植物生态学报 ›› 2021, Vol. 45 ›› Issue (2): 131-143.DOI: 10.17521/cjpe.2020.0292
所属专题: 生态系统碳水能量通量
牟利, 吴林*(), 刘雪飞, 李小玲, 王涵, 吴浩, 余玉蓉, 杜胜蓝
收稿日期:
2020-08-27
接受日期:
2020-12-12
出版日期:
2021-02-20
发布日期:
2021-02-07
通讯作者:
吴林
作者简介:
*(wulin20054557@163.com)基金资助:
MOU Li, WU Lin*(), LIU Xue-Fei, LI Xiao-Ling, WANG Han, WU Hao, YU Yu-Rong, DU Sheng-Lan
Received:
2020-08-27
Accepted:
2020-12-12
Online:
2021-02-20
Published:
2021-02-07
Contact:
WU Lin
Supported by:
摘要:
沼泽湿地是大气甲烷(CH4)的重要来源, 但有关亚热带亚高山沼泽湿地CH4排放的研究却鲜有报道, 特别是对不同覆被类型泥炭藓沼泽湿地CH4排放量的精确估算及其与环境因子的关系尚不清楚。该研究选择鄂西南亚高山泥炭藓沼泽湿地为研究区域, 于2018年11月-2019年10月间, 使用静态箱-气相色谱仪法原位测定3种覆被类型泥炭藓沼泽湿地CH4通量, 同步记录大气和地下5 cm土壤的温度以及地下水位变化。结果表明: (1)光照下, 裸露地(B)、泥炭藓(Sphagnum paluster)(S)、金发藓(Polytrichum commune)(P) 3种覆被类型泥炭藓沼泽湿地CH4-C通量全年变化范围分别为: 0.012-1.372、0.022-1.474、0.027-3.385 mg·m-2·h-1; 遮光处理下, B、S、P 3种覆被类型泥炭藓沼泽湿地CH4-C通量的全年变化范围分别为: 0.012-1.372、0.009-1.839、0.017-2.484 mg·m-2·h-1, 均为CH4排放源。同时, 光照条件下不同覆被泥炭藓沼泽湿地CH4排放量略大于黑暗条件, 但差异不明显。(2)不同覆被类型泥炭藓沼泽湿地CH4排放存在明显的季节变化规律, 即: 夏季>秋季>春季>冬季, 其中夏季CH4排放量显著大于其他季节, 占全年的57%-84%。该研究发现泥炭藓沼泽湿地CH4通量均与气温和地下5 cm土壤温度极显著相关, 且CH4排放量随温度升高呈指数增加, 表明温度是影响泥炭藓沼泽湿地CH4排放时间变化的主要环境因子。(3) 3种覆被类型泥炭藓沼泽湿地的年平均和年累计CH4排放量均依次为: P > S > B, P显著大于B。该研究发现植被类型与泥炭藓沼泽湿地CH4排放量存在显著相关性, 表明覆被类型是影响泥炭藓沼泽湿地CH4排放量空间变异的主要因子。(4) 3种覆被类型泥炭藓沼泽湿地CH4排放量均与地下水位变化不相关。该研究进一步丰富了泥炭藓沼泽湿地CH4排放规律, 同时也为区域碳循环提供了详实的基础数据。
牟利, 吴林, 刘雪飞, 李小玲, 王涵, 吴浩, 余玉蓉, 杜胜蓝. 鄂西南亚高山不同覆被类型泥炭藓沼泽湿地甲烷排放特征及其环境影响因子. 植物生态学报, 2021, 45(2): 131-143. DOI: 10.17521/cjpe.2020.0292
MOU Li, WU Lin, LIU Xue-Fei, LI Xiao-Ling, WANG Han, WU Hao, YU Yu-Rong, DU Sheng-Lan. Characteristics and environmental factors controlling methane emission from a Sphagnum bog with different plant cover types in a subalpine area, southwest of Hubei, China. Chinese Journal of Plant Ecology, 2021, 45(2): 131-143. DOI: 10.17521/cjpe.2020.0292
图2 泥炭藓沼泽湿地甲烷(CH4)排放通量日变化(平均值+标准误)。▲, 裸露样地; ■, 泥炭藓覆被样地; ●, 金发藓覆被样地。线性图表示5 cm土壤温度, 点线图表示CH4通量, 柱状图表示气温。*表示同一测定时间不同覆被类型间差异显著(p < 0.05), **表示同一测定时间不同覆被类型间差异极显著(p < 0.01)。
Fig. 2 Diurnal changes of methane (CH4) emission fluxes in the Sphagnum bog (mean + SE). ▲, bare land plot; ■, Sphagnum paluster plot; ●, Polytrichum commune plot. The lines represent soil temperature at 5 cm depth, the lines with points represent CH4 emission fluxes, the bars represent air temperature. * represents a significant difference among the three cover types at the same time (p < 0.05), ** represents a significant difference among the three cover types at the same time (p < 0.01).
