植物生态学报 ›› 2022, Vol. 46 ›› Issue (1): 27-39.DOI: 10.17521/cjpe.2020.0406
所属专题: 青藏高原植物生态学:群落生态学
刘艳方1,3, 王文颖3,4,*(), 索南吉3, 周华坤2, 毛旭锋1, 王世雄3, 陈哲3
收稿日期:
2020-12-07
接受日期:
2021-07-05
出版日期:
2022-01-20
发布日期:
2022-04-13
通讯作者:
王文颖
作者简介:
*(wangwy0106@163.com)基金资助:
Yan-Fang LIU1,3, Weng-Ying WANG3,4,*(), Nan-Ji SUO3, Hua-Kun ZHOU2, Xu-Feng MAO1, Shi-Xiong WANG3, Zhe CHEN3
Received:
2020-12-07
Accepted:
2021-07-05
Online:
2022-01-20
Published:
2022-04-13
Contact:
Weng-Ying WANG
摘要:
土壤线虫是良好的指示生物, 是植物群落演替的重要驱动力, 其生态功能影响着生态系统正常生态效应的发挥。该研究以海北矮生嵩草(Kobresia humilis)草甸、西藏嵩草(Kobresia tibetica)沼泽化草甸、暗褐薹草(Carex atrofusca)沼泽化草甸和金露梅(Potentilla fruticosa)灌丛4种不同植物群落类型的土壤线虫为研究对象, 研究不同植物群落类型下的土壤线虫群落组成、分布特征、物种多样性及其营养类群组成, 分析植物类群结构与土壤线虫群落之间的相关性。主要研究结果: (1)在4种植物群落土壤样本中共分离线虫3 800条, 分属于2纲5目15科30属, 线虫平均个体密度为每100 g干土580条, 随土壤深度增加而递减, 具有明显的表聚性。不同植物群落间的土壤线虫群落组成存在一定差异, 矮生嵩草草甸0-40 cm土壤线虫总数(1 811条·392.5 cm-3)显著高于其他植物群落类型, 暗褐薹草沼泽化草甸的土壤线虫总数最少(324条·392.5 cm-3)。4种植物群落下土壤线虫的优势属和营养类群组成存在差异, 这种差异在矮生嵩草草甸与暗褐薹草沼泽化草甸之间表现得尤为明显。 (2)不同植物群落下土壤线虫的多样性指数(H′)和均匀度指数(J′)均为金露梅灌丛最高, 暗褐薹草沼泽化草甸最低, 其两种植物群落间H′差异显著, 而优势度指数(λ)相反, 为暗褐薹草沼泽化草甸最高, 金露梅灌丛最低。表明金露梅灌丛土壤线虫群落多样性最高, 暗褐薹草沼泽化草甸土壤线虫群落多样性最低, 土壤线虫群落趋于单一化。4种植物群落土壤有机质的分解途径均以细菌通道为主。西藏嵩草沼泽化草甸的瓦斯乐斯卡指数(WI)显著高于矮生嵩草草甸, 表明从高寒沼泽化草甸过渡到高寒灌丛、高寒草甸, 土壤肥力不断降低, 沼泽化草甸有利于食微生物线虫的生长。暗褐薹草沼泽化草甸的植物寄生线虫指数(PPI)、成熟度指数(MI)均表现为最低, 表明其生态系统的成熟度较低, 这与暗褐薹草沼泽化草甸土壤含水量较高有关。不同植物群落下的富集指数(EI)、结构指数(SI)均为暗褐薹草沼泽化草甸最高, 由此可以看出暗褐薹草沼泽化草甸的食物网相对连通性较高, 食物链较长, 食物网的阻力相对较小。(3)主成分分析(PCA)结果显示4种植物群落最大贡献属不同。相关性分析表明: 食细菌性线虫数量与西藏嵩草沼泽化草甸有显著的正相关关系; 金露梅灌丛的植物多样性与线虫的H′、J′有显著的负相关关系, 与λ则有显著的正相关关系; WI与矮生嵩草草甸的植物多样性有显著的正相关关系, PPI与矮生嵩草草甸的物种多样性指数有显著的负相关关系。综上所述, 植物群落深刻地影响着土壤线虫群落的多样性。
刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系. 植物生态学报, 2022, 46(1): 27-39. DOI: 10.17521/cjpe.2020.0406
Yan-Fang LIU, Weng-Ying WANG, Nan-Ji SUO, Hua-Kun ZHOU, Xu-Feng MAO, Shi-Xiong WANG, Zhe CHEN. Relationship between plant community types and soil nematode communities in Haibei, Qinghai, China. Chinese Journal of Plant Ecology, 2022, 46(1): 27-39. DOI: 10.17521/cjpe.2020.0406
草地类型 Grass type | 经度 Latitude (°) | 纬度 Longitude (°) | 海拔 Altitude (m) | 地上生物量 Aboveground biomass (g·m-2) | 盖度 Coverage (%) |
---|---|---|---|---|---|
矮生嵩草草甸 Kobresia humilis meadow (Kh) | 104.10 | 37.62 | 3 108-3 131 | 345.72-438.15 | 80-95 |
西藏嵩草沼泽化草甸 Kobresia tibetica swamp meadow (Kt) | 103.94 | 39.57 | 3 114-3 120 | 426.84-593.53 | 85-95 |
暗褐薹草沼泽化草甸 Carex atrofusca swamp meadow (Ca) | 103.94 | 39.57 | 3 100-3 114 | 154.93-216.76 | 65-85 |
金露梅灌丛 Potentilla fruticosa shrubland (Pf) | 103.93 | 39.57 | 3 110-3 126 | 230.51-291.89 | 90-98 |
表1 海北植物群落实验样地基本情况
Table 1 Basic information of the experimental plots of plant community in Haibei
