植物生态学报 ›› 2023, Vol. 47 ›› Issue (2): 170-182.DOI: 10.17521/cjpe.2022.0180
收稿日期:
2009-01-12
接受日期:
2009-06-03
出版日期:
2023-02-20
发布日期:
2023-02-28
通讯作者:
*(E-mail: 基金资助:
XI Nian-Xun1,2,*(), ZHANG Yuan-Ye3, ZHOU Shu-Rong1
Received:
2009-01-12
Accepted:
2009-06-03
Online:
2023-02-20
Published:
2023-02-28
Contact:
*(E-mail: Supported by:
摘要:
植物-土壤反馈是指植物改变了其生长环境中土壤的生物和非生物属性, 改变后的土壤进而影响植物适合度的过程。植物-土壤反馈的一个根本前提是: 植物在根际周围产生由专化病原菌和共生菌构成的特异性微生物群落, 专化微生物对宿主植物种群有很大的影响, 对非宿主植物没有或者有微弱影响。自从20世纪90年代被明确提出后, 植物-土壤反馈被广泛用于揭示不同尺度的生态学过程, 诸如演替、竞争、生物入侵、全球变化对生态系统的影响等。近年来, 植物-土壤反馈与群落生态学主要研究领域之间的整合取得了实质性进展。该文主要关注的是土壤微生物介导的植物-土壤反馈及其对植物物种共存、群落结构和生态系统功能的影响。土壤微生物不仅可以产生稳定化力量促进物种共存, 也可以改变均一化力量或者种间适合度差异, 从而影响植物种间共存。在群落生态学中通常假设稀有种受土壤负反馈的影响更弱, 从而预测植物局域丰富度与土壤反馈强度具有负相关关系。然而实验证据却揭示了不同的模式, 加强对植物与土壤病原菌之间的进化动态的关注是调和这些不一致模式的关键。土壤微生物也是驱动植物群落演替的关键因子。土壤微生物通过稀释效应影响植物多样性-群落生产力关系。专化土壤病原菌或共生菌在单物种群落中积累, 但其负面或正面影响在多物种群落中被稀释, 分别导致更高或更低的群落生产力, 从而提升或抑制多样性效应。针对群落生态学中的植物-土壤反馈研究, 该文提出了3个研究方向: 植物与土壤微生物专化关系的实验验证, 多维度物种共存, 植物与土壤微生物的生态-进化动态。
席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究. 植物生态学报, 2023, 47(2): 170-182. DOI: 10.17521/cjpe.2022.0180
XI Nian-Xun, ZHANG Yuan-Ye, ZHOU Shu-Rong. Plant-soil feedbacks in community ecology. Chinese Journal of Plant Ecology, 2023, 47(2): 170-182. DOI: 10.17521/cjpe.2022.0180
图1 植物-土壤反馈概念示意图(A)以及植物-反馈研究中的双阶段实验设计(B)。在驯化阶段, 将物种A和B种植在同质的土壤中, 经过一段时间的生长后, 植物驯化出不同的土壤微生物群落α、β。在反馈阶段, 花盆中装入灭菌土, 然后分别加入驯化阶段收集到的土壤, 种植植物, 测量植物在不同土壤类型中的表现: αA、αB、βA、βB。土壤γ为对照组, 是未经驯化的土壤或者灭菌后的驯化土。物种A和B在土壤γ中的表现记作γA和γB。计算土壤微生物介导的适合度差异时, 对照组通常为未经驯化的土壤。
Fig. 1 An illustration of plant-soil feedbacks (A) and the two-phase experiments (B). In the conditioning phase, plant species A and B are grown in homogeneous soil, and they condition soil microbes, thereby generating species-specific soil microbial community α and β. In the feedback phase, plants are transplanted in pots filled with sterilized background soil inoculated by soil α or β. Performances of species A and B growing in soil α and β are given by αA, αB, βA and βB. Soil γ is unconditioned field soil or sterilized soil as a control, and performances of species A and B growing in γ are given by γA and γB. Unconditioned field soil is usually used as control for calculating soil microbe-mediated fitness difference.
