植物生态学报 ›› 2022, Vol. 46 ›› Issue (8): 882-889.DOI: 10.17521/cjpe.2021.0324
袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋()
收稿日期:
2021-09-09
接受日期:
2021-11-20
出版日期:
2022-08-20
发布日期:
2022-01-07
通讯作者:
徐振锋
作者简介:
*(xuzf@sicau.edu.cn)基金资助:
YUAN Chun-Yang, LI Ji-Hong, HAN Xin, HONG Zong-Wen, LIU Xuan, DU Ting, YOU Cheng-Ming, LI Han, TAN Bo, XU Zhen-Feng()
Received:
2021-09-09
Accepted:
2021-11-20
Online:
2022-08-20
Published:
2022-01-07
Contact:
XU Zhen-Feng
Supported by:
摘要:
树木通过地上/地下凋落物输入及根系活动等过程影响土壤微生物生物量, 对调节土壤环境和增加土壤肥力具有重要作用。为阐明四川盆地乡土树种对土壤微生物生物量碳(MBC)、氮(MBN)含量的影响机制, 该研究采用同质园研究方法, 以亚热带7种常见树种天竺桂(Cinnamomum japonicum)、油樟(C. longepaniculatum)、大叶樟(C. austrosinense)、桤木(Alnus cremastogyne)、香樟(C. camphora)、红椿(Toona ciliata)和香椿(T. sinensis)为研究对象, 并以撂荒地作对照, 分析了树种对不同土层MBC、MBN含量的影响。结果表明:树种显著影响土壤MBC、MBN含量及其比值。树种总体表现为正或无效应; 与撂荒地相比, 天竺桂树种效应最强, 其0-10 cm土层MBC和MBN含量分别高于撂荒地108.2%和139.6%。7个树种和撂荒地土壤MBC、MBN含量总体随土层深度的增加而减少, 而MBC:MBN剖面特征因树种而异。总体来看, 树种效应大于剖面效应; 相比于其他树种, 天竺桂更有利于土壤微生物的生长与繁殖。
袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验. 植物生态学报, 2022, 46(8): 882-889. DOI: 10.17521/cjpe.2021.0324
YUAN Chun-Yang, LI Ji-Hong, HAN Xin, HONG Zong-Wen, LIU Xuan, DU Ting, YOU Cheng-Ming, LI Han, TAN Bo, XU Zhen-Feng. Effects of tree species on soil microbial biomass carbon and nitrogen: a case study of common garden experiment. Chinese Journal of Plant Ecology, 2022, 46(8): 882-889. DOI: 10.17521/cjpe.2021.0324
树种 Tree species | 凋落物现存量 Litter standing crop (kg·hm-2) | 郁闭度 Canopy density | 林下植物 Understory plant |
---|---|---|---|
香樟 Cinnamomum camphora | 986.8 ± 197.0a | 0.89 ± 0.04a | 喜旱莲子草、竹叶草等 Alternanthera philoxeroides, Oplismenus compositus, etc. |
大叶樟 C. austrosinense | 700.9 ± 106.4b | 0.85 ± 0.03a | 构树、喜旱莲子草、茜草等 Broussonetia papyrifera, Alternanthera philoxeroides, Rubia cordifolia, etc. |
油樟 C. longepaniculatum | 388.9 ± 92.5c | 0.90 ± 0.25a | 喜旱莲子草、蛇莓等 Alternanthera philoxeroides, Duchesnea indica, etc. |
天竺桂 C. japonicum | 160.2 ± 45.9cd | 0.73 ± 0.26a | 构树、喜旱莲子草、华西凤尾蕨等 Broussonetia papyrifera, Alternanthera philoxeroides, Pteris occidentalisinica, etc. |
