植物生态学报 ›› 2020, Vol. 44 ›› Issue (10): 1050-1058.DOI: 10.17521/cjpe.2020.0127
所属专题: 生态化学计量
李军军1, 李萌茹1, 齐兴娥1, 王立龙2, 徐世健1,*()
收稿日期:
2020-05-01
接受日期:
2020-07-10
出版日期:
2020-10-20
发布日期:
2020-11-30
通讯作者:
徐世健
作者简介:
*徐世健:ORCID:0000-0002-5341-4229,xushijian@lzu.edu.cn基金资助:
LI Jun-Jun1, LI Meng-Ru1, QI Xing-E1, WANG Li-Long2, XU Shi-Jian1,*()
Received:
2020-05-01
Accepted:
2020-07-10
Online:
2020-10-20
Published:
2020-11-30
Contact:
XU Shi-Jian
Supported by:
摘要:
植物叶片氮(N)、磷(P)养分特征受土壤可利用性N、P含量和N、P相对比例(N:P)的共同影响, 研究其作用机制有助于解释和评估土壤养分变化对植物养分利用策略的影响。该研究通过盆栽实验, 探讨芨芨草(Achnatherum splendens)养分化学计量学特征和叶片养分回收特征对不同剂量的养分添加(低、中、高3个N添加水平: 1.5、4.5、13.5 g·m-2·a-1)及不同土壤N:P (5、15、25)的响应。结果表明: 养分添加水平的提高显著增加了成熟叶片P含量和衰老叶片N、P含量, 显著降低了叶片N、P养分回收效率(NRE, PRE)。土壤N:P的升高显著降低了衰老叶片P含量和叶片NRE, 但增加了成熟和衰老叶片N:P和叶片PRE。相同养分添加水平条件下, 土壤N:P与叶片PRE显著正相关, 但与叶片NRE无显著相关性; 相同N:P条件下, 养分添加水平与NRE负相关, 但与PRE无显著相关性。植物NRE:PRE可以有效地反映环境变化所导致的植物对N、P需求的改变。土壤养分添加水平和N:P共同影响着芨芨草的叶片养分生态化学计量学特征和养分回收。
李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应. 植物生态学报, 2020, 44(10): 1050-1058. DOI: 10.17521/cjpe.2020.0127
LI Jun-Jun, LI Meng-Ru, QI Xing-E, WANG Li-Long, XU Shi-Jian. Response of nutrient characteristics of Achnatherum splendens leaves to different levels of nitrogen and phosphorus addition. Chinese Journal of Plant Ecology, 2020, 44(10): 1050-1058. DOI: 10.17521/cjpe.2020.0127
氮磷比 N:P | 氮、磷供应量 N and P supply amount (g·m-2·a-1) | ||
---|---|---|---|
低养分添加水平 Low nutrient addition level | 中养分添加水平 Moderate nutrient addition level | 高养分添加水平 High nutrient addition level | |
5 | 1.50/0.30 | 4.50/0.90 | 13.50/2.70 |
15 | 1.50/0.10 | 4.50/0.30 | 13.50/0.90 |
25 | 1.50/0.06 | 4.50/0.18 | 13.50/0.54 |
表1 N、P处理的实验设计
Table 1 Experimental design on N and P addition treatments
氮磷比 N:P | 氮、磷供应量 N and P supply amount (g·m-2·a-1) | ||
---|---|---|---|
低养分添加水平 Low nutrient addition level | 中养分添加水平 Moderate nutrient addition level | 高养分添加水平 High nutrient addition level | |
5 | 1.50/0.30 | 4.50/0.90 | 13.50/2.70 |
15 | 1.50/0.10 | 4.50/0.30 | 13.50/0.90 |
25 | 1.50/0.06 | 4.50/0.18 | 13.50/0.54 |
图1 土壤不同养分添加水平和不同N:P条件下, 芨芨草成熟和衰老叶片的N、P含量及N:P。L、M、H分别表示低、中、高养分添加水平。不同大写和小写字母分别表示衰老叶片和成熟叶片在不同处理之间具有显著性差异(p < 0.05)。
Fig. 1 N, P addition levels and N:P in green and senescent leaves of Achnatherum splendens under different nutrient addition levels and N:P conditions. L, M and H represent low, moderate and high nutrient addition level, respectively. Different uppercase and lowercase letters indicate the significant difference among different treatments of senescent green leaves, respectively (p < 0.05).