草地类型 Grass type | 经度 Latitude (°) | 纬度 Longitude (°) | 海拔 Altitude (m) | 地上生物量 Aboveground biomass (g·m-2) | 盖度 Coverage (%) |
---|---|---|---|---|---|
矮生嵩草草甸 Kobresia humilis meadow (Kh) | 104.10 | 37.62 | 3 108-3 131 | 345.72-438.15 | 80-95 |
西藏嵩草沼泽化草甸 Kobresia tibetica swamp meadow (Kt) | 103.94 | 39.57 | 3 114-3 120 | 426.84-593.53 | 85-95 |
暗褐薹草沼泽化草甸 Carex atrofusca swamp meadow (Ca) | 103.94 | 39.57 | 3 100-3 114 | 154.93-216.76 | 65-85 |
金露梅灌丛 Potentilla fruticosa shrubland (Pf) | 103.93 | 39.57 | 3 110-3 126 | 230.51-291.89 | 90-98 |
属名 Genus | c-p | 矮生嵩草草甸 Kobresia humilis meadow | 西藏嵩草沼泽化草甸 Kobresia tibetica swamp meadow | 暗褐薹草沼泽化草甸 Carex atrofusca swamp meadow | 金露梅灌丛 Potentilla fruticosa shrubland | ||||
---|---|---|---|---|---|---|---|---|---|
绝对丰度 Absolute abundance | 优势度 Dominance | 绝对丰度 Absolute abundance | 优势度 Dominance | 绝对丰度 Absolute abundance | 优势度 Dominance | 绝对丰度 Absolute abundance | 优势度 Dominance | ||
食细菌线虫 Bacterial-feeders | |||||||||
Panagrellus | 1 | 2 | + | 8 | ++ | ||||
Panagrobelus | 1 | 4 | + | 1 | + | ||||
Rhabditonema | 1 | 2 | + | 6 | ++ | 1 | + | 80 | +++ |
Stegelleta | 2 | 101 | +++ | 6 | ++ | ||||
Kirjanovia | 2 | 1 | + | ||||||
Heterocephalobellus | 2 | 1 | + | ||||||
Wilsonema | 2 | 1 | + | 1 | + | 1 | + | ||
Cephalobus | 2 | 1 | + | 1 | + | ||||
Eucephalobus | 2 | 1 | + | ||||||
Acrobeles | 2 | 120 | +++ | 2 | + | 6 | ++ | ||
Acrobeloides | 2 | 245 | +++ | 114 | +++ | 82 | +++ | 70 | +++ |
Cervidellus | 2 | 17 | ++ | 33 | ++ | 2 | ++ | 26 | ++ |
植物寄生线虫 Plant-parasites | |||||||||
Lelenchus | 2 | 8 | + | 1 | + | ||||
Hemicycliophora | 3 | 1 | + | 1 | + | 1 | + | ||
Malenchus | 2 | 3 | + | 31 | ++ | ||||
Hemicriconemoides | 3 | 5 | + | ||||||
Criconema | 3 | 3 | + | 1 | + | ||||
Helicotylenchus | 3 | 4 | + | 11 | ++ | ||||
Rotylenchus | 3 | 252 | +++ | 42 | ++ | 42 | +++ | 73 | +++ |
食真菌线虫 Fungal-feeders | |||||||||
Tylenchus | 2 | 54 | ++ | 68 | +++ | 3 | ++ | 24 | ++ |
Filenchus | 2 | 76 | ++ | 112 | +++ | 9 | ++ | 66 | +++ |
Aphelenchus | 2 | 3 | + | 2 | + | 46 | ++ | ||
Paraphelenchus | 2 | 1 | + | 12 | ++ | 17 | ++ | ||
Ditylenchus | 2 | 2 | + | 3 | + | ||||
杂食-捕食线虫 Predators-omnivores | |||||||||
Labronemella | 3 | 47 | ++ | 79 | +++ | 16 | ++ | 25 | ++ |
Eudorylaimus | 4 | 36 | ++ | 54 | ++ | 8 | ++ | 33 | ++ |
Heterodorus | 4 | 20 | ++ | 7 | ++ | ||||
Iotonchus | 4 | 23 | ++ | 1 | + | ||||
Discolaimium | 5 | 26 | ++ | 1 | + | 1 | + | 5 | + |
Mesodorylaimus | 5 | 17 | ++ | 1 | + | 7 | ++ | ||
合计 Total | 968 | 639 | 171 | 541 | |||||
属数 Number of genus | 25 | 23 | 10 | 22 |
表2 海北不同植物群落下土壤线虫群落组成及营养类群colonizer-persister (c-p)值