桤木 Alnus cremastogyne | 136.9 ± 40.4cd | 0.66 ± 0.53b | 构树、喜旱莲子草、茜草等 Broussonetia papyrifera, Alternanthera philoxeroides, Rubia cordifolia, etc. |
红椿 Toona ciliata | 17.1 ± 3.9d | 0.67 ± 0.58b | 构树、喜旱莲子草、茜草等 Broussonetia papyrifera, Alternanthera philoxeroides, Rubia cordifolia, etc. |
香椿 T. sinensis | 15.6 ± 2.1d | 0.67 ± 0.05b | 构树、喜旱莲子草、竹叶草等 Broussonetia papyrifera, Alternanthera philoxeroides, Oplismenus compositus, etc. |
表1 同质园人工林基本概况(平均值±标准误)
Table 1 Basic information of plantation in common garden (mean ± SE)
树种 Tree species | 凋落物现存量 Litter standing crop (kg·hm-2) | 郁闭度 Canopy density | 林下植物 Understory plant |
---|---|---|---|
香樟 Cinnamomum camphora | 986.8 ± 197.0a | 0.89 ± 0.04a | 喜旱莲子草、竹叶草等 Alternanthera philoxeroides, Oplismenus compositus, etc. |
大叶樟 C. austrosinense | 700.9 ± 106.4b | 0.85 ± 0.03a | 构树、喜旱莲子草、茜草等 Broussonetia papyrifera, Alternanthera philoxeroides, Rubia cordifolia, etc. |
油樟 C. longepaniculatum | 388.9 ± 92.5c | 0.90 ± 0.25a | 喜旱莲子草、蛇莓等 Alternanthera philoxeroides, Duchesnea indica, etc. |
天竺桂 C. japonicum | 160.2 ± 45.9cd | 0.73 ± 0.26a | 构树、喜旱莲子草、华西凤尾蕨等 Broussonetia papyrifera, Alternanthera philoxeroides, Pteris occidentalisinica, etc. |
桤木 Alnus cremastogyne | 136.9 ± 40.4cd | 0.66 ± 0.53b | 构树、喜旱莲子草、茜草等 Broussonetia papyrifera, Alternanthera philoxeroides, Rubia cordifolia, etc. |
红椿 Toona ciliata | 17.1 ± 3.9d | 0.67 ± 0.58b | 构树、喜旱莲子草、茜草等 Broussonetia papyrifera, Alternanthera philoxeroides, Rubia cordifolia, etc. |
香椿 T. sinensis | 15.6 ± 2.1d | 0.67 ± 0.05b | 构树、喜旱莲子草、竹叶草等 Broussonetia papyrifera, Alternanthera philoxeroides, Oplismenus compositus, etc. |
图1 不同树种和土层的微生物生物量碳(MBC)、氮(MBN)含量及其比值(平均值±标准误)。不同大写字母表示同一土层不同树种间差异显著(p < 0.05), 不同小写字母表示同一树种不同土层间差异显著(p < 0.05)。
Fig. 1 Microbial biomass carbon (MBC), nitrogen (MBN) content and MBC:MBN among different tree species and soil layers (mean ± SE). Different uppercase letters indicate significant differences among the tree species in the same soil layer (p < 0.05), different lowercase letters indicate significant differences among the soil layers of the same tree species (p < 0.05).