图2 不同养分处理条件下芨芨草成熟(A-C)和衰老叶片(D-F) N、P含量和N:P (平均值±标准偏差)。L、M、H分别表示低、中、高养分添加水平。不同大写和小写字母分别表示相同土壤养分添加水平和相同土壤N:P条件下不同处理之间具有显著性差异(p < 0.05)。
Fig. 2 N, P contents and N:P in green (A-C) and senescent leaves(D-F) of Achnatherum splendens under different treatment conditions (mean ± SD). L, M and H represent low, moderate and high nutrient addition level, respectively. Different uppercase and lowercase letters indicate the significant difference among different treatments under the same soil nutrient addition level and the same soil N:P, respectively (p < 0.05).
氮磷比 N:P | N (g) | N (s) | P (g) | P (s) | N:P (g) | N:P (s) | NRE | PRE | NRE:PRE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | ||
5 | 0.200 | 0.470 | 0.020 | 0.740 | 0.030 | 0.730 | 0.140 | 0.540 | 0.950 | 0.020 | 0.690 | 0.160 | 0.410 | -0.310 | 0.080 | 0.610 | 0.450 | -0.290 | |
15 | 0.230 | -0.450 | 0.005 | 0.830 | 0.005 | 0.830 | 0.040 | 0.700 | 0.700 | 0.180 | 0.010 | 0.790 | 0.040 | -0.630 | 0.890 | -0.050 | 0.010 | -0.790 | |
25 | 0.330 | -0.370 | 0.020 | 0.730 | 0.020 | 0.750 | 0.990 | -0.010 | 0.020 | 0.740 | 0.030 | 0.720 | 0.000 | -0.920 | 0.900 | 0.050 | 0.002 | -0.880 |
表2 土壤不同N:P处理下养分添加水平与芨芨草叶片N、P含量及养分回收效率的Pearson相关分析
Table 2 Pearson correlation analysis between nutrient addition level and leaves N, P contents and nutrient resorption efficiency of Achnatherum splendens at different N:P addition levels
氮磷比 N:P | N (g) | N (s) | P (g) | P (s) | N:P (g) | N:P (s) | NRE | PRE | NRE:PRE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | ||
5 | 0.200 | 0.470 | 0.020 | 0.740 | 0.030 | 0.730 | 0.140 | 0.540 | 0.950 | 0.020 | 0.690 | 0.160 | 0.410 | -0.310 | 0.080 | 0.610 | 0.450 | -0.290 | |
15 | 0.230 | -0.450 | 0.005 | 0.830 | 0.005 | 0.830 | 0.040 | 0.700 | 0.700 | 0.180 | 0.010 | 0.790 | 0.040 | -0.630 | 0.890 | -0.050 | 0.010 | -0.790 | |
25 | 0.330 | -0.370 | 0.020 | 0.730 | 0.020 | 0.750 | 0.990 | -0.010 | 0.020 | 0.740 | 0.030 | 0.720 | 0.000 | -0.920 | 0.900 | 0.050 | 0.002 | -0.880 |
养分添加水平 Nutritional addition level | N (g) | N (s) | P (g) | P (s) | N:P (g) | N:P (s) | NRE | PRE | NRE:PRE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | ||
低 Low | 0.660 | -0.170 | 0.390 | 0.330 | 0.020 | 0.740 | 0.560 | -0.230 | 0.410 | 0.320 | 0.060 | 0.290 | 0.260 | -0.420 | 0.000 | 0.940 | 0.030 | -0.720 | |
中 Moderate | 0.010 | 0.910 | 0.330 | 0.370 | 0.240 | 0.440 | 0.580 | -0.220 | 0.060 | 0.650 | 0.045 | 0.740 | 0.490 | 0.270 | 0.010 | 0.740 | 0.400 | -0.320 | |
高 High | 0.180 | -0.490 | 0.200 | 0.470 | 0.070 | -0.630 | 0.006 | 0.830 | 0.420 | -0.310 | 0.005 | 0.840 | 0.070 | -0.620 | 0.010 | 0.940 | 0.010 | -0.790 |
表3 土壤不同养分添加水平下土壤N:P与芨芨草叶片N、P含量及养分回收效率的Pearson相关分析
Table 3 Pearson correlation analysis between N:P addition and leaf N, P contents and nutrient resorption efficiency of Achnatherum splendens at different nutrient addition level
养分添加水平 Nutritional addition level | N (g) | N (s) | P (g) | P (s) | N:P (g) | N:P (s) | NRE | PRE | NRE:PRE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | p | R | ||
低 Low | 0.660 | -0.170 | 0.390 | 0.330 | 0.020 | 0.740 | 0.560 | -0.230 | 0.410 | 0.320 | 0.060 | 0.290 | 0.260 | -0.420 | 0.000 | 0.940 | 0.030 | -0.720 | |
中 Moderate | 0.010 | 0.910 | 0.330 | 0.370 | 0.240 | 0.440 | 0.580 | -0.220 | 0.060 | 0.650 | 0.045 | 0.740 | 0.490 | 0.270 | 0.010 | 0.740 | 0.400 | -0.320 | |
高 High | 0.180 | -0.490 | 0.200 | 0.470 | 0.070 | -0.630 | 0.006 | 0.830 | 0.420 | -0.310 | 0.005 | 0.840 | 0.070 | -0.620 | 0.010 | 0.940 | 0.010 | -0.790 |
图3 不同养分处理条件下芨芨草叶片养分回收效率(平均值±标准偏差)。L、M、H分别表示低、中、高养分添加水平。不同大写和小写字母分别表示同一养分添加水平和N:P条件下各处理间具有显著性差异(p < 0.05)。
