wang J (2018). Brief introduction of counting viable bacteria by dilution coating plate method. Biology Teaching, 43, 70-71. |
[龚军辉, 王晶 (2018). 稀释涂布平板法计数活菌的方法简介. 生物学教学, 43, 70-71.] | |
[16] |
Gu CM, Zhang SJ, Han PP, Hu XJ, Xie LH, Li YS, Brooks M, Liao X, Qin L (2019). Soil enzyme activity in soils subjected to flooding and the effect on nitrogen and phosphorus uptake by oilseed rape. Frontiers in Plant Science, 10, 368. DOI: 10.3389/fpls.2019.00368.
DOI |
[17] | Guo H, Tang WP (2020). Enzyme activity and microbial community diversity in rhizosphere and non-rhizosphere of Larix principis-rupprechtii. Ecology and Environmental Sciences, 29, 2163-2170. |
郭辉, 唐卫平 (2020). 不同林龄华北落叶松根际与非根际土壤酶和土壤微生物研究. 生态环境学报, 29, 2163-2170.] | |
[18] | Han XM, Huang ZY, Cheng F, Yang M (2020). Physiochemical properties and microbial community characteristics of rhizosphere soil in Parashorea chinensis plantation. Chinese Journal of Applied Ecology, 31, 3365-3375. |
[韩小美, 黄则月, 程飞, 杨梅 (2020). 望天树人工林根际土壤理化性质及微生物群落特征. 应用生态学报, 31, 3365-3375.]
DOI |
|
[19] | Hu L, Wang CT, Wang GX, Ma L, Liu W, Xiang ZY (2014). Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of Three Rivers, China. Acta Prataculturae Sinica, 23(3), 8-19. |
[胡雷, 王长庭, 王根绪, 马力, 刘伟, 向泽宇 (2014). 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化. 草业学报, 23(3), 8-19.] | |
[20] | Huang J, Li Z, Zhang J (2012). Improvement of indophenol blue colorimetric method on activity of urease in soil. Journal of Civil, Architectural & Environmental Engineering, 34, 102-107. |
黄娟, 李稹, 张健 (2012). 改良靛酚蓝比色法测土壤脲酶活性. 土木建筑与环境工程, 34, 102-107.] | |
[21] |
Huang XM, Liu SR, You YM, Wen YG, Wang H, Wang JX (2017). Microbial community and associated enzymes activity influence soil carbon chemical composition in Eucalyptus urophylla plantation with mixing N2-fixing species in subtropical China. Plant and Soil, 414, 199-212.
DOI URL |
[22] | Hui H, Guan QW, Wang YR, Lin XY, Chen B, Wang G, Hu Y, Hu JD (2021). Effects of different forest management modes on soil nitrogen content and enzyme activity. Journal of Nanjing Forestry University (Natural Sciences Edition), 45(4), 151-158. |
[惠昊, 关庆伟, 王亚茹, 林鑫宇, 陈斌, 王刚, 胡月, 胡敬东 (2021). 不同森林经营模式对土壤氮含量及酶活性的影响. 南京林业大学学报(自然科学版), 45(4), 151-158.] | |
[23] |
Jin ZZ, Lei JQ, Li SY, Xu XW (2013). Soil microbial diversity, site conditions, shelter forest land, saline water drip-irrigation, drift desert. Journal of Basic Microbiology, 53, 856-867.
DOI PMID |
[24] |
Khlifa R, Paquette A, Messier C, Reich PB, Munson AD (2017). Do temperate tree species diversity and identity influence soil microbial community function and composition? Ecology and Evolution, 7, 7965-7974.
