植物生态学报 ›› 2022, Vol. 46 ›› Issue (3): 340-349.DOI: 10.17521/cjpe.2021.0266
朱玉荷1, 肖虹1,2, 王冰1,2,*(), 吴颖1,2, 白永飞2, 陈迪马1,2
收稿日期:
2021-07-15
接受日期:
2021-09-06
出版日期:
2022-03-20
发布日期:
2021-10-15
通讯作者:
王冰
作者简介:
* (wangb@ctgu.edu.cn)基金资助:
ZHU Yu-He1, XIAO Hong1,2, WANG Bing1,2,*(), WU Ying1,2, BAI Yong-Fei2, CHEN Di-Ma1,2
Received:
2021-07-15
Accepted:
2021-09-06
Online:
2022-03-20
Published:
2021-10-15
Contact:
WANG Bing
Supported by:
摘要:
研究不同深度土壤碳(C)、氮(N)、磷(P)含量及其化学计量比对气候因子(年降水量(MAP)和年平均气温(MAT))的响应差异, 对于理解气候变化如何影响生态系统功能具有重要意义。通过对蒙古高原干旱半干旱草地44个样点的野外调查, 探讨了不同深度(0-20、20-40、40-60、60-80 cm)土壤C、N、P含量及其化学计量比与MAP和MAT的关系。主要结果: (1)随土壤深度的增加, 土壤C和N含量逐渐减少, 土壤P含量不变; 土壤C:P和N:P逐渐降低, 土壤C:N相对稳定。(2)土壤C、N、P含量以及土壤C:P、N:P与MAP显著正相关, 与MAT显著负相关, 土壤C:N与MAP显著负相关, 与MAT无相关性; 随着土壤深度的增加, 土壤C、N、P含量及其化学计量比与气候因子的相关性均逐渐减弱。(3) MAP和MAT对不同深度土壤C、N、P含量和化学计量比的影响存在显著差异; 随着土壤深度的增加, MAP和MAT对土壤C、N、P含量及其化学计量特征变化的总解释度逐渐减少。该研究表明气候因子对土壤元素化学计量特征具有自上而下的调控作用, 蒙古高原草地土壤表层C、N、P含量及其化学计量比与MAP和MAT的关系更为密切。
朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应. 植物生态学报, 2022, 46(3): 340-349. DOI: 10.17521/cjpe.2021.0266
ZHU Yu-He, XIAO Hong, WANG Bing, WU Ying, BAI Yong-Fei, CHEN Di-Ma. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus along soil depths in response to climatic variables in grasslands on the Mongolia Plateau. Chinese Journal of Plant Ecology, 2022, 46(3): 340-349. DOI: 10.17521/cjpe.2021.0266
变量 Variable | 土壤深度 Soil depth (cm) | |||
---|---|---|---|---|
0-20 | 20-40 | 40-60 | 60-80 | |
SOC (mg·g-1) | 14.56 ± 1.13a | 9.11 ± 0.76b | 6.57 ± 0.64c | 3.85 ± 0.35d |
STN (mg·g-1) | 1.30 ± 0.10a | 0.82 ± 0.06b | 0.55 ± 0.05c | 0.32 ± 0.03d |
STP (mg·g-1) | 0.09 ± 0.00 | 0.09 ± 0.00 | 0.08 ± 0.00 | 0.08 ± 0.01 |
C:N | 12.76 ± 0.58b | 12.33 ± 0.52b | 17.56 ± 1.89ab | 23.33 ± 4.12a |
C:P | 144.17 ± 7.22a | 104.89 ± 4.74b | 80.63 ± 4.21c | 53.38 ± 3.33d |
N:P | 13.25 ± 0.75a | 9.99 ± 0.51b | 6.96 ± 0.44c | 4.75 ± 0.38d |
表1 蒙古高原草地不同深度土壤碳(C)、氮(N)、磷(P)含量和化学计量比特征(平均值±标准误)
Table 1 Soil carbon (C), nitrogen (N), and phosphorus (P) contents and their stoichiometric ratios along soil depths in grasslands on the Mongolia Plateau (mean ± SE)
变量 Variable | 土壤深度 Soil depth (cm) | |||
---|---|---|---|---|
0-20 | 20-40 | 40-60 | 60-80 | |
SOC (mg·g-1) | 14.56 ± 1.13a | 9.11 ± 0.76b | 6.57 ± 0.64c | 3.85 ± 0.35d |
STN (mg·g-1) | 1.30 ± 0.10a | 0.82 ± 0.06b | 0.55 ± 0.05c | 0.32 ± 0.03d |
STP (mg·g-1) | 0.09 ± 0.00 | 0.09 ± 0.00 | 0.08 ± 0.00 | 0.08 ± 0.01 |