因子 Factor | df | MBC含量 MBC content | MBN含量 MBN content | MBC:MBN | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | SS (%) | F | p | SS (%) | F | p | SS (%) | ||
树种 Tree species (TS) | 6 | 20.01 | <0.01 | 52.07 | 10.68 | <0.01 | 31.30 | 5.50 | <0.01 | 32.12 |
土层 Soil layer (SL) | 2 | 27.12 | <0.01 | 23.52 | 35.78 | <0.01 | 34.97 | 2.73 | >0.05 | 5.32 |
树种×土层 TS × SL | 12 | 1.19 | >0.05 | 6.19 | 2.25 | <0.05 | 13.21 | 1.85 | >0.05 | 21.64 |
表2 树种和土层对土壤微生物生物量碳(MBC)、氮(MBN)含量及其比值的影响
Table 2 Effects of tree species, soil layer and their inaction on soil microbial biomass carbon (MBC), nitrogen (MBN) content and their ratios
因子 Factor | df | MBC含量 MBC content | MBN含量 MBN content | MBC:MBN | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | SS (%) | F | p | SS (%) | F | p | SS (%) | ||
树种 Tree species (TS) | 6 | 20.01 | <0.01 | 52.07 | 10.68 | <0.01 | 31.30 | 5.50 | <0.01 | 32.12 |
土层 Soil layer (SL) | 2 | 27.12 | <0.01 | 23.52 | 35.78 | <0.01 | 34.97 | 2.73 | >0.05 | 5.32 |
树种×土层 TS × SL | 12 | 1.19 | >0.05 | 6.19 | 2.25 | <0.05 | 13.21 | 1.85 | >0.05 | 21.64 |
[1] |
Baldrian P (2017). Forest microbiome: diversity, complexity and dynamics. FEMS Microbiology Reviews, 41, 109-130.
DOI PMID |
[2] | Chen J, Luo TS, Zhou Z, Xu H, Chen DX, Li YD (2020). Research advances in nitrogen deposition effects on microbial processes involved in soil nitrogen cycling in tropical and subtropical forests. Acta Ecologica Sinica, 40, 8528-8538. |
[陈洁, 骆土寿, 周璋, 许涵, 陈德祥, 李意德 (2020). 氮沉降对热带亚热带森林土壤氮循环微生物过程的影响研究进展. 生态学报, 40, 8528-8538.] | |
[3] | Chen J, Zhao WQ, He HL, Luo L, Liu Q, Yang XC (2021). Effect of plant litter addition from different subalpine forest successional stages on Betula platyphylla seedling growth in western Sichuan. Chinese Journal of Applied and Environmental Biology, 27, 686-693. |
[陈静, 赵文强, 贺合亮, 罗林, 刘庆, 阳小成 (2021). 川西亚高山森林不同演替阶段植物凋落物添加对白桦幼苗生长的影响. 应用与环境生物学报, 27, 686-693.] | |
[4] |
Dalal RC (1998). Soil microbial biomass-What do the numbers really mean? Australian Journal of Experimental Agriculture, 38, 649-665.
DOI URL |
[5] |
Diao MM, Yang K, Zhu JJ, Li MC, Xu S (2020). Native broad-leaved tree species play key roles on maintaining soil chemical and microbial properties in a temperate secondary forest, Northeast China. Forest Ecology and Management, 462, 117971. DOI: 10.1016/j.foreco.2020.117971.
DOI URL |
[6] |
Hansen K, Vesterdal L, Schmidt IK, Gundersen P, Sevel L, Bastrup-Birk A, Pedersen LB, Bille-Hansen J (2009). Litterfall and nutrient return in five tree species in a common garden experiment. Forest Ecology and Management, 257, 2133-2144.
DOI URL |
[7] | He RY, Yang WQ, Yang KJ, Li ZJ, Zhuang LY, Tan B, Xu ZF (2016). Soil C, N, P and microbial biomass properties of three dominant subalpine forests of western Sichuan, China. Chinese Journal of Applied and Environmental Biology, 22, 606-611. |
[贺若阳, 杨万勤, 杨开军, 李志杰, 庄丽燕, 谭波, 徐振锋 (2016). 川西亚高山3种森林土壤碳氮磷及微生物生物量特征. 应用与环境生物学报, 22, 606-611.] | |
[8] |
Heuck C, Weig A, Spohn M (2015). Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biology & Biochemistry, 85, 119-129.
DOI URL |
[9] | Hu K, Tao JP, He DN, Huang K, Wang W (2019). Effects of root growth on dynamics of microbes and enzyme activities during litter decomposition. Chinese Journal of Applied Ecology, 30, 1993-2001. |
[胡凯, 陶建平, 何丹妮, 黄科, 王微 (2019). 林下植物根系对森林凋落物分解过程中微生物及酶活性的影响. 应用生态学报, 30, 1993-2001.]