DOI PMID |
[25] | Li M, Lin KM, Zheng MM, Ren ZB, Xu SS, Cao GQ, Ye YQ (2021). Effects of nitrogen fertilization on microbial functional diversity in a light-medium for Cunninghamia lanceolata (Lamb.) Hook seedlings. Chinese Journal of Applied and Environmental Biology, 27, 54-61. |
李茂, 林开敏, 郑鸣鸣, 任正标, 许珊珊, 曹光球, 叶义全 (2021). 指数施肥对杉木苗期基质中微生物功能多样性的影响. 应用与环境生物学报, 27, 54-61.] | |
[26] | Li QH, Zhang Y, Lin YX, Wang ZY, Yang YT, Tan B, Xu ZF, Li H (2021). Distribution characteristics of litter-soil N and P contents of different forest types in the south-west of China. Journal of Sichuan Agricultural University, 39, 341-347. |
李青桦, 张玉, 林玉瑄, 王志宇, 杨玉婷, 谭波, 徐振锋, 李晗 (2021). 西南地区不同林型凋落物-土壤氮、磷含量分布特征. 四川农业大学学报, 39, 341-347.] | |
[27] | Li QM, Li SJ, Wang XL, Liu B, Zhang GN, Zhang C, Gao Y, Mei HP, Wang Y (2021). Influences of changing carbon inputs on soil microbial carbon metabolism in natural secondary forests in Yimeng mountainous area. Acta Ecologica Sinica, 41, 4110-4119. |
[李秋梅, 黎胜杰, 王欣丽, 刘波, 张广娜, 张弛, 高远, 梅鹤平, 王芸 (2021). 改变碳输入对沂蒙山区典型次生林土壤微生物碳源代谢功能的影响. 生态学报, 41, 4110-4119.] | |
[28] | Li ZM, Quan F, Lan GY, Wu ZX, Qi DL, Li HJ (2020). Study on the soil microbial function of rubber tree mixed forest in Hainan. Chinese Journal of Tropical Agriculture, 40, 73-79. |
李子敏, 全飞, 兰国玉, 吴志祥, 祁栋灵, 李海健 (2020). 海南橡胶树混交林土壤微生物功能研究. 热带农业科学, 40, 73-79.] | |
[29] |
Liu SS, Zhou WJ, Kuang LH, Liu ZF, Song QH, Liu YT, Zhang YP, Lu ZY, Sha LQ (2020). Responses of soil extracellular enzyme activities to carbon input alteration and warming in a subtropical evergreen broad-leaved forest. Chinese Journal of Plant Ecology, 44, 1262-1272.
DOI URL |
[刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清 (2020). 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应. 植物生态学报, 44, 1262-1272.] | |
[30] |
López-Angulo J, de la Cruz M, Chacón-Labella J, Illuminati A, Matesanz S, Pescador DS, Pías B, Sánchez AM, Escudero A (2020). The role of root community attributes in predicting soil fungal and bacterial community patterns. New Phytologist, 228, 1070-1082.
DOI URL |
[31] | Lu RK (2000). Methods for Agrochemical Analysis of Soil. China Agricultural Science and Technology Press, Beijing. |
[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[32] |
Mei KC, Cheng L, Zhang QF, Lin KM, Zhou JC, Zeng QX, Wu Y, Xu JG, Zhou JR, Chen YM (2020). Effects of dissolved organic matter from different plant sources on soil enzyme activities in subtropical forests. Chinese Journal of Plant Ecology, 44, 1273-1284.
DOI URL |
[梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民 (2020). 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响. 植物生态学报, 44, 1273-1284.] | |
[33] |
Peng WX, Wang F, Song TQ, Tan QJ, Du H, Zeng FP, Wang KL, Zhang H, Zeng ZX (2021). The biogeography of forest soil microbial functional diversity responds to forest types across Guangxi, southwest China. Forests, 12, 1587. DOI: 10.3390/f12111578.
DOI |
[34] | Qin XM, Wei CZ, Li JT, Chen YQ, Chen HS, Zheng Y, Nong YQ, Liao CW, Chen X, Luo YF, Lu JM, Zeng ZY, Wei JJ (2017). Changes in soil microbial community structure and functional diversity in the rhizosphere surrounding tea and soybean. Journal of Agricultural Sciences, 12, 1-13. |
[35] | Qu TB, Wang CY, Pang SN, Zhang JF (2015). Utilization of carbon sources by soil microbial communities of four plant functional groups in Songnen Steppe. Acta Ecologica Sinica, 35, 5695-5702. |
[曲同宝, 王呈玉, 庞思娜, 张建峰 (2015). 松嫩草地4种植物功能群土壤微生物碳源利用的差异. 生态学报, 35, 5695-5702.] | |
[36] |
Santos FM, Chaer GM, Diniz AR,de Carvalho Balieiro F (2017). Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil. Forest Ecology and Management, 384, 110-121.
DOI URL |
[37] |
Scheibe A, Steffens C, Seven J, Jacob A, Hertel D, Leuschner C, Gleixner G (2015). Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biology & Biochemistry, 81, 219-227.
DOI URL |
[38] |
Souza-Alonso P, Novoa A, González L (2014). Soil biochemical alterations and microbial community responses under Acacia dealbata Link invasion. Soil Biology & Biochemistry, 79, 100-108.
DOI URL |
[39] | Su D, Zhang K, Chen FL, Li RD, Zheng H (2015). Effects of nitrogen application on carbon metabolism of soil microbial communities in Eucalyptus plantations with different levels of soil organic carbon. Acta Ecologica Sinica, 35, 5940-5947. |
[苏丹, 张凯, 陈法霖, 李睿达, 郑华 (2015). 施氮对不同有机碳水平桉树林土壤微生物群落碳代谢的影响. 生态学报, 35, 5940-5947.] | |
[40] |
van der Heijden MGA, Wagg C (2013). Soil microbial diversity and agro-ecosystem functioning. Plant and Soil, 363, 1-5.