C:N | 12.76 ± 0.58b | 12.33 ± 0.52b | 17.56 ± 1.89ab | 23.33 ± 4.12a |
C:P | 144.17 ± 7.22a | 104.89 ± 4.74b | 80.63 ± 4.21c | 53.38 ± 3.33d |
N:P | 13.25 ± 0.75a | 9.99 ± 0.51b | 6.96 ± 0.44c | 4.75 ± 0.38d |
图1 蒙古高原草地不同深度土壤碳(C)、氮(N)、磷(P)含量及其化学计量比与气候因子的关系。MAP, 年降水量; MAT, 年平均气温; SOC, 土壤有机碳含量; STN, 土壤全氮含量; STP, 土壤全磷含量。**, p < 0.01; ***, p < 0.001; ns, p > 0.05。
Fig. 1 Relationships between soil carbon (C), nitrogen (N), and phosphorus (P) contents and climatic factors for each soil layer in grasslands on the Mongolia Plateau. MAP, mean annual precipitation; MAT, mean annual air temperature; SOC, soil organic carbon content; STN, soil total nitrogen content; STP, soil total phosphorus content. **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
土壤深度 Soil depth (cm) | 年降水量 Mean annual precipitation | 年平均温度 Mean annual air temperature | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | STN | STP | C:N | C:P | N:P | SOC | STN | STP | C:N | C:P | N:P | |
0-20 vs 20-40 | <0.001 | <0.001 | 0.887 | 0.983 | 0.008 | 0.018 | <0.001 | <0.001 | 0.847 | 1.000 | 0.003 | 0.054 |
0-20 vs 40-60 | <0.001 | <0.001 | 0.875 | 0.656 | 0.002 | 0.058 | <0.001 | <0.001 | 0.677 | 0.998 | <0.001 | 0.013 |
0-20 vs 60-80 | <0.001 | <0.001 | 0.881 | 0.520 | 0.001 | 0.040 | <0.001 | <0.001 | 0.448 | 0.405 | 0.003 | 0.002 |
20-40 vs 40-60 | 0.977 | 0.560 | 1.000 | 0.424 | 0.975 | 0.975 | 0.808 | 0.372 | 0.990 | 1.000 | 0.911 | 0.958 |
20-40 vs 60-80 | 0.508 | 0.003 | 1.000 | 0.305 | 0.928 | 0.992 | 0.421 | 0.002 | 0.909 | 0.355 | 0.998 | 0.745 |
40-60 vs 60-80 | 0.762 | 0.137 | 1.000 | 0.997 | 0.998 | 0.999 | 0.921 | 0.247 | 0.984 | 0.301 | 0.907 | 0.958 |
表2 蒙古高原草地不同深度土壤碳(C)、氮(N)、磷(P)含量及化学计量比与气候因子线性回归斜率间的比较(p)
Table 2 Comparison results (p) of linear regression slopes between soil carbon (C), nitrogen (N), and phosphorus (P) contents and stoichiometric ratios and climatic variables along soil depths in grasslands on the Mongolia Plateau
土壤深度 Soil depth (cm) | 年降水量 Mean annual precipitation | 年平均温度 Mean annual air temperature | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | STN | STP | C:N | C:P | N:P | SOC | STN | STP | C:N | C:P | N:P | |
0-20 vs 20-40 | <0.001 | <0.001 | 0.887 | 0.983 | 0.008 | 0.018 | <0.001 | <0.001 | 0.847 | 1.000 | 0.003 | 0.054 |
0-20 vs 40-60 | <0.001 | <0.001 | 0.875 | 0.656 | 0.002 | 0.058 | <0.001 | <0.001 | 0.677 | 0.998 | <0.001 | 0.013 |