DOI |
|
[10] | Huang JX, Huang LM, Lin ZC, Chen GS (2010). Controlling factors of litter decomposition rate in China’s forests. Journal of Subtropical Resources and Environment, 5(3), 56-63. |
[黄锦学, 黄李梅, 林智超, 陈光水 (2010). 中国森林凋落物分解速率影响因素分析. 亚热带资源与环境学报, 5(3), 56-63.] | |
[11] |
Kooch Y, Tarighat FS, Hosseini SM (2017). Tree species effects on soil chemical, biochemical and biological features in mixed Caspian lowland forests. Trees, 31, 863-872.
DOI URL |
[12] |
Laganière J, Paré D, Bergeron Y, Chen HYH (2012). The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biology & Biochemistry, 53, 18-27.
DOI URL |
[13] | Li N, Zhao CY, Hao H, Zang F, Chang YP, Wang H, Yang JH (2021). Decomposition and its nutrients dynamic of Qinghai spruce leaf litter with elevation gradient in Qilian Mountains. Acta Ecologica Sinica, 41, 4493-4502. |
[李娜, 赵传燕, 郝虎, 臧飞, 常亚鹏, 汪红, 杨建红 (2021). 海拔和郁闭度对祁连山青海云杉林叶凋落物分解的影响. 生态学报, 41, 4493-4502.] | |
[14] |
Li ZL, Tian DS, Wang BX, Wang JS, Wang S, Chen HYH, Xu XF, Wang CH, He NP, Niu SL (2019). Microbes drive global soil nitrogen mineralization and availability. Global Change Biology, 25, 1078-1088.
DOI PMID |
[15] |
Li ZL, Zeng ZQ, Tian DS, Wang JS, Fu Z, Wang BX, Tang Z, Chen WN, Chen HYH, Wang CH, Yi CX, Niu SL (2020). The stoichiometry of soil microbial biomass determines metabolic quotient of nitrogen mineralization. Environmental Research Letters, 15, 034005. DOI: 10.1088/1748-9326/ab6a26.
DOI URL |
[16] | Liu B, Wu WF, Lin SZ, Lin KM (2019). Characteristics of soil microbial biomass carbon and nitrogen and its seasonal dynamics in four mid-subtropical forests. Chinese Journal of Applied Ecology, 30, 1901-1910. |
[刘宝, 吴文峰, 林思祖, 林开敏 (2019). 中亚热带4种林分类型土壤微生物生物量碳氮特征及季节变化. 应用生态学报, 30, 1901-1910.]
DOI |
|
[17] | Liu S, Wang CK (2010). Spatio-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems. Acta Ecologica Sinica, 30, 3135-3143. |
[刘爽, 王传宽 (2010). 五种温带森林土壤微生物生物量碳氮的时空格局. 生态学报, 30, 3135-3143.] | |
[18] |
Liu SS, Zhou WJ, Kuang LH, Liu ZF, Song QH, Liu YT, Zhang YP, Lu ZY, Sha LQ (2020). Responses of soil extracellular enzyme activities to carbon input alteration and warming in a subtropical evergreen broad-leaved forest. Chinese Journal of Plant Ecology, 44, 1262-1272.
DOI URL |
[刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清 (2020). 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应. 植物生态学报, 44, 1262-1272.] | |
[19] | Ma ZL, Gao S, Yang WQ, Wu FZ, Tan B, Zhang XT (2015). Litter decomposition of six common tree species at different rainy periods in the subtropical region. Acta Ecologica Sinica, 35, 7553-7561. |
[马志良, 高顺, 杨万勤, 吴福忠, 谭波, 张玺涛 (2015). 亚热带常绿阔叶林6个常见树种凋落叶在不同降雨期的分解特征. 生态学报, 35, 7553-7561.] | |
[20] |
Mueller KE, Eissenstat DM, Hobbie SE, Oleksyn J, Jagodzinski AM, Reich PB, Chadwick OA, Chorover J (2012). Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry, 111, 601-614.