方差来源 Source of variance | 自由度 df | 光照 Light | 黑暗 Dark | ||||
---|---|---|---|---|---|---|---|
均方根 Mean square | F | p | 均方根 Mean square | F | p | ||
季节 Season | 3 | 9.33 | 39.99 | <0.01 | 4.55 | 39.67 | <0.01 |
植被类型 Vegetation type | 2 | 1.12 | 8.97 | 0.022 | 0.36 | 60.53 | 0.003 8 |
季节×植被类型 Season × Vegetation type | 6 | 0.42 | 1.80 | 0.17 | 0.11 | 0.92 | 0.523 |
表1 植被类型、季节及其交互作用对泥炭藓沼泽湿地CH4排放通量影响的重复测量方差分析结果
Table 1 Results of repeated measures ANOVAs on the effects of vegetation type, season, and their interactions on methane emission fluxes of the Sphagnum bog
方差来源 Source of variance | 自由度 df | 光照 Light | 黑暗 Dark | ||||
---|---|---|---|---|---|---|---|
均方根 Mean square | F | p | 均方根 Mean square | F | p | ||
季节 Season | 3 | 9.33 | 39.99 | <0.01 | 4.55 | 39.67 | <0.01 |
植被类型 Vegetation type | 2 | 1.12 | 8.97 | 0.022 | 0.36 | 60.53 | 0.003 8 |
季节×植被类型 Season × Vegetation type | 6 | 0.42 | 1.80 | 0.17 | 0.11 | 0.92 | 0.523 |
图3 泥炭藓沼泽湿地CH4排放通量季节变化(平均值±标准误)。B, 裸露样地; P, 金发藓覆被样地; S, 泥炭藓覆被样地。不同大写字母表示同一覆被类型不同季节差异极显著(p < 0.01); 不同小写字母表示不同覆被类型间差异显著(p < 0.05)。*表示同一季节不同覆被类型差异显著(p < 0.05); **表示同一季节不同覆被类型差异极显著(p < 0.01)。
Fig. 3 Seasonal changes in methane emission fluxes in the Sphagnum bog (mean ± SE). B, bare land plot; P, Polytrichum commune plot; S, Sphagnum paluster plot. Different uppercase letters indicate significant difference among the same cover type in different seasons (p < 0.01); different lowercase letters indicate significant difference among the annual methane emissions of three cover types (p < 0.05). * represents a significant difference among the three cover types at the same season (p < 0.05); ** represents a significant difference among the three cover types at the same season (p < 0.01).
图4 泥炭藓沼泽湿地CH4排放通量与气温的关系。B, 裸露样地; P, 金发藓覆被样地; S, 泥炭藓覆被样地。
Fig. 4 Relationship between methane emission fluxes and air temperature in the Sphagnum bog. B, bare land plot; P, Polytrichum commune plot; S, Sphagnum paluster plot.
图5 泥炭藓沼泽湿地CH4排放通量与土壤温度的关系。B, 裸露样地; P, 金发藓覆被样地; S, 泥炭藓覆被样地。
Fig. 5 Relationship between methane emission fluxes and soil temperature of 5 cm depth in the Sphagnum bog. B, bare land plot; P, Polytrichum commune plot; S, Sphagnum paluster plot.
图6 泥炭藓沼泽湿地CH4排放通量与地下水位的关系。B, 裸露样地; P, 金发藓覆被样地; S, 泥炭藓覆被样地。
Fig. 6 Relationship between methane emission fluxes and water table in the Sphagnum bog. B, bare land plot; P, Polytrichum commune plot; S, Sphagnum paluster plot.