Fig. 3 Nutrient resorption efficiency of Achnatherum splendens leaves under different treatments (mean ± SD). L, M and H represent low, moderate and high nutrient addition level, respectively. Different uppercase and lowercase letters indicate the significant difference between the treatments under the condition of the same nutrient addition level and the N:P, respectively (p < 0.05).
叶片性状 Leaf trait | 叶片类型 Leaf type | 养分添加水平 Nutrient addition level | 氮磷比 N:P | 交互作用 Interaction | |||||
---|---|---|---|---|---|---|---|---|---|
F | p | Sig. (N) | F | p | Sig. (R) | F | p | ||
氮含量 N content | 成熟叶片 GL | 1.260 | 0.310 | a, a, a | 7.940 | 0.003 | b, a, b | 10.220 | 0.000 |
衰老叶片 SL | 18.820 | 0.000 | a, a, b | 1.300 | 0.300 | a, a, a | 1.190 | 0.350 | |
磷含量 P content | 成熟叶片 GL | 1.900 | 0.050 | a, a, a | 1.990 | 0.580 | a, a, a | 2.500 | 0.090 |
衰老叶片 SL | 0.530 | 0.050 | a, a, ab | 3.000 | 0.110 | ab, a, a | 0.530 | 0.005 | |
氮磷比 N:P | 成熟叶片 GL | 0.090 | 0.620 | ab, ab, a | 9.000 | 0.002 | b, a, b | 1.630 | 0.050 |
衰老叶片 SL | 6.110 | 0.004 | a, b, b | 4.560 | 0.040 | a, a, b | 1.830 | 0.150 | |
氮回收效率 N resorption efficiency (NRE) | 33.880 | 0.000 | b, b, a | 5.670 | 0.012 | a, ab, b | 9.500 | 0.000 | |
磷回收效率 P resorption efficiency (PRE) | 0.630 | 0.540 | a, a, a | 6.440 | 0.008 | a, b, b | 0.660 | 0.630 | |
NRE:PRE | 3.630 | 0.050 | b, ab, a | 13.730 | 0.000 | b, a, a | 1.850 | 0.160 |
表4 养分添加水平和土壤N:P对叶片N、P养分特征影响的双因素方差分析
Table 4 Results of two-way ANOVAs on the effects of nutrient addition, N:P, and their interactions on leaf N and P contents, N:P and N, P resorption efficiency
叶片性状 Leaf trait | 叶片类型 Leaf type | 养分添加水平 Nutrient addition level | 氮磷比 N:P | 交互作用 Interaction | |||||
---|---|---|---|---|---|---|---|---|---|
F | p | Sig. (N) | F | p | Sig. (R) | F | p | ||
氮含量 N content | 成熟叶片 GL | 1.260 | 0.310 | a, a, a | 7.940 | 0.003 | b, a, b | 10.220 | 0.000 |
衰老叶片 SL | 18.820 | 0.000 | a, a, b | 1.300 | 0.300 | a, a, a | 1.190 | 0.350 | |
磷含量 P content | 成熟叶片 GL | 1.900 | 0.050 | a, a, a | 1.990 | 0.580 | a, a, a | 2.500 | 0.090 |
衰老叶片 SL | 0.530 | 0.050 | a, a, ab | 3.000 | 0.110 | ab, a, a | 0.530 | 0.005 | |
氮磷比 N:P | 成熟叶片 GL | 0.090 | 0.620 | ab, ab, a | 9.000 | 0.002 | b, a, b | 1.630 | 0.050 |
衰老叶片 SL | 6.110 | 0.004 | a, b, b | 4.560 | 0.040 | a, a, b | 1.830 | 0.150 | |
氮回收效率 N resorption efficiency (NRE) | 33.880 | 0.000 | b, b, a | 5.670 | 0.012 | a, ab, b | 9.500 | 0.000 | |
磷回收效率 P resorption efficiency (PRE) | 0.630 | 0.540 | a, a, a | 6.440 | 0.008 | a, b, b | 0.660 | 0.630 | |
NRE:PRE | 3.630 | 0.050 | b, ab, a | 13.730 | 0.000 | b, a, a | 1.850 | 0.160 |
[1] | Aerts R (1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608. |
[2] | Ågren GI, Wetterstedt JÅM, Billberger MFK (2012). Nutrient limitation on terrestrial plant growth—Modeling the interaction between nitrogen and phosphorus. New Phytologist, 194, 953-960. |
[3] | Amat B (2011). The biology of deserts. by D. Ward. Journal of Vegetation Science, 22, 1149-1150. |
[4] | Braakhekke WG, Hooftman DAP (1999). The resource balance hypothesis of plant species diversity in grassland. Journal of Vegetation Science, 10, 187-200. |
[5] | Bremner JM, Breitenbeck G (1983). A simple method for determination of ammonium in semimicro-Kjeldahl analysis of soils and plant materials using a block digester. Communications in Soil Science and Plant Analysis, 14, 905-913. |
[6] | Drenovsky RE, Koehler CE, Skelly K, Richards JH (2013). Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees. Oecologia, 171, 39-50. |
[7] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2008). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550. |