Table 2 Soil nematode community composition and colonizer-persister (c-p) value of trophic groups under different plant communities in Haibei
属名 Genus | c-p | 矮生嵩草草甸 Kobresia humilis meadow | 西藏嵩草沼泽化草甸 Kobresia tibetica swamp meadow | 暗褐薹草沼泽化草甸 Carex atrofusca swamp meadow | 金露梅灌丛 Potentilla fruticosa shrubland | ||||
---|---|---|---|---|---|---|---|---|---|
绝对丰度 Absolute abundance | 优势度 Dominance | 绝对丰度 Absolute abundance | 优势度 Dominance | 绝对丰度 Absolute abundance | 优势度 Dominance | 绝对丰度 Absolute abundance | 优势度 Dominance | ||
食细菌线虫 Bacterial-feeders | |||||||||
Panagrellus | 1 | 2 | + | 8 | ++ | ||||
Panagrobelus | 1 | 4 | + | 1 | + | ||||
Rhabditonema | 1 | 2 | + | 6 | ++ | 1 | + | 80 | +++ |
Stegelleta | 2 | 101 | +++ | 6 | ++ | ||||
Kirjanovia | 2 | 1 | + | ||||||
Heterocephalobellus | 2 | 1 | + | ||||||
Wilsonema | 2 | 1 | + | 1 | + | 1 | + | ||
Cephalobus | 2 | 1 | + | 1 | + | ||||
Eucephalobus | 2 | 1 | + | ||||||
Acrobeles | 2 | 120 | +++ | 2 | + | 6 | ++ | ||
Acrobeloides | 2 | 245 | +++ | 114 | +++ | 82 | +++ | 70 | +++ |
Cervidellus | 2 | 17 | ++ | 33 | ++ | 2 | ++ | 26 | ++ |
植物寄生线虫 Plant-parasites | |||||||||
Lelenchus | 2 | 8 | + | 1 | + | ||||
Hemicycliophora | 3 | 1 | + | 1 | + | 1 | + | ||
Malenchus | 2 | 3 | + | 31 | ++ | ||||
Hemicriconemoides | 3 | 5 | + | ||||||
Criconema | 3 | 3 | + | 1 | + | ||||
Helicotylenchus | 3 | 4 | + | 11 | ++ | ||||
Rotylenchus | 3 | 252 | +++ | 42 | ++ | 42 | +++ | 73 | +++ |
食真菌线虫 Fungal-feeders | |||||||||
Tylenchus | 2 | 54 | ++ | 68 | +++ | 3 | ++ | 24 | ++ |
Filenchus | 2 | 76 | ++ | 112 | +++ | 9 | ++ | 66 | +++ |
Aphelenchus | 2 | 3 | + | 2 | + | 46 | ++ | ||
Paraphelenchus | 2 | 1 | + | 12 | ++ | 17 | ++ | ||
Ditylenchus | 2 | 2 | + | 3 | + | ||||
杂食-捕食线虫 Predators-omnivores | |||||||||
Labronemella | 3 | 47 | ++ | 79 | +++ | 16 | ++ | 25 | ++ |
Eudorylaimus | 4 | 36 | ++ | 54 | ++ | 8 | ++ | 33 | ++ |
Heterodorus | 4 | 20 | ++ | 7 | ++ | ||||
Iotonchus | 4 | 23 | ++ | 1 | + | ||||
Discolaimium | 5 | 26 | ++ | 1 | + | 1 | + | 5 | + |
Mesodorylaimus | 5 | 17 | ++ | 1 | + | 7 | ++ | ||
合计 Total | 968 | 639 | 171 | 541 | |||||
属数 Number of genus | 25 | 23 | 10 | 22 |
图1 海北不同植物群落下土壤线虫个体密度和垂直分布(平均值±标准误)。同一土层下不同小写字母代表差异显著(p < 0.05)。每个处理土壤线虫数量为3个重复的平均值。Ca, 暗褐薹草沼泽化草甸; Kh, 矮生嵩草草甸; Kt, 西藏嵩草沼泽化草甸; Pf, 金露梅灌丛。
Fig. 1 Individual density and vertical distribution of soil nematodes under different plant communities in Haibei (mean ± SE). Different lowercase letters in the same soil layer represent significant differences (p < 0.05). The number of soil nematodes in each treatment is the average of three replicates. Ca, Carex atrofusca swamp meadow; Kh, Kobresia humilis meadow; Kt, Kobresia tibetica swamp meadow; Pf, Potentilla fruticosa shrubland.