图7 不同地区泥炭藓沼泽湿地CH4排放通量示意图。本综合示意图是根据Nykanen et al.(1998), Beetz et al.(2013), Hanson et al.(2016)及本研究测定的CH4排放绘制的。
Fig. 7 Schematic diagram of methane emission flux of the Sphagnum bog in different regions. This comprehensive diagram is based on methane emission flux measured by Nykanen et al.(1998), Beetz et al.(2013), Hanson et al.(2016) and this study.
研究区 Study area | 沼泽类型 Wetland type | 研究方法 Research method | 排放区间 Emission range (mg·m-1·h-1) | 年总排放量 Total annual emissions (g·m-1·a-1) | 参考文献 Reference |
---|---|---|---|---|---|
芬兰 Finland | 雨养泥炭沼泽 Bog | 静态箱 Static chamber | 0.038-1.403 | 3.3 | Nyk?nenet al., |
芬兰 Finland | 矿养泥炭沼泽 Fen | 静态箱 Static chamber | 0.013-16.016 | 11.4 | Nyk?nenet al., |
中国神农架 Shennongjia, China | 雨养泥炭沼泽 Bog | 涡度相关 Eddy covariance | -0.337-1.340 | 4.2 | Chen et al., |
中国鄂西南 Southwest Hubei, China | 雨养泥炭沼泽 Bog | 静态箱 Static chamber | 0.022-1.474 | 3.4 | 本研究 This study |
表2 不同地区泥炭藓沼泽湿地CH4-C排放对比
Table 2 CH4-C emission fluxes from the Sphagnum bog in different regions
研究区 Study area | 沼泽类型 Wetland type | 研究方法 Research method | 排放区间 Emission range (mg·m-1·h-1) | 年总排放量 Total annual emissions (g·m-1·a-1) | 参考文献 Reference |
---|---|---|---|---|---|
芬兰 Finland | 雨养泥炭沼泽 Bog | 静态箱 Static chamber | 0.038-1.403 | 3.3 | Nyk?nenet al., |
芬兰 Finland | 矿养泥炭沼泽 Fen | 静态箱 Static chamber | 0.013-16.016 | 11.4 | Nyk?nenet al., |
中国神农架 Shennongjia, China | 雨养泥炭沼泽 Bog | 涡度相关 Eddy covariance | -0.337-1.340 | 4.2 | Chen et al., |
中国鄂西南 Southwest Hubei, China | 雨养泥炭沼泽 Bog | 静态箱 Static chamber | 0.022-1.474 | 3.4 | 本研究 This study |
图8 不同覆被类型泥炭藓沼泽地平均CH4排放量。B, 裸露样地; P, 金发藓覆被样地; S, 泥炭藓覆被样地。
Fig. 8 Average methane emission fluxes from different cover types of the Sphagnum bogs. B, bare land plot; P, Polytrichum commune plot; S, Sphagnum paluster plot.
[1] |
Alfadhel I, Ge J, Sinan Y, Liu Y (2019). Methane flux and its environmental impact factors in Dajiuhu wetland of Shennongjia. Wuhan University Journal of Natural Sciences, 24,455-460.
DOI URL |
[2] |
Bäckstrand K, Crill PM, Jackowicz-Korczyñski M, Mastepanov M, Christensen TR, Bastviken D (2010). Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences, 7,95-108.
DOI URL |
[3] |
Beckmann M, Sheppard SK, Lloyd D (2004). Mass spectrometric monitoring of gas dynamics in peat monoliths: effects of temperature and diurnal cycles on emissions. Atmospheric Environment, 38,6907-6913.
DOI URL |
[4] |
Beetz S, Liebersbach H, Glatzel S, Jurasinski G, Buczko U, Höper H (2013). Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog. Biogeosciences, 10,1067-1082.
DOI URL |
[5] |
Blodau C (2002). Carbon cycling in peatlands—A review of processes and controls. Environmental Reviews, 10,111-134.
DOI URL |
[6] |
Bohdálková L, Čuřík J, Aa K, Bůzek F (2012). Dynamics of methane fluxes from two peat bogs in the Ore Mountains, Czech Republic. Plant, Soil and Environment, 59,14-21.
DOI URL |
[7] |
Bohn TJ, Lettenmaier DP, Sathulur K, Bowling LC, Podest E, McDonald KC, Friborg T (2007). Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change. Environmental Research Letters, 2,45015. DOI: 10.1088/1748-9326/2/4/045015.