0-20 vs 60-80 | <0.001 | <0.001 | 0.881 | 0.520 | 0.001 | 0.040 | <0.001 | <0.001 | 0.448 | 0.405 | 0.003 | 0.002 |
20-40 vs 40-60 | 0.977 | 0.560 | 1.000 | 0.424 | 0.975 | 0.975 | 0.808 | 0.372 | 0.990 | 1.000 | 0.911 | 0.958 |
20-40 vs 60-80 | 0.508 | 0.003 | 1.000 | 0.305 | 0.928 | 0.992 | 0.421 | 0.002 | 0.909 | 0.355 | 0.998 | 0.745 |
40-60 vs 60-80 | 0.762 | 0.137 | 1.000 | 0.997 | 0.998 | 0.999 | 0.921 | 0.247 | 0.984 | 0.301 | 0.907 | 0.958 |
图2 气候因子对蒙古高原草地不同深度土壤碳(C)、氮(N)、磷(P)含量及化学计量比变化的解释度。SOC, 土壤有机碳含量; STN, 土壤全氮含量; STP, 土壤全磷含量。MAP, 年降水量; MAT, 年平均气温; MAP × MAT, MAP和MAT交互效应。
Fig. 2 Percentages of variation in soil carbon (C), nitrogen (N), and phosphorus (P) contents and stoichiometric ratios at different soil depths in grasslands on the Mongolia Plateau explained by climatic variables. SOC, soil organic carbon content; STN, soil total nitrogen content; STP, soil total phosphorus content. MAP, mean annual precipitation; MAT, mean annual air temperature; MAP × MAT, interactive effects of MAP and MAT.
[1] |
Bai YF, Wu JG, Clark CM, Pan QM, Zhang LX, Chen SP, Wang QB, Han XG (2012). Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 49, 1204-1215.
DOI URL |
[2] | Bai YF, Zhao YJ, Wang Y, Zhou KL (2020). Assessment of ecosystem services and ecological regionalization of grasslands support establishment of ecological security barriers in Northern China. Bulletin of Chinese Academy of Sciences, 35, 675-689. |
[白永飞, 赵玉金, 王扬, 周楷玲 (2020). 中国北方草地生态系统服务评估和功能区划助力生态安全屏障建设. 中国科学院院刊, 35, 675-689.] | |
[3] |
Baumann F, He JS, Schmidt K, Kühn P, Scholten T (2009). Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Global Change Biology, 15, 3001-3017.
DOI URL |
[4] | Chapin III FS, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer Verlag, New York. |
[5] |
Chen D, Cheng J, Chu P, Hu S, Xie Y, Tuvshintogtokh I, Bai Y (2015). Regional-scale patterns of soil microbes and nematodes across grasslands on the Mongolian Plateau: relationships with climate, soil, and plants. Ecography, 38, 622-631.
DOI URL |
[6] |
Chen D, Saleem M, Cheng J, Mi J, Chu P, Tuvshintogtokh I, Hu S, Bai Y (2019). Effects of aridity on soil microbial communities and functions across soil depths on the Mongolian Plateau. Functional Ecology, 33, 1561-1571.
DOI URL |
[7] |
Deng L, Peng C, Kim DG, Li J, Liu Y, Hai X, Liu Q, Huang C, Shangguan Z, Kuzyakov Y (2021). Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews, 214, 103501. DOI: 10.1016/j.earscirev.2020.103501.