[8] | Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892. |
[9] | Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266. |
[10] | Güsewell S (2005). Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Functional Ecology, 19, 344-354. |
[11] | Güsewell S, Bollens U (2003). Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply. Basic Applied Ecology, 4, 453-466. |
[12] | Han L, Zhao CZ, Xu T, Feng W, Duan BB, Zheng HL (2016). Trade-off between leaf size and vein density of Achnatherum splendens in Zhangye wetland. Chinese Journal of Plant Ecology, 40, 788-797. |
[ 韩玲, 赵成章, 徐婷, 冯威, 段贝贝, 郑慧玲 (2016). 张掖湿地芨芨草叶大小和叶脉密度的权衡关系. 植物生态学报, 40, 788-797.] | |
[13] | He JS, Han XG (2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. |
[ 贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.] | |
[14] | Hejcman M, Klaudisova M, Schellberg J, Honsova D (2007). The Rengen grassland experiment: plant species composition after 64 years of fertilizer application. Agriculture, Ecosystems & Environment, 122, 259-266. |
[15] | James JJ, Tiller RL, Richards JH (2005). Multiple resources limit plant growth and function in a saline-alkaline desert community. Journal of Ecology, 93, 113-126. |
[16] | Killingbeck KT (1996). Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727. |
[17] | Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S, Franco AC, Goldstein G, Meinzer FC (2007). Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Functional Ecology, 21, 1034-1043. |
[18] | Ladwig LM, Collins SL, Swann AL, Xia Y, Allen MF, Allen EB (2012). Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. Oecologia, 169, 177-185. |
[19] | Lavorel S, Garnier E (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545-556. |
[20] | Li XF, Zheng XB, Han SJ, Zheng JQ, Li TH (2010). Effects of nitrogen additions on nitrogen resorption and use efficiencies and foliar litter fall of six tree species in a mixed birch and poplar forest, northeastern China. Canadian Journal of Forest Research, 40, 2256-2261. |
[21] | Li Y, Niu SL, Yu GR (2016). Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Global Change Biology, 22, 934-943. |
[22] | Liu P, Huang JH, Sun OJ, Han XG (2010). Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia, 162, 771-780. |
[23] | Liu QY, Jiang M, Wang GD, Lu XG, Wang M, Lou YJ, Yuan YX (2013). Effect of exogenous phosphorus inputs on seed germination of soil seed bank in marshes in Xingkai Lake. Wetland Science, 11, 41-47. |
[24] | Lü XT, Han XG (2010). Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant and Soil, 327, 481-491. |
[25] | Lü XT, Reed S, Yu Q, He NP, Wang ZW, Han XG (2013). Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Global Change Biology, 19, 2775-2784. |
[26] | Luo Y, Zhao X, Zuo X, Zhang J, Liu R, Wang S (2010). Leaf nitrogen resorption pattern along habitats of semi-arid sandy land with different nitrogen status. Polish Journal of Ecology, 58, 707-716. |
[27] | Mao R, Zhang XH, Song CC (2014). Effects of nitrogen addition on plant functional traits in freshwater wetland of Sanjiang Plain, Northeast China. Chinese Geographical Science, 24, 674-681. |
[28] | May JD, Killingbeck KT (1992). Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology, 73, 1868-1878. |
[29] | Menge DNL, Field CB (2007). Simulated global changes alter phosphorus demand in annual grassland. Global Change Biology, 13, 2582-2591. |
[30] | Norris MD, Reich PB (2009). Modest enhancement of nitrogen conservation via retrainslocation in response to gradients in N supply and leaf N status. Plant and Soil, 316, 193-204. |