生态指数 Ecological index | Kh | Kt | Ca | Pf |
---|---|---|---|---|
多样性指数 Shannon index (H′) | 2.15 ± 0.02ab | 1.52 ± 0.51a | 1.41 ± 0.16a | 2.48 ± 0.04b |
均匀度指数 Evenness index (J′) | 0.70 ± 0.01a | 0.77 ± 0.20a | 0.67 ± 0.06a | 0.85 ± 0.01a |
优势度指数 Dominance (λ) | 0.17 ± 0.00a | 0.16 ± 0.02a | 0.34 ± 0.06b | 0.11 ± 0.01a |
线虫通道指数 Nematode channel ratio (NCR) | 0.75 ± 0.01ac | 0.53 ± 0.08b | 0.89 ± 0.05c | 0.55 ± 0.08ab |
瓦斯乐斯卡指数 Wasilewska index (WI) | 1.93 ± 0.31a | 9.94 ± 2.10b | 2.56 ± 0.47a | 3.71 ± 0.89a |
自由生活线虫成熟指数 Maturity index (MI) | 2.09 ± 0.14a | 1.84 ± 0.03ab | 1.67 ± 0.04b | 1.77 ± 0.05b |
植物寄生线虫成熟指数 Plant parasite index (PPI) | 0.85 ± 0.08a | 0.71 ± 0.08ac | 0.24 ± 0.05b | 0.53 ± 0.09c |
富集指数 Enrichment index (EI) | 40.56 ± 0.56a | 47.62 ± 2.38bc | 50.00 ± 0.00b | 45.45 ± 0.00c |
结构指数 Structure index (SI) | 80.87 ± 0.81ab | 74.94 ± 9.06ab | 89.72 ± 1.87a | 73.33 ± 0.00b |
表3 海北不同植物群落类型下土壤线虫群落生态指数值(平均值±标准误)
Table 3 Ecological index values of soil nematode communities under different plant community types in Haibei (mean ± SE)
生态指数 Ecological index | Kh | Kt | Ca | Pf |
---|---|---|---|---|
多样性指数 Shannon index (H′) | 2.15 ± 0.02ab | 1.52 ± 0.51a | 1.41 ± 0.16a | 2.48 ± 0.04b |
均匀度指数 Evenness index (J′) | 0.70 ± 0.01a | 0.77 ± 0.20a | 0.67 ± 0.06a | 0.85 ± 0.01a |
优势度指数 Dominance (λ) | 0.17 ± 0.00a | 0.16 ± 0.02a | 0.34 ± 0.06b | 0.11 ± 0.01a |
线虫通道指数 Nematode channel ratio (NCR) | 0.75 ± 0.01ac | 0.53 ± 0.08b | 0.89 ± 0.05c | 0.55 ± 0.08ab |
瓦斯乐斯卡指数 Wasilewska index (WI) | 1.93 ± 0.31a | 9.94 ± 2.10b | 2.56 ± 0.47a | 3.71 ± 0.89a |
自由生活线虫成熟指数 Maturity index (MI) | 2.09 ± 0.14a | 1.84 ± 0.03ab | 1.67 ± 0.04b | 1.77 ± 0.05b |
植物寄生线虫成熟指数 Plant parasite index (PPI) | 0.85 ± 0.08a | 0.71 ± 0.08ac | 0.24 ± 0.05b | 0.53 ± 0.09c |
富集指数 Enrichment index (EI) | 40.56 ± 0.56a | 47.62 ± 2.38bc | 50.00 ± 0.00b | 45.45 ± 0.00c |
结构指数 Structure index (SI) | 80.87 ± 0.81ab | 74.94 ± 9.06ab | 89.72 ± 1.87a | 73.33 ± 0.00b |
图2 海北不同植物群落类型下土壤线虫群落结构主成分分析(PCA)。Acr, 丽突属; Acro, 拟丽突属; Acrol, Acrolobus; Aph, 真滑刃属; Bol, 叉针属; Cep, 头叶属; Cer, 鹿角唇属; Cri, 环属; Dis, Discolaimium; Dit, 茎属; Euc, 真头叶属; Eud, Eudorylaimus; Fil, 丝尾垫刃属; Hel, 螺旋属; Hem, 鞘属; Hemi, 拟鞘属; Het, Heterodorus; Hete, 胞囊属; Iot, Iotonchus; Kir, kirjiahovia; Lab, Labronemella; Lel, 细纹垫刃属; Mal, 剑尾垫刃属; Mes, 中矛属; Pan, 浅腔属; Pana, 瓣唇属; Par, 拟滑刃属; Pse, 伪丽突属; Rha, 小杆属; Rhab, Rhabditonema; Rot, 盘旋属; Scu, 钝属; Ste, Stegelleta; Tyl, 垫刃属; Wil, 威尔斯属。
Fig. 2 Principal component analysis (PCA) of soil nematode community structure under different plant community types in Haibei. Acr, Acrobeles; Acro, Acrobeloides; Acrol, Acrolobus; Aph, Aphelenchu; Bol, Boleodorus; Cep, Cephalobus; Cer, Cervidellus; Cri, Criconema; Dis, Discolaimium; Dit, Ditylenchus; Euc, Eucephalobus; Eud, Eudorylaimus; Fil, Filenchus; Hel, Helicotylenchus; Hem, Hemicycliophora; Hemi, Hemicriconemoides; Het, Heterodorus; Hete, Heterodera; Iot, Iotonchus; Kir, kirjiahovia; Lab, Labronemella; Lel, Lelenchus; Mal, Malenchus; Mes, Mesodorylaimus; Pan, Panagrellus; Pana, Panagrobelus; Par, Paraphelenchuss; Pse, Pseudacrobeles; Rha, Rhabditis; Rhab, Rhabditonema; Rot, Rotylenchus; Scu, Scutellonema; Ste, Stegelleta; Tyl, Tylenchus; Wil, Wilsonema.