DOI URL |
[8] |
Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follett RF, Williams DG (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 196, 807-815.
DOI PMID |
[9] |
Don A, Schumacher J, Scherer-Lorenzen M, Scholten T, Schulze ED (2007). Spatial and vertical variation of soil carbon at two grassland sites—Implications for measuring soil carbon stocks. Geoderma, 141, 272-282.
DOI URL |
[10] |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
DOI URL |
[11] | Feng DF, Bao WK (2017). Review of the temporal and spatial patterns of soil C:N:P stoichiometry and its driving factors. Chinese Journal of Applied and Environmental Biology, 23, 400-408. |
[冯德枫, 包维楷 (2017). 土壤碳氮磷化学计量比时空格局及影响因素研究进展. 应用与环境生物学报, 23, 400-408.] | |
[12] |
Feng DF, Bao WK, Pang XY (2017). Consistent profile pattern and spatial variation of soil C:N:P stoichiometric ratios in the subalpine forests. Journal of Soils and Sediments, 17, 2054-2065.
DOI URL |
[13] |
Geng Y, Baumann F, Song C, Zhang M, Shi Y, Kühn P, Scholten T, He JS (2017). Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands. Scientific Reports, 7, 43524. DOI: 10.1038/srep43524.
DOI PMID |
[14] |
Groppo JD, Lins SRM, Camargo PB, Assad ED, Pinto HS, Martins SC, Salgado PR, Evangelista B, Vasconcellos E, Sano EE, Pavão E, Luna R, Martinelli LA (2015). Changes in soil carbon, nitrogen, and phosphorus due to land-use changes in Brazil. Biogeosciences, 12, 4765-4780.
DOI URL |
[15] |
Harpole WS, Potts DL, Suding KN (2007). Ecosystem responses to water and nitrogen amendment in a California grassland. Global Change Biology, 13, 2341-2348.
DOI URL |
[16] |
He NP, Wang RM, Zhang YH, Chen QS (2014). Carbon and nitrogen storage in Inner Mongolian grasslands: relationships with climate and soil texture. Pedosphere, 24, 391-398.
DOI URL |
[17] |
Homann PS, Kapchinske JS, Boyce A (2007). Relations of mineral-soil C and N to climate and texture: regional differences within the conterminous USA. Biogeochemistry, 85, 303-316.
DOI URL |
[18] |
Hou EQ, Chen CR, Luo YQ, Zhou GY, Kuang YW, Zhang YG, Heenan M, Lu XK, Wen DZ (2018). Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24, 3344-3356.
DOI URL |
[19] |
Hsu JS, Powell J, Adler PB (2012). Sensitivity of mean annual primary production to precipitation. Global Change Biology, 18, 2246-2255.
DOI URL |
[20] | Huang J, Yuan ZN (2020). An overview of the ecological stoichiometry characteristics and influencing factors of soil carbon, nitrgen and phosphorus. Modern Agriculture Research, 49(1), 73-76. |
[黄郡, 苑泽宁 (2020). 土壤碳氮磷生态化学计量特征及影响因素概述. 现代农业研究, 49(1), 73-76.] | |
[21] | IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. |
[22] |
Jiao F, Shi XR, Han FP, Yuan ZY (2016). Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands. Scientific Reports, 6, 19601. DOI: 10.1038/srep19601.
DOI URL |
[23] |
Jobbágy EG, Jackson RB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423-436.
DOI URL |
[24] |
Kang L, Han XG, Zhang ZB, Sun OJ (2007). Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B, 362, 997-1008.
DOI URL |
[25] |
Li JQ, Yan D, Pendall E, Pei JM, Noh NJ, He JS, Li B, Nie M, Fang CM (2018). Depth dependence of soil carbon temperature sensitivity across Tibetan permafrost regions. Soil Biology & Biochemistry, 126, 82-90.