DOI URL |
[41] |
van der Velden N, Ferry Slik JW, Hu YH, Lan G, Lin L, Deng XB, Poorter L (2014). Monodominance of Parashorea chinensis on fertile soils in a Chinese tropical rain forest. Journal of Tropical Ecology, 30, 311-322.
DOI URL |
[42] |
Wang H, Wang QG (2021). Research progress of forest soil enzyme dynamics in different succession stages. International Journal of Ecology, 10, 61-69.
DOI URL |
[43] | Wang J, Peng SJ, Liu Y, Hu Q, Yu H (2021). An analysis of water conservation function of forest soil in Shangbao Terrace. China Rural Water and Hydropower, (5), 6-9. |
[王姣, 彭圣军, 刘颖, 胡强, 虞慧 (2021). 上堡梯田区森林土壤水源涵养功能分析. 中国农村水利水电, (5), 6-9.] | |
[44] | Wang LY, Zhou GN, Zhu XY, Gao BJ, Xu HD (2021). Effects of litter on soil organic carbon and microbial functional diversity. Acta Ecologica Sinica, 41, 2709-2718. |
[王利彦, 周国娜, 朱新玉, 高宝嘉, 许会道 (2021). 凋落物对土壤有机碳与微生物功能多样性的影响. 生态学报, 41, 2709-2718.] | |
[45] | Wang XH, Geng YQ, Jin F, Guo LY, Dang K, Shao XW (2018). Effects of straw returning and plastic film mulching on soil environment and rice growth. Journal of South China Agricultural University, 39, 1-7. |
[王晓航, 耿艳秋, 金峰, 郭丽颖, 党昆, 邵玺文 (2018). 秸秆还田和地膜覆盖对土壤环境和水稻生长的影响. 华南农业大学学报, 39, 1-7.] | |
[46] |
Wang XQ, Wang CK, Han Y (2015). Effects of tree species on soil organic carbon density: a common garden experiment of five temperate tree species. Chinese Journal of Plant Ecology, 39, 1033-1043.
DOI URL |
[王薪琪, 王传宽, 韩轶 (2015). 树种对土壤有机碳密度的影响: 5种温带树种同质园试验. 植物生态学报, 39, 1033-1043.]
DOI |
|
[47] |
Wang ZW, Wan SZ, Jiang HM, Hu Y, Ma SQ, Chen YC, Lu XY (2021). Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau. Chinese Journal of Plant Ecology, 45, 528-538.
DOI URL |
[汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳 (2021). 青藏高原不同高寒草地类型土壤酶活性及其影响因子. 植物生态学报, 45, 528-538.] | |
[48] |
Wardle DA, Yeates GW, Nicholson KS, Bonner KI, Watson RN (1999). Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period. Soil Biology & Biochemistry, 31, 1707-1720.
DOI URL |
[49] | Wen YG, Li HY, Zhou XG, Zhu HG, Li YC, Cai DX, Jia HY, Huang XM, You YM (2019). Effects of uneven-aged Pinus massoniana × Castanopsis hystrix mixed plantations on structural and functions of soil microbial community. Guangxi Sciences, 26, 188-198. |
[温远光, 李海燕, 周晓果, 朱宏光, 李运筹, 蔡道雄, 贾宏炎, 黄雪蔓, 尤业明 (2019). 马尾松×红锥异龄混交林对土壤微生物群落结构和功能的影响. 广西科学, 26, 188-198.] | |
[50] | Wu D, Zhang MM, Zhang YY, Li Y, Zhang YX, Chi Q, Pang HS, Sun GY (2017). The carbon metabolism characteristics and diversity of soil microbial communities from pure or coniferous and broad-leaved mixed forests in the Maoer Mountain region. Journal of Nanjing Forestry University (Natural Sciences Edition), 41, 81-89. |
[吴迪, 张萌萌, 张钰莹, 李阳, 张潆心, 迟琦, 逄好胜, 孙广玉 (2017). 帽儿山针阔混交林及纯林土壤碳代谢微生物群落特征研究. 南京林业大学学报(自然科学版), 41, 81-89.] | |
[51] |
Wu WX, Zhou XG, Wen YG, Zhu HG, You YM, Qin ZW, Li YC, Huang XM, Yan L, Li HY, Li XQ (2019). Coniferous- broadleaf mixture increases soil microbial biomass and functions accompanied by improved stand biomass and litter production in subtropical China. Forests, 10, 879. DOI: 10.3390/f10100879.