DOI URL |
[21] |
Ovington JD (1956). Studies of the development of woodland conditions under different trees: IV. The ignition loss, water, carbon and nitrogen content of the mineral soil. Journal of Ecology, 44, 171-179.
DOI URL |
[22] |
Peng Y, Schmidt IK, Zheng HF, Heděnec P, Bachega RL, Yue K, Wu FZ, Vesterdal L (2020). Tree species effects on topsoil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability at the global scale. Forest Ecology and Management, 478, 118510. DOI: 10.1016/j.foreco.2020.118510.
DOI URL |
[23] | Ren LJ, Wang C, Gu L, Zhang J, Wang XL (2012). VOCs components in Cinnamomum camphora forest and their variation in Hui mountain forest park, Wuxi. Journal of Chinese Urban Forestry, 10(3), 8-11. |
[任露洁, 王成, 古琳, 张晶, 王晓磊 (2012). 无锡惠山森林公园香樟林内挥发物成分及其变化研究. 中国城市林业, 10(3), 8-11.] | |
[24] |
Schurman JS, Baltzer JL (2012). Environmental correlates of tree species distributions vary among age classes in a northern temperate forest. Plant Ecology, 213, 1621-1632.
DOI URL |
[25] |
Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-798.
DOI URL |
[26] | Templera P, Findlay S, Lovett G (2003). Soil microbial biomass and nitrogen transformations among five tree species of the Catskill Mountains, New York, USA. Soil Biology & Biochemistry, 35, 607-613. |
[27] |
Teng YM, Zhan JY, Liu W, Zhang F, Wang C, Dong SK (2020). Larch or Mongolian pine? Effects of tree species on soil properties and microbial biomass with the consideration of afforestation time. Ecological Engineering, 158, 106074. DOI: 10.1016/j.ecoleng.2020.106074.
DOI URL |
[28] |
Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013). Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 309, 4-18.
DOI URL |
[29] |
Vesterdal L, Elberling B, Christiansen JR, Callesen I, Schmidt IK (2012). Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management, 264, 185-196.
DOI URL |
[30] | Wang HY, Li HL, Dong Z, Chen XC (2016). Study on the effects of different afforestation species on the soil improvement in coastal saline area. Research of Soil and Water Conservation, 23, 161-165. |
[王合云, 李红丽, 董智, 陈新闯 (2016). 滨海盐碱地不同造林树种改良土壤效果研究. 水土保持研究, 23, 161-165.] | |
[31] |
Wang P, Zhu WW, Niu YB, Fan J, Yu HL, Lai JS, Huang JY (2019). Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China. Chinese Journal of Plant Ecology, 43, 427-436.
DOI |
[王攀, 朱湾湾, 牛玉斌, 樊瑾, 余海龙, 赖江山, 黄菊莹 (2019). 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响. 植物生态学报, 43, 427-436.]
DOI |
|
[32] | Wang T, Wan XH, Cheng L, Yang JQ, Zhang BB, Zou BZ, Wang SR, Yu ZP, Huang ZQ (2020). Effects of broadleaved tree species on soil microbial stoichiometry in clear-cut patches of Cunninghamia lanceolata plantation. Chinese Journal of Applied Ecology, 31, 3851-3858. |
[王涛, 万晓华, 程蕾, 杨军钱, 张冰冰, 邹秉章, 王思荣, 余再鹏, 黄志群 (2020). 杉木采伐迹地营造阔叶树种对土壤微生物生态化学计量特征的影响. 应用生态学报, 31, 3851-3858.]
DOI |
|
[33] |
Wang XQ, Wang CK, Han Y (2015). Effects of tree species on soil organic carbon density: a common garden experiment of five temperate tree species. Chinese Journal of Plant Ecology, 39, 1033-1043.