图2 植物-土壤反馈在物种共存研究中的位置。按照研究范围从大到小依次为生物多样性维持、物种共存、同种负密度依赖效应和Janzen-Connell效应。土壤病原菌引起的负反馈是一类Janzen-Connell效应。
Fig. 2 Niche of plant-soil feedbacks in species coexistence researches. The research themes are ranked from biodiversity maintenance, species coexistence, conspecific negative density dependence through Janzen-Connell effects, according to the scope of research areas. Negative feedbacks are considered as a type of Janzen-Connell effects which are driven by soil pathogens.
图3 土壤微生物通过调节稳定化力量和适合度差异导致物种共存、优先效应和竞争排除3种格局。Fd, 适合度差异; St, 稳定化力量。
Fig. 3 Outcomes of soil microbe-mediated plant competition: stable coexistence, competitive exclusion and priority effects. Fd, fitness difference; St, stabilization.
图4 微生物稀释效应(A), 植物生长在无菌土、无菌土+病原菌、无菌土+共生菌中植物多样性与群落生产力的关系(B)及土壤微生物通过影响互补效应和取样效应调节多样性效应(C)。
Fig. 4 Dilution of microbial effects (A), the relationships between plant diversity and productivity in plant communities growing in sterilized soil, sterilized soil + mutualists and sterilized soil + pathogens (B), and the pathways of soil microbes influencing complementarity and sampling effects and altering biodiversity effects (C).
[1] |
Abbott KC, Eppinga MB, Umbanhowar J, Baudena M, Bever JD (2021). Microbiome influence on host community dynamics: conceptual integration of microbiome feedback with classical host-microbe theory. Ecology Letters, 24, 2796-2811.
DOI PMID |
[2] |
Adler PB, HilleRisLambers J, Levine JM (2007). A niche for neutrality. Ecology Letters, 10, 95-104.
PMID |
[3] |
Aldorfová A, Knobová P, Münzbergová Z (2020). Plant-soil feedback contributes to predicting plant invasiveness of 68 alien plant species differing in invasive status. Oikos, 129, 1257-1270.
DOI URL |
[4] |
Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506, 85-88.
DOI |
[5] |
Bardgett RD, Manning P, Morriën E, de Vries FT (2013). Hierarchical responses of plant-soil interactions to climate change: consequences for the global carbon cycle. Journal of Ecology, 101, 334-343.
DOI URL |
[6] |
Bauer JT, Mack KML, Bever JD (2015). Plant-soil feedbacks as drivers of succession: evidence from remnant and restored tallgrass prairies. Ecosphere, 6, art158. DOI: 10.1890/ES14-00480.1.
DOI |
[7] |
Bennett JA, Klironomos J (2019). Mechanisms of plant-soil feedback: interactions among biotic and abiotic drivers. New Phytologist, 222, 91-96.
DOI PMID |
[8] |
Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J (2017). Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science, 355, 181-184.
DOI PMID |
[9] |
Bever JD (1994). Feeback between plants and their soil communities in an old field community. Ecology, 75, 1965-1977.
DOI URL |
[10] |
Bever JD (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157, 465-473.
DOI PMID |
[11] |
Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010). Rooting theories of plant community ecology in microbial interactions. Trends in Ecology & Evolution, 25, 468-478.
DOI URL |
[12] |
Bever JD, Platt TG, Morton ER (2012). Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annual Review of Microbiology, 66, 265-283.
DOI PMID |
[13] |
Bever JD, Westover KM, Antonovics J (1997). Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology, 85, 561-573.
DOI URL |
[14] | Brinkman EP, van der Putten WH, Bakker E, Verhoeven KJF (2010). Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology, 98, 1063-1073. |
[15] | Butt JJ (2002). Daily Life in the Age of Charlemagne. Greenwood Press, Westport, USA. |
[16] |
Callaway RM, Thelen GC, Barth S, Ramsey PW, Gannon JE (2004). Soil fungi alter interactions between the invader Centaurea maculosa and North American natives. Ecology, 85, 1062-1071.
DOI URL |
[17] | Chase JM, Leibold MA (2003). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago. |
[18] |
Cheeke TE, Zheng CY, Koziol L, Gurholt CR, Bever JD (2019). Sensitivity to AMF species is greater in late-successional than early-successional native or nonnative grassland plants. Ecology, 100, e02855. DOI: 10.1002/ecy.2855.