影响因素 Indicator | Kh | Kt | Ca | Pf |
---|---|---|---|---|
线虫数量 Nematode abundance | 0.891 | 0.863 | -0.704 | 0.773 |
植物寄生线虫 Plant-parasites | -0.122 | 0.993 | 0.156 | -0.460 |
食细菌线虫 Bacterial-feeders | 0.923 | 0.997* | -0.680 | 0.992 |
食真菌线虫 Fungal-feeders | 0.996 | -0.002 | 0.423 | 0.183 |
捕食-杂食线虫 Predators-omnivores | 0.834 | 0.646 | 0.318 | -0.947 |
多样性指数 Shanndon index (H′) | -0.750 | 0.476 | 0.793 | -0.999* |
均匀度指数 Evenness index (J′) | -0.750 | 0.526 | 0.985 | -0.998* |
优势度指数 Domiance (λ) | 0.772 | -0.612 | -0.869 | 1.000* |
线虫通道指数 Nematode channel ratio (NCR) | -0.102 | 0.973 | -0.650 | 0.571 |
瓦斯乐斯卡指数 Wasilewska index (WI) | 0.998* | -0.463 | -0.715 | 0.969 |
自由生活线虫成熟度指数 Maturity index (MI) | 0.944 | 0.325 | 0.967 | -0.633 |
植物寄生线虫成熟度指数 Plant parasite index (PPI) | -0.999* | 0.133 | 0.525 | -0.825 |
富集指数 Enrichment index (EI) | 0.966 | -0.990 | -0.919 | 0.868 |
结构指数 Structure index (SI) | -0.966 | -0.852 | 0.973 | 0.869 |
表4 海北线虫数量、营养类群、生态指数与植物群落类型的相关系数
Table 4 Correlation coefficient between the number of nematodes, trophic group, ecological index and plant community type in Haibei
影响因素 Indicator | Kh | Kt | Ca | Pf |
---|---|---|---|---|
线虫数量 Nematode abundance | 0.891 | 0.863 | -0.704 | 0.773 |
植物寄生线虫 Plant-parasites | -0.122 | 0.993 | 0.156 | -0.460 |
食细菌线虫 Bacterial-feeders | 0.923 | 0.997* | -0.680 | 0.992 |
食真菌线虫 Fungal-feeders | 0.996 | -0.002 | 0.423 | 0.183 |
捕食-杂食线虫 Predators-omnivores | 0.834 | 0.646 | 0.318 | -0.947 |
多样性指数 Shanndon index (H′) | -0.750 | 0.476 | 0.793 | -0.999* |
均匀度指数 Evenness index (J′) | -0.750 | 0.526 | 0.985 | -0.998* |
优势度指数 Domiance (λ) | 0.772 | -0.612 | -0.869 | 1.000* |
线虫通道指数 Nematode channel ratio (NCR) | -0.102 | 0.973 | -0.650 | 0.571 |
瓦斯乐斯卡指数 Wasilewska index (WI) | 0.998* | -0.463 | -0.715 | 0.969 |
自由生活线虫成熟度指数 Maturity index (MI) | 0.944 | 0.325 | 0.967 | -0.633 |
植物寄生线虫成熟度指数 Plant parasite index (PPI) | -0.999* | 0.133 | 0.525 | -0.825 |
富集指数 Enrichment index (EI) | 0.966 | -0.990 | -0.919 | 0.868 |
结构指数 Structure index (SI) | -0.966 | -0.852 | 0.973 | 0.869 |
[1] | Bongers AMT (1988). The Nematodes of the Netherlands. KNNV Uitgeverij, Utrecht, the Netherlands. |
[2] |
Bongers T (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19.
DOI PMID |
[3] |
Bongers T, Bongers M (1998). Functional diversity of nematodes. Applied Soil Ecology, 10, 239-251.
DOI URL |
[4] | Cheng YY, Sun T, Wang QK, Liang WJ, Zhang XK (2018). Effects of simulated nitrogen deposition on temperate forest soil nematode communities and their metabolic footprints. Acta Ecologica Sinica, 38, 475-484. |
[ 程云云, 孙涛, 王清奎, 梁文举, 张晓珂 (2018). 模拟氮沉降对温带森林土壤线虫群落组成和代谢足迹的影响. 生态学报, 38, 475-484.] | |
[5] | Dai LC, Ke X, Cao YF, Zhang FW, Du YG, Li YK, Guo XW, Li Q, Lin L, Cao GM (2018). The response of shallow groundwater level to environmental factors on alpine meadow in Qinghai-Tibet Plateau: a case study on Qinghai Haibei Station. Ecology and Environmental Sciences, 27, 1750-1757. |
[ 戴黎聪, 柯浔, 曹莹芳, 张法伟, 杜岩功, 李以康, 郭小伟, 李茜, 林丽, 曹广民 (2018). 青藏高原高寒草甸浅层地下水位对环境因子的响应特征--以青海海北站为例. 生态环境学报, 27, 1750-1757.] | |
[6] |
Ferris H, Bongers T,de Goede RGM(2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13-29.
DOI URL |
[7] |
Girgan C, Claassens S, Fourie H (2020). Nematode assemblages and soil microbial communities in soils associated with glyphosate-resistant soybean. South African Journal of Plant and Soil, 37, 11-22.