DOI URL |
[8] |
Brown D (1998). Gas production from an ombrotrophic bog—Effect of climate change on microbial ecology. Climatic Change, 40,277-284.
DOI URL |
[9] | Bu ZJ, Yang YF, Dai D, Wang XW (2005). Age structure and growth pattern of Polytrichum juniperum populations in a mire of Changbai Mountains. Chinese Journal of Applied Ecology, 16,44-48. |
[ 卜兆君, 杨允菲, 代丹, 王宪伟 (2005). 长白山泥炭沼泽桧叶金发藓种群的年龄结构与生长分析. 应用生态学报, 16,44-48.] | |
[10] | Chang YH, Mu CC, Peng WH, Hao L, Han LD (2020). Characteristics of greenhouse gas emissions from seven swamp types in the permafrost region of Daxing'an Mountains, northeast China. Acta Ecologica Sinica, 40,2333-2346. |
[ 常怡慧, 牟长城, 彭文宏, 郝利, 韩丽冬 (2020). 大兴安岭永久冻土区7种沼泽类型土壤温室气体排放特征. 生态学报, 40,2333-2346.] | |
[11] |
Chasar LS, Chanton JP, Glaser PH, Siegel DI (2000). Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the glacial Lake Agassiz Peatland complex. Annals of Botany, 86,655-663.
DOI URL |
[12] | Chen JW, Ge JW, Feng L, Zhou Y, Gan J, Li YF, Zhang ZQ (2020). Methane flux characteristics and its relationship with soil microbial community composition of Dajiuhu peatland in Shennongjia. Earth Science, 45,1082-1092. |
[ 谌佳伟, 葛继稳, 冯亮, 周颖, 甘娟, 李永福, 张志麒 (2020). 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45,1082-1092.] | |
[13] |
Crill PM, Bartlett KB, Harriss RC, Gorham E, Verry ES, Sebacher DI, Madzar L, Sanner W (1988). Methane flux from minnesota peatlands. Global Biogeochemical Cycles, 2,371-384.
DOI URL |
[14] | Cui HJ, Zhang Y, Zhang YF, Tian K, Xiao DR, Wang K, Guo Y, Li LJ (2018). Characteristics of moss bog plant community and interspecific relationships of dominant species in Niangniang Mountain wetland, Guizhou. Chinese Journal of Ecology, 37,2619-2626. |
[ 崔海军, 张勇, 张银峰, 田昆, 肖德荣, 王凯, 郭应, 李龙江 (2018). 贵州娘娘山湿地藓类沼泽植物群落特征及优势种种间关系. 生态学杂志, 37,2619-2626.] | |
[15] |
Dedysh SN (2002). Methanotrophic bacteria of acidic Sphagnum peat bogs. Microbiology, 71,638-650.
DOI URL |
[16] | Duan XN, Wang XK, Ouyang ZY (2005). Effects of vascular plants on methane emissions from natural wetlands. Acta Ecologica Sinica, 25,3375-3382. |
[ 段晓男, 王效科, 欧阳志云 (2005). 维管植物对自然湿地甲烷排放的影响. 生态学报, 25,3375-3382.] | |
[17] |
Frenzel P, Karofeld E (2000). CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation. Biogeochemistry, 51,91-112.
DOI URL |
[18] |
Gill AL, Giasson MA, Yu R, Finzi AC (2017). Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog. Global Change Biology, 23,5398-5411.
DOI URL |
[19] |
Gorham E (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1,182-195.
DOI URL |
[20] |
Hanson PJ, Gill AL, Xu X, Phillips JR, Weston DJ, Kolka RK, Riggs JS, Hook LA (2016). Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry, 129,255-272.
DOI URL |
[21] |
Hao L, Mu CC, Chang YH, Shen ZQ, Han LD, Jiang N, Peng WH (2019). Effects of harvest on greenhouse gas emissions from forested swamp during non-growing season in Xiaoxing’an Mountains of China. Chinese Journal of Applied Ecology, 30,1713-1725.
DOI PMID |
[ 郝利, 牟长城, 常怡慧, 申忠奇, 韩丽冬, 姜宁, 彭文宏 (2019). 采伐对小兴安岭森林沼泽非生长季土壤温室气体排放的影响. 应用生态学报, 30,1713-1725.]