DOI |
[19] |
Chesson P (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366.
DOI URL |
[20] |
Chesson P (2018). Updates on mechanisms of maintenance of species diversity. Journal of Ecology, 106, 1773-1794.
DOI URL |
[21] |
Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu KY, Krishnadas M, Beckman N, Zhu Y, Gómez-Aparicio L (2014). Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. Journal of Ecology, 102, 845-856.
PMID |
[22] |
Comita LS, Stump SM (2020). Natural enemies and the maintenance of tropical tree diversity: recent insights and implications for the future of biodiversity in a changing world. Annals of the Missouri Botanical Garden, 105, 377-392.
DOI URL |
[23] |
Crawford KM, Bauer JT, Comita LS, Eppinga MB, Johnson DJ, Mangan SA, Queenborough SA, Strand AE, Suding KN, Umbanhowar J, Bever JD (2019). When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecology Letters, 22, 1274-1284.
DOI PMID |
[24] |
De Long JR, Fry EL, Veen GF, Kardol P (2019). Why are plant-soil feedbacks so unpredictable, and what to do about it? Functional Ecology, 33, 118-128.
DOI |
[25] |
de Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, Bardgett RD (2012). Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change, 2, 276-280.
DOI |
[26] |
Duran-Flores D, Heil M (2015). Growth inhibition by self-DNA: a phenomenon and its multiple explanations. New Phytologist, 207, 482-485.
DOI PMID |
[27] | Eppinga MB, Baudena M, Johnson DJ, Jiang J, Mack KML, Strand AE, Bever JD (2018). Frequency-dependent feedback constrains plant community coexistence. Nature Ecology & Evolution, 2, 1403-1407. |
[28] |
Fukami T, Mordecai EA, Ostling A (2016). A framework for priority effects. Journal of Vegetation Science, 27, 655-657.
DOI URL |
[29] |
Fussmann GF, Loreau M, Abrams PA (2007). Eco-evolutionary dynamics of communities and ecosystems. Functional Ecology, 21, 465-477.
DOI URL |
[30] |
Hannula SE, Heinen R, Huberty M, Steinauer K, De Long JR, Jongen R, Bezemer TM (2021). Persistence of plant- mediated microbial soil legacy effects in soil and inside roots. Nature Communications, 12, 5686. DOI: 10.1038/s41467-021-25971-z.
DOI |
[31] |
Hawkins AP, Crawford KM (2018). Interactions between plants and soil microbes may alter the relative importance of intraspecific and interspecific plant competition in a changing climate. AoB PLANTS, 10, ply039. DOI: 10.1093/aobpla/ply039.
DOI |
[32] |
Heinze J, Simons NK, Seibold S, Wacker A, Weithoff G, Gossner MM, Prati D, Bezemer TM, Joshi J (2019). The relative importance of plant-soil feedbacks for plant- species performance increases with decreasing intensity of herbivory. Oecologia, 190, 651-664.
DOI |
[33] |
Heinze J, Wacker A, Kulmatiski A (2020). Plant-soil feedback effects altered by aboveground herbivory explain plant species abundance in the landscape. Ecology, 101, e03023. DOI: 10.1002/ecy.3023.
DOI |
[34] | Hoestra H (1968). Replant Diseases of Apple in the Netherlands. PhD dissertation, Wageningen Agricultural University, Wageningen, the Netherlands. |
[35] |
Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, von Oheimb G, Yang XF, Liu XJ, Pei KQ, Both S, Yang B, Eichenberg D, et al. (2018). Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 362, 80-83.
DOI PMID |
[36] |
Hülsmann L, Chisholm RA, Hartig F (2021). Is variation in conspecific negative density dependence driving tree diversity patterns at large scales? Trends in Ecology & Evolution, 36, 151-163.
DOI URL |
[37] |
in ‘t Zandt D, Hoekstra NJ, Wagemaker CAM, de Caluwe H, Smit-Tiekstra AE, Visser EJW, de Kroon H (2020). Local soil legacy effects in a multispecies grassland community are underlain by root foraging and soil nutrient availability. Journal of Ecology, 108, 2243-2255.
DOI URL |
[38] |
Janzen DH (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528.