DOI URL |
[8] | Hu F, Li HX, Xie LQ, Wu SM (1999). Interactions of bacterivorous nematode and bacteria and their effects on mineralization-immobiolization of nitrogen and phosphorus. Acta Ecologica Sinica, 19, 914-920. |
[ 胡锋, 李辉信, 谢涟琪, 吴珊眉 (1999). 土壤食细菌线虫与细菌的相互作用及其对N、P矿化-生物固定的影响及机理. 生态学报, 19, 914-920.] | |
[9] | Hu J, He GY, Yin X, Li LP, Chen H, Yan J, Du GZ (2016). Effect of grazing on soil nematode in alpine meadow on east edge of the Tibetan Plateau and its mechanism. Acta Pedologica Sinica, 53, 1506-1516. |
[ 胡靖, 何贵勇, 尹鑫, 李兰平, 陈晗, 闫俊, 杜国祯 (2016). 放牧管理对青藏高原东缘高寒草甸土壤线虫的影响. 土壤学报, 53, 1506-1516.] | |
[10] | Jairajpuri MS, Ahmad W (1992). Dorylaimida-Free-Living, Predaceous and Plant-Parasitic Nematodes. Pauls Press, New Delhi, India. |
[11] |
Korobushkin DI, Butenko KO, Gongalsky KB, Saifutdinov RA, Zaitsev AS (2019). Soil nematode communities in temperate rice-growing systems. European Journal of Soil Biology, 93, 103099. DOI: 10.1016/j.ejsobi.2019.103099.
DOI URL |
[12] |
Li CY, Lang QL, Zhang FS, Zhao DK, Liu HL, Zhou J (2020). Study on the integrated system of prediction of the range of volcanic collapse in Changbai Mountain. IOP Conference Series: Earth and Environmental Science, 558, 032017. DOI: 10.1088/1755-1315/558/3/032017.
DOI URL |
[13] | Liu BB, Ye CL, Yu L, Jiao JG, Liu MQ, Hu F, Li HX (2012). Characteristics of soil nematode communities in coastal wetlands with different vegetation types. Chinese Journal of Applied Ecology, 23, 3057-3064. |
[ 刘贝贝, 叶成龙, 虞丽, 焦加国, 刘满强, 胡锋, 李辉信 (2012). 不同植被类型的滩涂湿地土壤线虫群落特征. 应用生态学报, 23, 3057-3064.] | |
[14] |
Liu J, Yang Q, Siemann E, Huang W, Ding JQ (2019). Latitudinal and altitudinal patterns of soil nematode communities under tallow tree (Triadica sebifera) in China. Plant Ecology, 220, 965-976.
DOI URL |
[15] |
Lü Y, Chen X, Xue WF, Zhang WD (2020). Short-term effects of cadmium and mercury on soil nematode communities in a pot experiment. Helminthologia, 57, 145-153.
DOI PMID |
[16] | Mao XF, Li HX, Chen XY, Hu F (2004). Extraction efficiency of soil nematodes by different methods. Chinese Journal of Ecology, 23, 149-151. |
[ 毛小芳, 李辉信, 陈小云, 胡锋 (2004). 土壤线虫三种分离方法效率比较. 生态学杂志, 23, 149-151.] | |
[17] |
Mulder C, Schouten AJ, Hund-Rinke K, Breure AM (2005). The use of nematodes in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety, 62, 278-289.
DOI URL |
[18] |
Olatunji OA, Gong S, Tariq A, Pan K, Sun X, Chen W, Zhang L, Dakhil MA, Huang D, Tan X (2019). The effect of phosphorus addition, soil moisture, and plant type on soil nematode abundance and community composition. Journal of Soils and Sediments, 19, 1139-1150.
DOI URL |
[19] |
Renčo M, Gömöryová E, Čerevková A (2020). The effect of soil type and ecosystems on the soil nematode and microbial communities. Helminthologia, 57, 129-144.
DOI PMID |
[20] |
Shaw EA, Boot CM, Moore JC, Wall DH, Baron JS (2019). Long-term nitrogen addition shifts the soil nematode community to bacterivore-dominated and reduces its ecological maturity in a subalpine forest. Soil Biology & Biochemistry, 130, 177-184.
DOI URL |
[21] | Ślusarski C, Chalańska A, Uliński Z, Sobiczewski P, Meszka B (2020). Effect of chemical soil fumigant treatments on soil microorganism and nematode complex and yield of field cucumber. Acta Horticulturae, 133-140. |
[22] | Song M, Liu YZ, Jing SS (2015). Response of soil nematodes to climate change: a review. Acta Ecologica Sinica, 35, 6857-6867. |
[ 宋敏, 刘银占, 井水水 (2015). 土壤线虫对气候变化的响应研究进展. 生态学报, 35, 6857-6867.] | |
[23] | Song MH, Liu LP, Chen J, Zhang XZ (2018). Biology, multi-function and optimized management in grassland ecosystem. Ecology and Environmental Sciences, 27, 1179-1188. |
[ 宋明华, 刘丽萍, 陈锦, 张宪洲 (2018). 草地生态系统生物和功能多样性及其优化管理. 生态环境学报, 27, 1179-1188.] | |
[24] | Sun J, Zhang ZC, Dong SK (2019). Adaptive management of alpine grassland ecosystems over Tibetan Plateau. Pratacultural Science, 36, 933-938. |
[ 孙建, 张振超, 董世魁 (2019). 青藏高原高寒草地生态系统的适应性管理. 草业科学, 36, 933-938.] | |
[25] | The Northwest Institute of Plateau Biology,Chinese Academy of Sciences(2018). Haibei Alpine Meadow Ecosystem Positioning Station, Chinese Academy of Sciences. Bulletin of the Chinese Academy of Sciences, 33, 1127-1129. |
[ 中国科学院西北高原生物研究所 (2018). 中国科学院海北高寒草甸生态系统定位站. 中国科学院院刊, 33, 1127-1129.] | |
[26] | Wang MG, de Deyn GB, Bezemer TM (2019). Separating effects of soil microorganisms and nematodes on plant community dynamics. Plant and Soil, 441, 455-467. |
[27] |
Wang WY, Ma YG, Xu J, Wang HC, Zhu JF, Zhou HK (2012). The uptake diversity of soil nitrogen nutrients by main plant species in Kobresia humilis alpine meadow on the Qinghai-Tibet Plateau. Science China Earth Sciences, 55, 1688-1695.