DOI |
[52] | Xu LX, Xun M, Song JF, Tian XZ, Yin FP, Huang WN, Zhang WW, Yang HQ (2020). Effect of soil textures and rootstock on rhizosphere microorganism and carbon source utilization of apple roots. Acta Horticulturae Sinica, 47, 1530-1540. |
[徐龙晓, 荀咪, 宋建飞, 田孝志, 殷方鹏, 黄伟男, 张玮玮, 杨洪强 (2020). 土壤质地和砧木对苹果根际微生物功能多样性及其碳源利用的影响. 园艺学报, 47, 1530-1540.] | |
[53] | Xue JY, Tang JW, Sha LQ, Meng Y (2003). Soil nutrient contents and their characteristics of seasonal changes under Shorea chinensis forest in Xishuangbanna. Acta Phytoecologica Sinica, 27, 373-379. |
[薛敬意, 唐建维, 沙丽清, 孟盈 (2003). 西双版纳望天树林土壤养分含量及其季节变化. 植物生态学报, 27, 373-379.]
DOI |
|
[54] | Yan L, Yun CG, Qin WM, Li DF (2014). Research progress of rare and endangered tree species, Parashorea chinensis. Forestry Science & Technology, 39(2), 59-62. |
[严理, 云朝光, 秦武明, 李东凡 (2014). 珍稀濒危树种望天树的研究进展. 林业科技, 39(2), 59-62.] | |
[55] | Yang M, Ye SM, Huang XL, Liao CR, Cheng F, Wei QS (2020). Environmental Behavior of Phenolic Acids in Soil of Eucalyptus and Legume Mixed Forest. Huazhong University of Science & Technology Press, Wuhan. |
[杨梅, 叶少明, 黄晓露, 廖承锐, 程飞, 韦秋思 (2020). 桉树与豆科树种混交林土壤中酚酸物质的环境行为. 华中科技大学出版社, 武汉.] | |
[56] |
Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, Hu Y, Duan J, Li X, He Z, Xue K, van Nostrand J, Wang S, Zhou J (2013). Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology, 19, 637-648.
DOI PMID |
[57] |
Yang YS, Li HQ, Zhang L, Zhu JB, He HD, Wei YX, Li YN (2016). Characteristics of soil water percolation and dissolved organic carbon leaching and their response to long-term fencing in an alpine meadow on the Tibetan Plateau. Environmental Earth Sciences, 75, 1471. DOI: 10.1007/s12665-016-6178-0.
DOI |
[58] | Yu SF, She GH, Li YF, Chen LJ, Li LJ, Ye SM (2017). The influences of mixing with Cinnamomum cassia after different cutting intensities in a masson pine forest on soil microbial functional diversity. Chinese Journal of Ecology, 36, 2438-2446. |
[喻素芳, 佘光辉, 李远发, 陈立金, 李丽娟, 叶绍明 (2017). 马尾松林经不同强度采伐后与肉桂混交对土壤微生物功能多样性的影响. 生态学杂志, 36, 2438-2446.] | |
[59] | Zhang MM, Fan SH, Guan FY, Yan YJ, Yin ZX, Huang LY (2020). Study on soil microbial biomass and enzyme activities in mixed forest of bamboo and broad-leaved trees. Soils, 52, 97-105. |
[张美曼, 范少辉, 官凤英, 晏颖杰, 尹子旭, 黄兰鹰 (2020). 竹阔混交林土壤微生物生物量及酶活性特征研究. 土壤, 52, 97-105.] | |
[60] | Zhang P, Pang SJ, Yang BG, Liu SL, Jia HY, Chen JB, Guo DQ (2021). Effects of different mixing patterns on growth, litter production and soil nutrients in Eucalyptus plantations. Journal of Northwest A&F University (Natural Science Edition), 49(2), 31-37. |
张培, 庞圣江, 杨保国, 刘士玲, 贾宏炎, 陈健波, 郭东强 (2021). 不同混交模式对桉树林分生长、凋落物量和土壤养分的影响. 西北农林科技大学学报(自然科学版), 49(2), 31-37.] | |
[61] |
Zhu YZ, Li YY, Han JG, Yao HY (2019). Effects of changes in water status on soil microbes and their response mechanism: a review. Chinese Journal of Applied Ecology, 30, 4323-4332.
DOI |
[朱义族, 李雅颖, 韩继刚, 姚槐应 (2019). 水分条件变化对土壤微生物的影响及其响应机制研究进展. 应用生态学报, 30, 4323-4332.]
DOI |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[3] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[4] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[5] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[6] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[7] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[8] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[9] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[10] | 冯印成, 王云琦, 王玉杰, 王凯, 王松年, 王杰帅. 重庆缙云山针阔混交林水汽通量特征及其影响因子[J]. 植物生态学报, 2022, 46(8): 890-903. |
[11] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[12] | 秦江环, 张春雨, 赵秀海. 基于温带针阔混交林植物-土壤反馈的Janzen- Connell假说检验[J]. 植物生态学报, 2022, 46(6): 624-631. |
[13] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[14] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[15] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19