PMID |
|
[22] |
Hines ME, Duddleston KN, Rooney-Varga JN, Fields D, Chanton JP (2008). Uncoupling of acetate degradation from methane formation in Alaskan wetlands: connections to vegetation distribution. Global Biogeochemical Cycles, 22, GB2017. DOI: 10.1029/2006GB002903.
DOI |
[23] |
Kelley CA, Martens CS, Ussler III W (1995). Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography, 40,1112-1129.
DOI URL |
[24] |
Kettunen A, Kaitala V, Lehtinen A, Lohila A, Alm J, Silvola J, Martikainen PJ (1999). Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biology & Biochemistry, 31,1741-1749.
DOI URL |
[25] |
Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart GJ, Smolders AJP, Jetten MSM, Damsté JSS, den Camp HJMO (2010). Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nature Geoscience, 3,617-621.
DOI URL |
[26] |
Knoblauch C, Zimmermann U, Blumenberg M, Michaelis W, Pfeiffer EM (2008). Methane turnover and temperature response of methane-oxidizing bacteria in permafrost- affected soils of northeast Siberia. Soil Biology & Biochemistry, 40,3004-3013.
DOI URL |
[27] |
Koponen HT, Martikainen PJ (2004). Soil water content and freezing temperature affect freeze-thaw related N2O production in organic soil. Nutrient Cycling in Agroecosystems, 69,213-219.
DOI URL |
[28] |
Korrensalo A, Männistö E, Alekseychik P, Mammarella I, Rinne J, Vesala T, Tuittila ES (2018). Small spatial variability in methane emission measured from a wet patterned boreal bog. Biogeosciences, 15,1749-1761.
DOI URL |
[29] |
Kox MAR, van den Elzen E, Lamers LPM, Jetten MSM, van Kessel MAHJ (2020). Microbial nitrogen fixation and methane oxidation are strongly enhanced by light in Sphagnum mosses. AMB Express, 10, 61. DOI: 10.1186/s13568-020-00994-9.
DOI |
[30] |
Larmola T, Tuittila ES, Tiirola M, Nykänen H, Martikainen PJ, Yrjälä K, Tuomivirta T, Fritze H (2010). The role of Sphagnum mosses in the methane cycling of a boreal mire. Ecology, 91,2356-2365.
PMID |
[31] |
Leroy F, Gogo S, Guimbaud C, Bernard-Jannin L, Yin X, Belot G, Shuguang W, Laggoun-Défarge F (2019). CO2 and CH4budgets and global warming potential modifications in Sphagnum-dominated peat mesocosms invaded by Molinia caerulea. Biogeosciences, 16,4085-4095.
DOI URL |
[32] | Li YL, Miao JL, He Y (2013). Influence of calculation methods on calculated daily mean temperature. Meteorogical Science and Technology, 41(1),88-92. |
[ 李亚丽, 妙娟利, 贺音 (2013). 日平均计算方法对气温统计值的影响. 气象科技, 41(1),88-92.] | |
[33] | Li YY, Ge JW, Peng FJ, Zhou Y, Li JQ, Wu X, Liu YL, Zhang ZQ (2017). Characteristics of methane flux and their effect factors on Dajiuhu peatland of Shennongjia. Earth Science, 42,832-842. |
[ 李艳元, 葛继稳, 彭凤姣, 周颖, 李金群, 吴先, 刘奕伶, 张志麒 (2017). 神农架大九湖泥炭湿地CH4通量特征及其影响因子. 地球科学, 42,832-842.] | |
[34] | Liu LF, Chen H, Peng CH, Zhu QA, Li BX (2016). CH4 emissions under warming schemes from peatlands of different depths in the Zoige Plateau. Chinese Journal of Applied and Environmental Biology, 22,1-7. |
[ 刘亮锋, 陈槐, 彭长辉, 朱求安, 李宝鑫 (2016). 若尔盖高原不同深度泥炭在增温条件下CH4释放. 应用与环境生物学报, 22,1-7.] | |
[35] |
Meng HN, Song CC, Miao YQ, Mao R, Wang XW (2014). Response of CH4 emissions to moss removal and N addition in boreal peatland of northeast China. Biogeosciences, 11,4809-4816.