DOI URL |
[王薪琪, 王传宽, 韩轶 (2015). 树种对土壤有机碳密度的影响: 5种温带树种同质园试验. 植物生态学报, 39, 1033-1043.]
DOI |
|
[34] |
Wei CC, Liu XF, Lin CF, Li XF, Li Y, Zheng YX (2018). Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlesii forests in subtropical China. Chinese Journal of Plant Ecology, 42, 692-702.
DOI URL |
[魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄 (2018). 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响. 植物生态学报, 42, 692-702.]
DOI |
|
[35] | Wu XL, Zhang SR, Pu YL, XU XX, Li Y (2019). Distribution characteristics and impact factors of soil microbial biomass carbon, nitrogen and phosphorus in western Sichuan plain. Chinese Journal of Eco-Agriculture, 27, 1607-1616. |
[吴晓玲, 张世熔, 蒲玉琳, 徐小逊, 李云 (2019). 川西平原土壤微生物生物量碳氮磷含量特征及其影响因素分析. 中国生态农业学报, 27, 1607-1616.] | |
[36] |
Xu XF, Thornton PE, Post WM (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 22, 737-749.
DOI URL |
[37] |
Yin HJ, Zhang ZL, Liu Q (2018). Root exudates and their ecological consequences in forest ecosystems: problems and perspective. Chinese Journal of Plant Ecology, 42, 1055-1070.
DOI URL |
[尹华军, 张子良, 刘庆 (2018). 森林根系分泌物生态学研究: 问题与展望. 植物生态学报, 42, 1055-1070.]
DOI |
|
[38] | Yu SC, Zhang WH, Li G, Yang B, Yu BY (2017). Effects of different crown densities on structure of Quercus wutaishanica populations in Huanglong Mountains, Northwest China. Acta Ecologica Sinica, 37, 1537-1548. |
[于世川, 张文辉, 李罡, 杨斌, 余碧云 (2017). 黄龙山林区不同郁闭度对辽东栎种群结构的影响. 生态学报, 37, 1537-1548.] | |
[39] | Zheng XZ, Zhang XX, Lin WS, Liu XF, Chu HY, Li RN, Yang ZJ (2018). Effects of different tree species on soil dissolved organic carbon and microbial biomass carbon in subtropical China. Journal of Fujian Normal University (Natural Science Edition), 34(6), 86-93. |
[郑宪志, 张星星, 林伟盛, 刘小飞, 楚海燕, 李若南, 杨智杰 (2018). 不同树种对土壤可溶性有机碳和微生物生物量碳的影响. 福建师范大学学报(自然科学版), 34(6), 86-93.] |
[1] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[2] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[3] | 高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素[J]. 植物生态学报, 2021, 45(9): 1006-1023. |
[4] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[5] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[6] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[7] | 牟利, 吴林, 刘雪飞, 李小玲, 王涵, 吴浩, 余玉蓉, 杜胜蓝. 鄂西南亚高山不同覆被类型泥炭藓沼泽湿地甲烷排放特征及其环境影响因子[J]. 植物生态学报, 2021, 45(2): 131-143. |
[8] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
[9] | 刘雪飞, 吴林, 王涵, 洪柳, 熊莉军. 鄂西南亚高山湿地泥炭藓的生长与分解[J]. 植物生态学报, 2020, 44(3): 228-235. |
[10] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[11] | 纪若璇, 于笑, 常远, 沈超, 白雪卡, 夏新莉, 尹伟伦, 刘超. 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义[J]. 植物生态学报, 2020, 44(3): 277-286. |
[12] | 梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响[J]. 植物生态学报, 2020, 44(12): 1273-1284. |
[13] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[14] | 车俭, 郑洁, 蒋娅, 金毅, 乙引. 中国亚热带森林动态监测样地常绿和落叶木本被子植物谱系结构及生态习性差异[J]. 植物生态学报, 2020, 44(10): 1007-1014. |
[15] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19