DOI URL |
[28] | Wang XX, Gao QZ, Hasbagan Ganjurjav, Hu GZ, Li WH (2018). Soil nematode community response to warming in alpine meadows of northern Tibet. Pratacultural Science, 35, 1528-1538. |
[ 王学霞, 高清竹, 干珠扎布, 胡国铮, 栗文瀚 (2018). 藏北高寒草甸土壤线虫群落结构对增温的响应. 草业科学, 35, 1528-1538.] | |
[29] |
Wang YT, Niu KC (2020). Effect of soil environment on functional diversity of soil nematodes in Tibetan alpine meadows. Biodiversity Science, 28, 707-717.
DOI URL |
[ 王宇彤, 牛克昌 (2020). 青藏高原高寒草甸土壤环境对线虫功能多样性的影响. 生物多样性, 28, 707-717.]
DOI |
|
[30] | Wu JH (1999). Research on Freshwater and Soil Nematodes in China. PhD dissertation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. |
[ 吴纪华 (1999). 中国淡水和土壤线虫的研究. 博士学位论文, 中国科学院水生生物研究所, 武汉.] | |
[31] | Wu XH, Shan XK, Dong SK, Gao XX, Xu YD, Zhang X, Wu SN, Hu Y, Wen L, Liu SL, Dong QM, Wang WY (2019). Prediction of alpine artificial grassland restoration based on an improved Lotka-Volterra interspecific competition model. Acta Ecologica Sinica, 39, 3187-3198. |
[ 吴晓慧, 单熙凯, 董世魁, 高晓霞, 许驭丹, 张曦, 武胜男, 胡樱, 温璐, 刘世梁, 董全民, 王文颖 (2019). 基于改进的Lotka-Volterra种间竞争模型预测退化高寒草地人工恢复演替结果. 生态学报, 39, 3187-3198.] | |
[32] | Xie H (2005). Taxonomy of Plant Nematodes. Higher Education Press, Beijing. |
[ 谢辉 (2005). 植物线虫分类学. 高等教育出版社, 北京.] | |
[33] | Xue B, Hou L, Xue HY (2019). Research on the characteristics of soil nematode communities in alpine meadow in northern Tibet by using high-throughput sequencing. Acta Ecologica Sinica, 39, 4088-4095. |
[ 薛蓓, 侯磊, 薛会英 (2019). 基于高通量测序分析西藏北部高寒草甸不同深度土壤线虫群落分布特征. 生态学报, 39, 4088-4095.] | |
[34] |
Xue HY, Hu F, Luo DQ (2013). Effects of alpine meadow plant communities on soil nematode functional structure in Northern Tibet, China. Acta Ecologica Sinica, 33, 1482- 1494.
DOI URL |
[ 薛会英, 胡锋, 罗大庆 (2013). 藏北高寒草甸植物群落对土壤线虫群落功能结构的影响. 生态学报, 33, 1482-1494.] | |
[35] | Xue HY, Luo DQ, Hu F, Li HX, Wang JS, Qu XL, Wang HY, Yu BZ, Sun Q (2016). Effect of short-term enclosure on soil nematode communities in an alpine meadow in Northern Tibet. Acta Ecologica Sinica, 36, 6139-6148. |
[ 薛会英, 罗大庆, 胡锋, 李辉信, 王景升, 屈兴乐, 王鸿源, 于宝政, 孙巧 (2016). 短期围封对西藏北部高寒草甸土壤线虫群落的影响. 生态学报, 36, 6139-6148.] | |
[36] | Xue HY, Luo DQ, Wang HY, Qu XL (2017). Effects of free grazing or enclosure on soil nematodes in alpine meadows in north Tibet, China. Acta Pedologica Sinica, 54, 480- 492. |
[ 薛会英, 罗大庆, 王鸿源, 屈兴乐 (2017). 藏北高寒草甸土壤线虫群落对围封及自由放牧的响应. 土壤学报, 54, 480-492.] | |
[37] | Yang M, Shi ZY, Lu SC, Zhang MG, Wang XG, Xu XF (2020). Effect of warming on soil glomalin in grassland of the Qinghai-Tibet Plateau. Ecology and Environmental Sciences, 29, 650-656. |
[ 杨梅, 石兆勇, 卢世川, 张梦歌, 王旭刚, 徐晓峰 (2020). 增温对青藏高原草地生态系统土壤球囊霉素含量的影响. 生态环境学报, 29, 650-656.] | |
[38] |
Yeates GW (2003). Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils, 37, 199-210.