DOI URL |
[26] |
Li P, Sayer EJ, Jia Z, Liu WX, Wu YT, Yang S, Wang CZ, Yang L, Chen DM, Bai YF, Liu LL (2020). Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland. Global Change Biology, 26, 3015-3027.
DOI URL |
[27] |
Liu L, Gundersen P, Zhang T, Mo J (2012a). Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biology & Biochemistry, 44, 31-38.
DOI URL |
[28] |
Liu NN, Hu HF, Ma WH, Deng Y, Liu YQ, Hao BH, Zhang XY, Dimitrov D, Feng XJ, Wang ZH (2019). Contrasting biogeographic patterns of bacterial and archaeal diversity in the top- and subsoils of temperate grasslands. mSystems, 4, e00566-00519. DOI: 10.1101/623264.
DOI |
[29] |
Liu WJ, Chen SY, Qin X, Baumann F, Scholten T, Zhou ZY, Sun WJ, Zhang TZ, Ren JW, Qin DH (2012b). Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environmental Research Letters, 7, 035401. DOI: 10.1088/1748-9326/7/3/035401.
DOI URL |
[30] |
Morrow JG, Huggins DR, Reganold JP (2017). Climate change predicted to negatively influence surface soil organic matter of dryland cropping systems in the inland Pacific Northwest, USA. Frontiers in Ecology and Evolution, 5, 10. DOI: 10.3389/fevo.2017.00010.
DOI |
[31] | Ning ZY, Li YL, Yang HL, Zhang ZQ, Zhang JP (2019). Stoichiometry and effects of carbon, nitrogen, and phosphorus in soil of desertified grasslands on community productivity and species diversity. Acta Ecologica Sinica, 39, 3537-3546. |
[宁志英, 李玉霖, 杨红玲, 张子谦, 张建鹏 (2019). 沙化草地土壤碳氮磷化学计量特征及其对植被生产力和多样性的影响. 生态学报, 39, 3537-3546.] | |
[32] |
Niu SL, Wu MY, Han Y, Xia JY, Li LH, Wan SQ (2008). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 177, 209-219.
DOI URL |
[33] |
Rui Y, Wang Y, Chen C, Zhou X, Wang S, Xu Z, Duan J, Kang X, Lu S, Luo C (2012). Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 357, 73-87.
DOI URL |
[34] | Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (1996). Methods of Soil Analysis. Part 3: Chemical Methods. Soil Science Society of America, American Society of Agronomy, Madison, USA. |
[35] |
Su YQ, Wu ZL, Xie PY, Zhang L, Chen H (2020). Warming effects on topsoil organic carbon and C:N:P stoichiometry in a subtropical forested landscape. Forests, 11, 66. DOI: 10.3390/f11010066.
DOI URL |
[36] |
Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
[37] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
DOI URL |
[38] |
Walker TW, Adams AFR (1958). Studies on soil organic matter: I. Influence of phosphorus content of parent materials on accumulations of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils. Soil Science, 85, 307-318.
DOI URL |
[39] | Wang SQ, Yu GR (2008). Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28, 3937-3947. |
[王绍强, 于贵瑞 (2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.] | |
[40] | Wu DD, Jing X, Lin L, Yang XY, Zhang ZH, He JS (2016). Responses of soil inorganic nitrogen to warming and altered precipitation in an alpine meadow on the Qinghai- Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 52, 959-966. |
[武丹丹, 井新, 林笠, 杨新宇, 张振华, 贺金生 (2016). 青藏高原高寒草甸土壤无机氮对增温和降水改变的响应. 北京大学学报(自然科学版), 52, 959-966.] | |
[41] |
Wu JG, Zhang Q, Li A, Liang CZ (2015). Historical landscape dynamics of Inner Mongolia: patterns, drivers, and impacts. Landscape Ecology, 30, 1579-1598.
DOI URL |
[42] |
Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008). Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 14, 1592-1599.
