植物生态学报 ›› 2022, Vol. 46 ›› Issue (8): 871-881.DOI: 10.17521/cjpe.2022.0028
所属专题: 生态系统结构与功能; 青藏高原植物生态学:群落生态学; 生物多样性
董六文1, 任正炜2, 张蕊3, 谢晨笛1, 周小龙1,*()
收稿日期:
2022-01-14
接受日期:
2022-04-10
出版日期:
2022-08-20
发布日期:
2022-08-20
通讯作者:
周小龙
作者简介:
* (zhouxiaolong@xju.edu.cn)基金资助:
DONG Liu-Wen1, REN Zheng-Wei2, ZHANG Rui3, XIE Chen-Di1, ZHOU Xiao-Long1,*()
Received:
2022-01-14
Accepted:
2022-04-10
Online:
2022-08-20
Published:
2022-08-20
Contact:
ZHOU Xiao-Long
Supported by:
摘要:
为进一步了解氮添加条件下群落功能多样性如何驱动生物量变化, 该研究在位于天山山脉的巴音布鲁克高寒草地开展氮添加实验, 通过连续两年调查群落物种组成并测量常见物种的功能性状, 分析物种多样性、功能多样性及群落水平功能性状的响应模式及其在驱动生物量变化中的相对贡献。结果表明, 短期氮添加同时增加群落地上和地下生物量, 且地上生物量的增加比例高于地下生物量, 氮添加导致功能多样性降低但是物种多样性未发生显著变化; 氮添加增加群落水平上的植株高度和叶片碳含量, 但导致比叶面积、种子质量及叶片磷含量下降; 物种多样性对生物量变化解释非常有限, 而功能多样性与群落水平功能性状可以很好地解释生物量变化, 以上研究结果支持质量比假说。综上, 该研究表明功能多样性与群落水平功能性状比物种多样性对短期氮添加的响应更加迅速, 且两者在解释高寒草地群落生物量对氮添加的响应中起到关键作用。
董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响. 植物生态学报, 2022, 46(8): 871-881. DOI: 10.17521/cjpe.2022.0028
DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland. Chinese Journal of Plant Ecology, 2022, 46(8): 871-881. DOI: 10.17521/cjpe.2022.0028
种名 Species | PFG | RAC | RAN |
---|---|---|---|
冰草 Agropyron cristatum | G | 15.28 ± 0.05 | 31.64 ± 0.01 |
草地早熟禾 Poa pratensis | G | 13.51 ± 0.02 | 17.30 ± 0.03 |
苔草 Koeleria cristata | G | 15.77 ± 0.02 | 2.02 ± 0.01 |
细果薹草 Carex stenocarpa | G | 0.54 ± 0.01 | 0.01 |
羊茅 Festuca ovina | G | 0.20 | 32.35 ± 0.01 |
紫花针茅 Stipa purpurea | G | 7.45 ± 0.01 | 6.28 ± 0.02 |
二裂委陵菜 Potentilla bifurca | F | 5.15 ± 0.01 | 3.27 ± 0.01 |
莓叶委陵菜 Potentilla fragarioides | F | 4.23 ± 0.01 | 0.98 |
多裂委陵菜 Potentilla multifida | F | 0.05 | 0.01 |
天山蒲公英 Taraxacum tianschanicum | F | 0.04 ± 0.01 | 0.21 ± 0.01 |
防风 Saposhnikovia divaricata | F | 0.48 ± 0.01 | 0.25 ± 0.01 |
斜茎黄耆 Astragalus adsurgens | L | 29.05 ± 0.02 | 4.72 ± 0.01 |
小花棘豆 Oxytropis glabra | L | 7.77 ± 0.02 | 0.46 |
表1 天山高寒草地氮添加2年后群落内常见物种相对多度变化(平均值±标准误)
Table 1 Relative abundance of common species after two years nitrogen addition in Tianshan alpine grassland (mean ± SE)
种名 Species | PFG | RAC | RAN |
---|---|---|---|
冰草 Agropyron cristatum | G | 15.28 ± 0.05 | 31.64 ± 0.01 |
草地早熟禾 Poa pratensis | G | 13.51 ± 0.02 | 17.30 ± 0.03 |
苔草 Koeleria cristata | G | 15.77 ± 0.02 | 2.02 ± 0.01 |
细果薹草 Carex stenocarpa | G | 0.54 ± 0.01 | 0.01 |