DOI URL |
[39] |
Jing JY, Bezemer TM, van der Putten WH (2015). Complementarity and selection effects in early and mid-successional plant communities are differentially affected by plant-soil feedback. Journal of Ecology, 103, 641-647.
DOI URL |
[40] |
Johnson DJ, Beaulieu WT, Bever JD, Clay K (2012). Conspecific negative density dependence and forest diversity. Science, 336, 904-907.
DOI PMID |
[41] |
Johnson MTJ, Stinchcombe JR (2007). An emerging synthesis between community ecology and evolutionary biology. Trends in Ecology & Evolution, 22, 250-257.
DOI URL |
[42] |
Kandlikar GS, Johnson CA, Yan XY, Kraft NJB, Levine JM (2019). Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecology Letters, 22, 1178-1191.
DOI PMID |
[43] | Kandlikar GS, Yan XY, Levine JM, Kraft NJB (2021). Soil microbes generate stronger fitness differences than stabilization among California annual plants. The American Naturalist, 197, E30-E39. |
[44] |
Kardol P, Bezemer TM, van der Putten WH (2006). Temporal variation in plant-soil feedback controls succession. Ecology Letters, 9, 1080-1088.
DOI PMID |
[45] |
Kardol P, Cornips NJ, Bakx-Schotman JMT, van der Putten WH (2007). Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecological Monographs, 77, 147-162.
DOI URL |
[46] | Ke PJ, Letten AD (2018). Coexistence theory and the frequency- dependence of priority effects. Nature Ecology & Evolution, 2, 1691-1695. |
[47] |
Ke PJ, Wan J (2020). Effects of soil microbes on plant competition: a perspective from modern coexistence theory. Ecological Monographs, 90, e01391. DOI: 10.1002/ecm.1391.
DOI |
[48] |
Klironomos JN (2002). Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417, 67-70.
DOI |
[49] |
Kraft NJB, Godoy O, Levine JM (2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 797-802.
DOI PMID |
[50] |
Kulmatiski A, Beard KH, Heavilin J (2012). Plant-soil feedbacks provide an additional explanation for diversity- productivity relationships. Proceedings of the Royal Society B: Biological Sciences, 279, 3020-3026.
DOI URL |
[51] |
Kulmatiski A, Beard KH, Norton JM, Heavilin JE, Forero LE, Grenzer J (2017). Live long and prosper: plant-soil feedback, lifespan, and landscape abundance covary. Ecology, 98, 3063-3073.
DOI PMID |
[52] | Kulmatiski A, Kardol P (2008). Getting plant—Soil feedbacks out of the greenhouse: experimental and conceptual approaches//Lüttge U, Beyschlag W, Murata J. Progress in Botany. Springer, Berlin. 449-472. |
[53] | LaManna JA, Mangan SA, Alonso A, Bourg NA, Brockelman WY, Bunyavejchewin S, Chang LW, Chiang JM, Chuyong GB, Clay K, Condit R, Cordell S, Davies SJ, Furniss TJ, Giardina CP, et al. (2017). Plant diversity increases with the strength of negative density dependence at the global scale. Science, 356, 1389-1392. |
[54] |
Liang MX, Liu XB, Parker IM, Johnson D, Zheng Y, Luo S, Gilbert GS, Yu SX (2019). Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Science Advances, 5, eaax5088. DOI: 10.1126/sciadv.aax5088.
DOI |
[55] |
Liu XB, Liang MX, Etienne RS, Wang YF, Staehelin C, Yu SX (2012). Experimental evidence for a phylogenetic Janzen- Connell effect in a subtropical forest. Ecology Letters, 15, 111-118.
DOI URL |
[56] |
Loreau M, Hector A (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76.
DOI URL |
[57] |
Maherali H, Klironomos JN (2007). Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 316, 1746-1748.
DOI PMID |
[58] |
Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD (2010). Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 466, 752-755.
DOI |
[59] |
Maron JL, Laney Smith A, Ortega YK, Pearson DE, Callaway RM (2016). Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition. Ecology, 97, 2055-2063.
DOI PMID |
[60] |
Maron JL, Marler M, Klironomos JN, Cleveland CC (2011). Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters, 14, 36-41.
DOI PMID |
[61] |
Mayfield MM, Levine JM (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085-1093.