[31] | Peñuelas J, Sardans J, Rivas-Ubach A, Janssens IA (2012). The human-induced imbalance between C, N and P in Earth’s life system. Global Change Biology, 18, 3-6. |
[32] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
[33] | Reed SC, Townsend AR, Davidson EA, Cleveland CC (2012). Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 196, 173-180. |
[34] | Soudzilovskaia NA, Onipchenko VG, Cornelissen JHC, Aerts R (2007). Effects of fertilisation and irrigation on “foliar afterlife” in alpine tundra. Journal of Vegetation Science, 18, 755-766. |
[35] | Stackpoole SM, Workmaster BAA, Jackson RD, Kosola KR (2008). Nitrogen conservation strategies of cranberry plants and ericoid mycorrhizal fungi in an agroecosystem. Soil Biology & Biochemistry, 40, 2736-2742. |
[36] | Tripler C, Canham C, Inouye R, Schurr J (2002). Soil nitrogen availability, plant luxury consumption, and herbivory by white-tailed deer. Oecologia, 133, 517-524. |
[37] | van Heerwaarden LM, Toet S, Aerts R (2003). Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology, 91, 1060-1070. |
[38] | Venterink HO, Güsewell S (2010). Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation. Functional Ecology, 24, 877-886. |
[39] | Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205-220. |
[40] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
DOI URL |
[41] | Wang LL, Zhao GX, Li M, Zhang MT, Zhang LF, Zhang XF, An LZ, Xu SJ (2015). C:N:P stoichiometry and leaf traits of halophytes in an arid saline environment, northwest China. PLOS ONE, 10, e0119935. DOI: 10.1371/journal.pone.0119935. |
[42] | Yan T, Zhu JJ, Yang K (2018). Leaf nitrogen and phosphorus resorption of woody species in response to climatic conditions and soil nutrients: a meta-analysis. Journal of Forestry Research, 29, 905-913. |
[43] | Yan ZB, Kim N, Han WX, Guo YL, Han TS, Du EZ, Fang JY (2015). Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry and nutrient resorption of Arabidopsis thaliana. Plant and Soil, 388, 147-155. |
[44] | Yang H, Luo YC (2015). Responses of the functional traits in Cleistogenes squarrosa to nitrogen addition and drought. Chinese Journal of Plant Ecology, 39, 32-42. |
[ 杨浩, 罗亚晨 (2015). 糙隐子草功能性状对氮添加和干旱的响应. 植物生态学报, 39, 32-42.] | |
[45] | Yuan ZY, Chen HYH (2009). Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecology and Biogeography, 18, 11-18. |
[46] |
Yuan ZY, Chen HYH (2015). Negative effects of fertilization on plant nutrient resorption. Ecology, 96, 373-380.
DOI URL |
[47] | Yuan ZY, Li LH, Han XG, Huang JH, Wan SQ (2005). Foliar nitrogen dynamics and nitrogen resorption of a sandy shrub Salix gordejevii in Northern China. Plant and Soil, 278, 183-193. |
[48] | Zeng DH, Chen GS (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologica Sinica, 29, 1007-1019. |
[ 曾德慧, 陈广生(2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.] |
[1] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[2] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[3] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[4] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[5] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[6] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[7] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[8] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[9] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[10] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[11] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[12] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[13] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[14] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[15] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19