DOI URL |
[36] |
Miao Y, Song C, Sun L, Wang X, Meng H, Mao R (2012). Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation. Biogeosciences, 9,4455-4464.
DOI URL |
[37] |
Mikkelä C, Sundh I, Svensson BH, Nilsson M (1995). Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire. Biogeochemistry, 28,93-114.
DOI URL |
[38] |
Nykänen H, Alm J, Silvola J, Tolonen K, Martikainen PJ (1998). Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles, 12,53-69.
DOI URL |
[39] |
Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MSM, Schouten S, Sinninghe Damsté JS, Lamers LPM, Roelofs JGM, Op Den Camp HJM, Strous M (2005). Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature, 436,1153-1156.
PMID |
[40] |
Rask H, Schoenau J, Anderson D (2002). Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biology & Biochemistry, 34,435-443.
DOI URL |
[41] |
Riutta T, Korrensalo A, Laine AM, Laine J, Tuittila ES (2020). Interacting effects of vegetation components and water level on methane dynamics in a boreal fen. Biogeosciences, 17,727-740.
DOI URL |
[42] |
Saarnio S, Alm J, Silvola J, Lohila A, Nykänen H, Martikainen PJ (1997). Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen. Oecologia, 110,414-422.
DOI PMID |
[43] |
Shannon RD, White JR, Lawson JE, Gilmour BS (1996). Methane efflux from emergent vegetation in peatlands. Journal of Ecology, 84,239-246.
DOI URL |
[44] |
Stępniewska Z, Goraj W, Kuźniar A, Szafranek-Nakonieczna A, Banach A, Górski A, Pytlak A, Urban D (2018). Methane oxidation by endophytic bacteria inhabiting Sphagnum sp. and some vascular plants. Wetlands, 38,411-422.
DOI URL |
[45] |
Straková P, Niemi RM, Freeman C, Peltoniemi K, Toberman H, Heiskanen I, Fritze H, Laiho R (2011). Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes. Biogeosciences, 8,2741-2755.
DOI URL |
[46] | Sun XX, Mu CC, Shi LY, Cheng W, Liu X, Wu YX, Feng DJ (2009). Methane emission from forested swamps in Xiaoxing’an Mountains, northeastern China. Chinese Journal of Plant Ecology, 33,535-545. |
[ 孙晓新, 牟长城, 石兰英, 程伟, 刘霞, 吴云霞, 冯登军 (2009). 小兴安岭森林沼泽甲烷排放及其影响因子. 植物生态学报, 33,535-545.]
DOI |
|
[47] |
Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ERC, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila ES, et al. (2014). A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology, 20,2183-2197.
DOI PMID |
[48] |
Turetsky MR, Treat CC, Waldrop MP, Waddington JM, Harden JW, Mcguire AD (2008). Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. Journal of Geophysical Research, 113,G00A10. DOI: 10.1029/2007JG000496.
DOI |
[49] |
Urbanová Z, Bárta J, Picek T (2013). Methane emissions and methanogenic archaea on pristine, drained and restored mountain peatlands, central Europe. Ecosystems, 16,664-677.
DOI URL |
[50] |
Waddington JM, Day SM (2007). Methane emissions from a peatland following restoration. Journal of Geophysical Research: Biogeosciences, 112,G03018. DOI: 10.1029/2007JG000400.
DOI |
[51] |
Waddington JM, Kellner E, Strack M, Price JS (2010). Differential peat deformation, compressibility, and water storage between peatland microforms: implications for ecosystem function and development. Water Resources Research, 46,W07538. DOI: 10.1029/2009WR008802.