羊茅 Festuca ovina | G | 0.20 | 32.35 ± 0.01 |
紫花针茅 Stipa purpurea | G | 7.45 ± 0.01 | 6.28 ± 0.02 |
二裂委陵菜 Potentilla bifurca | F | 5.15 ± 0.01 | 3.27 ± 0.01 |
莓叶委陵菜 Potentilla fragarioides | F | 4.23 ± 0.01 | 0.98 |
多裂委陵菜 Potentilla multifida | F | 0.05 | 0.01 |
天山蒲公英 Taraxacum tianschanicum | F | 0.04 ± 0.01 | 0.21 ± 0.01 |
防风 Saposhnikovia divaricata | F | 0.48 ± 0.01 | 0.25 ± 0.01 |
斜茎黄耆 Astragalus adsurgens | L | 29.05 ± 0.02 | 4.72 ± 0.01 |
小花棘豆 Oxytropis glabra | L | 7.77 ± 0.02 | 0.46 |
图1 氮添加对天山高寒草地群落生物量的影响(平均值±标准误)。CK, 对照; N, 氮添加。**, p < 0.01; NS, p > 0.05。
Fig. 1 Effects of nitrogen addition on community biomass in Tianshan alpine grassland (mean ± SE). CK, control; N, nitrogen addition. **, p < 0.01; NS, p > 0.05.
图2 氮添加对天山高寒草地群落物种多样性的影响(平均值±标准误)。CK, 对照; N, 氮添加。NS, p > 0.05。
Fig. 2 Effects of nitrogen addition on species diversity in Tianshan alpine grassland (mean ± SE). CK, control; N, nitrogen addition. NS, p > 0.05.
图3 氮添加对天山高寒草地群落功能多样性的影响(平均值±标准误)。CK, 对照; N, 氮添加。*, p < 0.05; NS, p > 0.05。
Fig. 3 Effects of nitrogen addition on functional diversity in Tianshan alpine grassland (mean ± SE). CK, control; N, nitrogen addition. *, p < 0.05; NS, p > 0.05.
图4 氮添加对天山高寒草地群落水平功能性状群落均值加权性状值的影响(平均值±标准误)。CK, 对照; N, 氮添加。*, p < 0.05; **, p < 0.01; NS, p > 0.05。
Fig. 4 Effects of nitrogen addition on community level functional traits and community weighted mean in Tianshan alpine grassland (mean ± SE). CK, control; N, nitrogen addition. *, p < 0.05; **, p < 0.01; NS, p > 0.05。
图5 天山高寒草地群落总生物量与功能多样性之间的线性回归关系。
Fig. 5 Linear regression relationships between total community biomass and functional diversity in Tianshan alpine grassland.
图6 天山高寒草地群落总生物量与功能性状之间的线性回归关系。
Fig. 6 Linear regression relationships between total community biomass and functional traits in Tianshan alpine grassland.
[1] | Bao SD (2000). Analysis of Soil Agrochemistry. 3rd ed. China Agriculture Press, Beijing. 30-34, 265-270. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京. 30-34, 265-270.] | |
[2] |
Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520.
PMID |
[3] |
Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, Macdougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley YM, Chu CJ, Cleland EE, et al. (2015). Grassland productivity limited by multiple nutrients. Nature Plants, 1, 15080. DOI: 10.1038/nplants.2015.80.