DOI PMID |
[62] |
Mazzoleni S, Bonanomi G, Incerti G, Chiusano ML, Termolino P, Mingo A, Senatore M, Giannino F, Cartenì F, Rietkerk M, Lanzotti V (2015a). Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant-soil feedbacks? New Phytologist, 205, 1195-1210.
DOI URL |
[63] |
Mazzoleni S, Cartenì F, Bonanomi G, Senatore M, Termolino P, Giannino F, Incerti G, Rietkerk M, Lanzotti V, Chiusano ML (2015b). Inhibitory effects of extracellular self- DNA: a general biological process? New Phytologist, 206, 127-132.
DOI URL |
[64] |
McCarthy-Neumann S, Ibáñez I (2013). Plant-soil feedback links negative distance dependence and light gradient partitioning during seedling establishment. Ecology, 94, 780-786.
DOI URL |
[65] |
McCarthy-Neumann S, Kobe RK (2010). Conspecific and heterospecific plant-soil feedbacks influence survivorship and growth of temperate tree seedlings. Journal of Ecology, 98, 408-418.
DOI URL |
[66] |
Mommer L, Cotton TEA, Raaijmakers JM, Termorshuizen AJ, van Ruijven J, Hendriks M, van Rijssel SQ, van de Mortel JE, van der Paauw JW, Schijlen EGWM, Smit-Tiekstra AE, Berendse F, de Kroon H, Dumbrell AJ (2018). Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. New Phytologist, 218, 542-553.
DOI PMID |
[67] |
Mordecai EA (2011). Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecological Monographs, 81, 429-441.
DOI URL |
[68] |
Nguyen NH, Song ZW, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016). FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241-248.
DOI URL |
[69] |
Nuñez MA, Dickie IA (2014). Invasive belowground mutualists of woody plants. Biological Invasions, 16, 645-661.
DOI URL |
[70] | Pacala SW, Tilman D (2002). The transition from sampling to complementarity//Kinzig AP, Pacala SW, Tilman D. The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions. Princeton University Press, Princeton, USA. 151-166. |
[71] |
Petermann JS, Fergus AJF, Turnbull LA, Schmid B (2008). Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology, 89, 2399-2406.
DOI PMID |
[72] |
Png GK, Lambers H, Kardol P, Turner BL, Wardle DA, Laliberté E (2019). Biotic and abiotic plant-soil feedback depends on nitrogen-acquisition strategy and shifts during long-term ecosystem development. Journal of Ecology, 107, 142-153.
DOI URL |
[73] | Põlme S, Abarenkov K, Henrik Nilsson R, Lindahl BD, Clemmensen KE, Kauserud H, Nguyen N, Kjøller R, Bates ST, Baldrian P, Frøslev TG, Adojaan K, Vizzini A, Suija A, Pfister D (2021). FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 105, 1-16. |
[74] |
Reinhart KO (2012). The organization of plant communities: negative plant-soil feedbacks and semiarid grasslands. Ecology, 93, 2377-2385.
PMID |
[75] |
Reinhart KO, Anacker BL (2014). More closely related plants have more distinct mycorrhizal communities. AoB PLANTS, 6, plu051. DOI: 10.1093/aobpla/plu051.
DOI |
[76] |
Reinhart KO, Bauer JT, McCarthy-Neumann S, MacDougall AS, Hierro JL, Chiuffo MC, Mangan SA, Heinze J, Bergmann J, Joshi J, Duncan RP, Diez JM, Kardol P, Rutten G, Fischer M, et al. (2021). Globally, plant-soil feedbacks are weak predictors of plant abundance. Ecology and Evolution, 11, 1756-1768.
DOI PMID |
[77] |
Reynolds HL, Packer A, Bever JD, Clay K (2003). Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology, 84, 2281-2291.
DOI URL |
[78] |
Ricklefs RE (2015). Intrinsic dynamics of the regional community. Ecology Letters, 18, 497-503.
DOI PMID |
[79] | Ricklefs RE (2016). Intrinsic and extrinsic influences on ecological communities. Contributions to Science, 12, 27-34. |
[80] |
Rutten G, Prati D, Hemp A, Fischer M (2016). Plant-soil feedback in East-African savanna trees. Ecology, 97, 294-301.