DOI |
[52] | Wang H, Wu L, Xue D, Liu XF, Hong L, Mou L, Li XL (2020). Distribution and environmental characteristics of Sphagnum peat bogs in Taishanmiao in Enshi City, Hubei Province. Wetland Science, 18,266-274. |
[ 王涵, 吴林, 薛丹, 刘雪飞, 洪柳, 牟利, 李小玲 (2020). 湖北省恩施市太山庙泥炭藓泥炭沼泽分布及其环境特征研究. 湿地科学, 18,266-274.] | |
[53] | Wang XL, Zhang H, Yao ZS, Zheng XH, Zhang SQ (2016). A preliminary study on methane emission from a seasonal- freezing alpine peat wetland during a non-growing period. Climatic and Environmental Research, 21,282-292. |
[ 王晓龙, 张寒, 姚志生, 郑循华, 张社奇 (2016). 季节性冻结高寒泥炭湿地非生长季甲烷排放特征初探. 气候与环境研究, 21,282-292.] | |
[54] | Wang YY, Yang ZF, Yu T, Wen YB, Xia XQ, Bai RJ (2011). Contrastive studies on different interpolation methods in soil carbon storage calculation in Da'an City, Jilin Province. Carsologica Sinica, 30,479-486. |
[ 汪媛媛, 杨忠芳, 余涛, 文宇博, 夏学齐, 白荣杰 (2011). 土壤碳储量计算中不同插值方法对比研究——以吉林省大安市为例. 中国岩溶, 30,479-486.] | |
[55] | Wang ZX, Lei Y, Liu SX, Fang YP, Man JS, Peng ZL, Zhang L, Ma GL (2005). One subalpine Sphagnum wetland being discovered in Qizimei Mountains Nature Reserve, Hubei. Journal of Central China Normal University(Natural Sciences), 39,387-388. |
[ 汪正祥, 雷耘, 刘胜祥, 方元平, 满金山, 彭宗林, 张柳, 马广礼 (2005). 湖北七姊妹山自然保护区发现亚高山泥炭藓湿地. 华中师范大学学报(自然科学版), 39,387-388.] | |
[56] |
Wuebbles DJ, Hayhoe K (2002). Atmospheric methane and global change. Earth-Science Reviews, 57,177-210.
DOI URL |
[57] | Xiao SH, Zhang ZR, Qin DH, He DJ, Liu JS, Wu JQ, Cai CT, You WB, Shen YQ, Jian LY (2016). Community composition of four types of Sphagnum wetlands and its relationship with environmental factors in Tianbaoyan National Nature Reserve. Chinese Journal of Applied and Environmental Biology, 22,631-638. |
[ 肖石红, 张中瑞, 覃德华, 何东进, 刘进山, 吴建勤, 蔡昌棠, 游巍斌, 沈云强, 简立燕 (2016). 天宝岩国家级自然保护区4种类型泥炭藓沼泽植被组成及其与环境因子的关系. 应用与环境生物学报, 22,631-638.] | |
[58] |
Yavitt JB, Yashiro E, Cadillo-Quiroz H, Zinder SH (2012). Methanogen diversity and community composition in peatlands of the central to northern Appalachian Mountain region, North America. Biogeochemistry, 109,117-131.
DOI URL |
[59] |
Zalman C, Keller JK, Tfaily M, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton J, Kostka JE, Gill A, Finzi A, Hopple AM, Bohannan BJM, Bridgham SD (2018). Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry, 139,155-177.
DOI URL |
[60] | Zhan QF (2006). Mosses' Stem Structure and Application of Stem Structure on Brachythecium taxonomy. Master degree dissertation, East China Normal University, Shanghai. |
[ 詹琪芳 (2006). 藓类茎结构及其在青藓属分类中的应用. 硕士学位论文, 华东师范大学, 上海.] | |
[61] | Zhang CF, Sheng LX, Gong C, He CG, Zhang J (2018). Effects of freeze-thaw cycles on soil microbial biomass carbon and carbon emissions from wetland soils, Northeast China. Chinese Journal of Ecology, 37,304-311. |
[ 张超凡, 盛连喜, 宫超, 何春光, 张晶 (2018). 冻融作用对我国东北湿地土壤碳排放与土壤微生物的影响. 生态学杂志, 37,304-311.] |
[1] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[2] | 王秀英, 陈奇, 杜华礼, 张睿, 马红璐. 基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究[J]. 植物生态学报, 2023, 47(7): 912-921. |
[3] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[4] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[5] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[6] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[7] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[8] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[9] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[10] | 王国宏, 郭柯, 谢宗强, 唐志尧, 蒋延玲, 方精云. 《中国植被志》研编规范的若干说明、补充与修订[J]. 植物生态学报, 2022, 46(3): 368-372. |
[11] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[12] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[13] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[14] | 张欢, 张云玲, 张彦才, 阎平. 新疆奇台荒漠类草地自然保护区主要植物群落及其特征[J]. 植物生态学报, 2021, 45(8): 918-924. |
[15] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19