DOI PMID |
[4] |
Fridley JD (2003). Diversity effects on production in different light and fertility environments: an experiment with communities of annual plants. Journal of Ecology, 91, 396-406.
DOI URL |
[5] |
García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S (2017). Contrasting mass-ratio vs. niche complementarity effects on litter C and N loss during decomposition along a regional climatic gradient. Journal of Ecology, 105, 968-978.
DOI URL |
[6] |
Grime JP (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902-910.
DOI URL |
[7] |
Häger A, Avalos G (2017). Do functional diversity and trait dominance determine carbon storage in an altered tropical landscape? Oecologia, 184, 569-581.
DOI PMID |
[8] |
Harpole WS, Tilman D (2007). Grassland species loss resulting from reduced niche dimension. Nature, 446, 791-793.
DOI URL |
[9] |
Harpole WS, Sullivan LL, Lind EM, Firn J, Adler PB, Borer ET, Chase J, Fay PA, Hautier Y, Hillebrand H, Macdougall AS, Seabloom EW, Williams R, Bakker JD, Cadotte MW, et al. (2016). Addition of multiple limiting resources reduces grassland diversity. Nature, 537, 93-96.
DOI URL |
[10] |
Hautier Y, Niklaus PA, Hector A (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
DOI PMID |
[11] | He YH, Liu XP, Xie ZK (2015). Effect of nitrogen addition on species diversity and plant productivity of herbaceous plants in desert grassland of the Loess Plateau. Journal of Desert Research, 35(1), 66-71. |
[何玉惠, 刘新平, 谢忠奎 (2015). 氮素添加对黄土高原荒漠草原草本植物物种多样性和生产力的影响. 中国沙漠, 35(1), 66-71.] | |
[12] |
Hector A (1998). The effect of diversity on productivity: detecting the role of species complementarity. Oikos, 82, 597-599.
DOI URL |
[13] |
Humbert JY, Dwyer JM, Andrey A, Arlettaz R (2016). Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review. Global Change Biology, 22, 110-120.
DOI URL |
[14] |
Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America, 110, 11911-11916.
DOI PMID |
[15] |
Kotas P, Choma M, Šantrůčková H, Lepš J, Tříska J, Kaštovská E (2017). Linking above- and belowground responses to 16 years of fertilization, mowing, and removal of the dominant species in a temperate grassland. Ecosystems, 20, 354-367.
DOI URL |
[16] | Li KH (2012). Responses of Plant Community and Greenhouse Gas Emission to Elevated N Deposition in Alpine Grassland in Xinjiang. PhD dissertation, University of Chinese Academy of Sciences, Beijing. 29-38. |
[李凯辉 (2012). 新疆高寒草原植被群落与温室气体排放对氮沉降的响应. 博士学位论文, 中国科学院大学, 北京. 29-38.] | |
[17] |
Li KH, Liu XJ, Song L, Gong YM, Lu CF, Yue P, Tian CY, Zhang FS (2015a). Response of alpine grassland to elevated nitrogen deposition and water supply in China. Oecologia, 177, 65-72.
DOI URL |
[18] |
Li W, Cheng JM, Yu KL, Epstein HE, Guo L, Jing GH, Zhao J, Du GZ (2015b). Plant functional diversity can be independent of species diversity: observations based on the impact of 4-yrs of nitrogen and phosphorus additions in an alpine meadow. PLOS ONE, 10, e0136040. DOI: 10.1371/journal.pone.0136040.
DOI URL |
[19] | Liu YY, Hu YK, Wang X, Gong YM (2013). Vertical differentiation of plant species diversity and biomass in alpine grassland in the middle section of Tianshan Mountains southern slope, Xinjiang of Northwest China. Chinese Journal of Ecology, 32, 311-318. |
[柳妍妍, 胡玉昆, 王鑫, 公延明 (2013). 天山南坡中段高寒草地物种多样性与生物量的垂直分异特征. 生态学杂志, 32, 311-318.] | |
[20] |
Lü XT, Liu ZY, Hu YY, Zhang HY (2018). Testing nitrogen and water co-limitation of primary productivity in a temperate steppe. Plant and Soil, 432, 119-127.