DOI URL |
[43] |
Yang ZL, Collins SL, Bixby RJ, Song HQ, Wang D, Xiao R (2021). A meta-analysis of primary productivity and rain use efficiency in terrestrial grassland ecosystems. Land Degradation & Development, 32, 842-850.
DOI URL |
[44] |
Yu YH, Chi YK (2019). Ecological stoichiometric characteristics of soil at different depths in a karst plateau mountain area of China. Polish Journal of Environmental Studies, 29, 969-978.
DOI URL |
[45] |
Yuan ZY, Chen HYH (2015). Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nature Climate Change, 5, 465-469.
DOI URL |
[46] |
Zhang K, Su YZ, Yang R (2019). Variation of soil organic carbon, nitrogen, and phosphorus stoichiometry and biogeographic factors across the desert ecosystem of Hexi Corridor, northwestern China. Journal of Soils and Sediments, 19, 49-57.
DOI |
[47] | Zhang LX, Bai YF, Han XG (2003). Application of N:P stoichiometry to ecology studies. Acta Botanica Sinica, 45, 1009-1018. |
[48] |
Zhang NL, Wan SQ, Guo JX, Han GD, Gutknecht J, Schmid B, Yu L, Liu WX, Bi J, Wang Z, Ma KP (2015). Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biology & Biochemistry, 89, 12-23.
DOI URL |
[49] |
Zheng SM, Xia YH, Hu YJ, Chen XB, Rui YC, Gunina A, He XY, Ge TD, Wu JS, Su YR, Kuzyakov Y (2021). Stoichiometry of carbon, nitrogen, and phosphorus in soil: effects of agricultural land use and climate at a continental scale. Soil and Tillage Research, 209, 104903. DOI: 10.1016/j.still.2020.104903.
DOI URL |
[50] | Zhou W, Mu FY, Gang CC, Guan DJ, He JF, Li JL (2017). Spatio-temporal dynamics of grassland net primary productivity and their relationship with climatic factors from 1982 to 2010 in China. Acta Ecologica Sinica, 37, 4335-4345. |
[周伟, 牟凤云, 刚成诚, 官冬杰, 何锦峰, 李建龙 (2017). 1982-2010年中国草地净初级生产力时空动态及其与气候因子的关系. 生态学报, 37, 4335-4345.] |
[1] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[2] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[3] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[4] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[5] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[6] | 秦倩倩, 邱聪, 郑大柽, 刘艳红. 油松人工林火烧迹地早期土壤入渗动态[J]. 植物生态学报, 2021, 45(8): 903-917. |
[7] | 胡琪娟, 盛茂银, 殷婕, 白义鑫. 西南喀斯特石漠化环境适生植物构树细根、根际土壤化学计量特征[J]. 植物生态学报, 2020, 44(9): 962-972. |
[8] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[9] | 梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响[J]. 植物生态学报, 2020, 44(12): 1273-1284. |
[10] | 陈禹含, 罗亦夫, 孙鑫晟, 魏冠文, 黄文军, 罗芳丽, 于飞海. 根部水淹和土壤养分提升对三峡库区消落带水蓼生长和繁殖特性的影响[J]. 植物生态学报, 2020, 44(11): 1184-1194. |
[11] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[12] | 陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658-671. |
[13] | 李品, 木勒德尔•吐尔汗拜, 田地, 冯兆忠. 全球森林土壤微生物生物量碳氮磷化学计量的季节动态[J]. 植物生态学报, 2019, 43(6): 532-542. |
[14] | 高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇亮, 王辉民. 亚热带人工林下植被根际土壤酶化学计量特征[J]. 植物生态学报, 2019, 43(3): 258-272. |
[15] | 苟小林, 周青平, 陈有军, 魏小星, 涂卫国. 青藏高原不同气候区高寒沙地两种优势植物及其根际土壤的养分特征[J]. 植物生态学报, 2018, 42(1): 133-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19