DOI URL |
[39] |
Yeates GW, Bongers T, de Goede RG, Freckman DW, Georgieva SS (1993). Feeding habits in soil nematode families and genera-An outline for soil ecologists. Journal of Nematology, 25, 315-331.
PMID |
[40] | Yin WY (1998). China Soil Animal Retrieval Illustrated Book. Science Press, Beijing. |
[ 尹文英 (1998). 中国土壤动物检索图鉴. 科学出版社, 北京.] | |
[41] | Yin WY (2000). Chinese Soil Animals. Science Press, Beijing. |
[ 尹文英 (2000). 中国土壤动物. 科学出版社, 北京.] | |
[42] |
Yurkevich MG, Sushchuk AA, Matveeva EM, Kalinkina DS (2020). Changes in soil nematode communities during postagrogenic transformation of peat soils and vegetation. Eurasian Soil Science, 53, 686-695.
DOI URL |
[43] |
Zhang GG, Sui X, Li Y, Jia MQ, Wang ZW, Han GD, Wang LC (2020). The response of soil nematode fauna to climate drying and warming in Stipa breviflora desert steppe in Inner Mongolia, China. Journal of Soils and Sediments, 20, 2166-2180.
DOI URL |
[44] |
Zhang XK, Liang WJ, Li Q (2018). Recent progress and future directions of soil nematode ecology in China. Biodiversity Science, 26, 1060-1073.
DOI URL |
[ 张晓珂, 梁文举, 李琪 (2018). 我国土壤线虫生态学研究进展和展望. 生物多样性, 26, 1060-1073.]
DOI |
|
[45] |
Zhang XK, Wu X, Zhang SX, Xing YH, Liang WJ (2019). Organic amendment effects on nematode distribution within aggregate fractions in agricultural soils. Soil Ecology Letters, 1, 147-156.
DOI URL |
[46] |
Zhang ZH, Zhou HK, Zhao XQ, Yao BQ, Ma Z, Dong QM, Zhang ZH, Wang WY, Yang YW (2018). Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau. Biodiversity Science, 26, 111-129.
DOI URL |
[ 张中华, 周华坤, 赵新全, 姚步青, 马真, 董全民, 张振华, 王文颖, 杨元武 (2018). 青藏高原高寒草地生物多样性与生态系统功能的关系. 生物多样性, 26, 111-129.]
DOI |
|
[47] | Zhao XQ (2011). Restoration and Sustainable Management of Degraded Grassland Ecosystem in the Source Region of Three Rivers. Science Press, Beijing. |
[ 赵新全 (2011). 三江源区退化草地生态系统恢复与可持续管理. 科学出版社, 北京.] | |
[48] |
Zheng F, Zhu D, Giles M, Daniell T, Neilson R, Zhu YG, Yang XR (2019). Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome. Science of the Total Environment, 680, 70-78.
DOI |
[49] | Zhu YH, Li KZ, Zhang H, Han F, Zhou JH, Gao TT (2015). Distribution characteristics of soil nematodes in reclaimed land of copper-mine-tailings in different plant associations. Chinese Journal of Applied Ecology, 26, 570-578. |
[ 朱永恒, 李克中, 张衡, 韩斐, 周举花, 高婷婷 (2015). 不同植物群丛下铜尾矿复垦地土壤线虫的分布特征. 应用生态学报, 26, 570-578.] | |
[50] | Zong N, Chai X, Shi PL, Jiang J, Niu B, Zhang XZ, He YT (2016). Responses of plant community structure and species composition to warming and N addition in an alpine meadow, northern Tibetan Plateau, China. Chinese Journal of Applied Ecology, 27, 3739-3748. |
[ 宗宁, 柴曦, 石培礼, 蒋婧, 牛犇, 张宪洲, 何永涛 (2016). 藏北高寒草甸群落结构与物种组成对增温与施氮的响应. 应用生态学报, 27, 3739-3748.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[3] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[4] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[5] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[6] | 樊凡, 赵联军, 马添翼, 熊心雨, 张远彬, 申小莉, 李晟. 川西王朗亚高山暗针叶林25.2 hm2动态监测样地物种组成与群落结构特征[J]. 植物生态学报, 2022, 46(9): 1005-1017. |
[7] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[8] | 谢育杭, 贾璞, 郑修坛, 李金天, 束文圣, 王宇涛. 驯化对作物微生物组多样性和群落结构的影响及作用途径[J]. 植物生态学报, 2022, 46(3): 249-266. |
[9] | 王国宏, 郭柯, 谢宗强, 唐志尧, 蒋延玲, 方精云. 《中国植被志》研编规范的若干说明、补充与修订[J]. 植物生态学报, 2022, 46(3): 368-372. |
[10] | 周亮, 杨君珑, 杨虎, 窦建德, 黄维, 李小伟. 宁夏蒙古扁桃群落特征与分类[J]. 植物生态学报, 2022, 46(2): 243-248. |
[11] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[12] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[13] | 黄侩侩, 胡刚, 庞庆玲, 张贝, 何业涌, 胡聪, 徐超昊, 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[14] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[15] | 张欢, 张云玲, 张彦才, 阎平. 新疆奇台荒漠类草地自然保护区主要植物群落及其特征[J]. 植物生态学报, 2021, 45(8): 918-924. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19