DOI URL |
[21] |
Luo WT, Griffin-Nolan RJ, Ma W, Liu B, Zuo XA, Xu C, Yu Q, Luo YH, Mariotte P, Smith MD, Collins SL, Knapp AK, Wang ZW, Han XG (2021). Plant traits and soil fertility mediate productivity losses under extreme drought in C3 grasslands. Ecology, 102, e03465. DOI: 10.1002/ecy.3465.
DOI |
[22] |
Mason NWH, Mouillot D, Lee WG, Wilson JB (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111, 112-118.
DOI URL |
[23] |
McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185.
DOI URL |
[24] |
Niu KC, Choler P, Bello F, Mirotchnick N, Du GZ, Sun SC (2014). Fertilization decreases species diversity but increases functional diversity: a three-year experiment in a Tibetan alpine meadow. Agriculture, Ecosystems & Environment, 182, 106-112.
DOI URL |
[25] |
Ram J, Singh SP, Singh JS (1991). Effect of fertilizer on plant biomass distribution and net accumulation rate in an alpine meadow in central Himalaya, India. Journal of Range Management, 44, 140-143.
DOI URL |
[26] |
Ren ZW, Li Q, Chu CJ, Zhao LQ, Zhang JQ, Dexiecuo A, Yang YB, Wang G (2010). Effects of resource additions on species richness and ANPP in an alpine meadow community. Journal of Plant Ecology, 3, 25-31.
DOI URL |
[27] |
Smith MD, Knapp AK, Collins SL (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 3279-3289.
PMID |
[28] |
Suding KN, Goldstein LJ (2008). Testing the Holy Grail framework: using functional traits to predict ecosystem change. New Phytologist, 180, 559-562.
DOI PMID |
[29] |
Tilman D, Lehman CL, Thomson KT (1997). Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 94, 1857-1861.
PMID |
[30] |
Vivanco L, Irvine IC, Martiny JBH (2015). Nonlinear responses in salt marsh functioning to increased nitrogen addition. Ecology, 96, 936-947.
PMID |
[31] |
Westoby M (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213-227.
DOI URL |
[32] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[33] | Xin XJ, Wang G, Yang YB, Ren ZW (2014). Effects of N, P addition on above/below ground biomass allocation in a subalpine meadow. Ecological Science, 33, 452-458. |
[辛小娟, 王刚, 杨莹博, 任正炜 (2014). 氮、磷添加对亚高山草甸地上/地下生物量分配的影响. 生态科学, 33, 452-458.] | |
[34] |
Yang HJ, Li Y, Wu MY, Zhang Z, Li LH, Wan SQ (2011). Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Global Change Biology, 17, 2936-2944.
DOI URL |
[35] |
Zhou XL, Guo Z, Zhang PF, Du GZ (2018). Shift in community functional composition following nitrogen fertilization in an alpine meadow through intraspecific trait variation and community composition change. Plant and Soil, 431, 289-302.
DOI URL |
[36] |
Zhou XL, Guo Z, Zhang PF, Li HL, Chu CJ, Li XL, Du GZ (2017). Different categories of biodiversity explain productivity variation after fertilization in a Tibetan alpine meadow community. Ecology and Evolution, 7, 3464-3474.
DOI PMID |
[37] |
Zhou XL, Wang YS, Zhang PF, Guo Z, Chu CJ, Du GZ (2016). The effects of fertilization on the trait-Abundance relationships in a Tibetan alpine meadow community. Journal of Plant Ecology, 9, 144-152.
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[4] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[5] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[6] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[7] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[8] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[9] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[10] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[11] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[12] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[13] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[14] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[15] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19