PMID |
[81] |
Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011). Soil microbes drive the classic plant diversity-productivity pattern. Ecology, 92, 296-303.
PMID |
[82] |
Schoener TW (2011). The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science, 331, 426-429.
DOI PMID |
[83] |
Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A, Jackson BG, Pritchard WJ, De Long JR, Oakley S, Mason KE, Ostle NJ, Baggs EM, Johnson D, Fierer N, Bardgett RD (2018). Fungal diversity regulates plant-soil feedbacks in temperate grassland. Science Advances, 4, eaau4578. DOI: 10.1126/sciadv.aau4578.
DOI |
[84] |
Siepielski AM, McPeek MA (2010). On the evidence for species coexistence: a critique of the coexistence program. Ecology, 91, 3153-3164.
PMID |
[85] |
Silvertown J (2004). Plant coexistence and the niche. Trends in Ecology & Evolution, 19, 605-611.
DOI URL |
[86] |
Smith LM, Reynolds HL (2015). Plant-soil feedbacks shift from negative to positive with decreasing light in forest understory species. Ecology, 96, 2523-2532.
PMID |
[87] |
Smith-Ramesh LM, Reynolds HL (2017). The next frontier of plant-soil feedback research: unraveling context dependence across biotic and abiotic gradients. Journal of Vegetation Science, 28, 484-494.
DOI URL |
[88] |
terHorst CP, Zee PC (2016). Eco-evolutionary dynamics in plant-soil feedbacks. Functional Ecology, 30, 1062-1072.
DOI URL |
[89] |
Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, Laliberté E (2017). Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science, 355, 173-176.
DOI PMID |
[90] |
Thakur MP, van der Putten WH, Wilschut RA, Veen GF, Kardol P, van Ruijven J, Allan E, Roscher C, van Kleunen M, Bezemer TM (2021). Plant-soil feedbacks and temporal dynamics of plant diversity-productivity relationships. Trends in Ecology & Evolution, 36, 651-661.
DOI URL |
[91] |
Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001). Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845.
PMID |
[92] |
Titus JH, del Moral R (1998). Seedling establishment in different microsites on Mount St. Helens, Washington, USA. Plant Ecology, 134, 13-26.
DOI URL |
[93] |
van de Voorde TFJ, van der Putten WH, Bezemer TM (2011). Intra- and interspecific plant-soil interactions, soil legacies and priority effects during old-field succession. Journal of Ecology, 99, 945-953.
DOI URL |
[94] |
van der Heijden MGA, Bardgett RD, van Straalen NM (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310.
DOI PMID |
[95] |
van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, van de Voorde TFJ, Wardle DA (2013). Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology, 101, 265-276.
DOI URL |
[96] |
van der Putten WH, Peters BAM (1997). How soil-borne pathogens may affect plant competition. Ecology, 78, 1785-1795.
DOI URL |
[97] |
van der Putten WH, van Dijk C, Peters BAM (1993). Plant- specific soil-borne diseases contribute to succession in foredune vegetation. Nature, 362, 53-56.
DOI |
[98] |
van Ruijven J, Ampt E, Francioli D, Mommer L (2020). Do soil-borne fungal pathogens mediate plant diversity- productivity relationships? Evidence and future opportunities. Journal of Ecology, 108, 1810-1821.
DOI URL |
[99] |
Veresoglou SD, Aguilar-Trigueros CA, Mansour I, Rillig MC (2015). Self-DNA: a blessing in disguise? New Phytologist, 207, 488-490.
DOI PMID |
[100] |
Veresoglou SD, Rillig MC (2014). Do closely related plants host similar arbuscular mycorrhizal fungal communities? A meta-analysis. Plant and Soil, 377, 395-406.
DOI URL |
[101] |
Vogelsang KM, Bever JD (2009). Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology, 90, 399-407.
PMID |
[102] |
Vogelsang KM, Reynolds HL, Bever JD (2006). Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist, 172, 554-562.
PMID |
[103] |
Wagg C, Jansa J, Schmid B, van der Heijden MGA (2011). Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecology Letters, 14, 1001-1009.
DOI PMID |
[104] |
Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A (2012). Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiology, 159, 789-797.
DOI PMID |
[105] | Wang GZ, Jia JY, Zhang JL (2021). Plant soil feedback theory and its applications and prospects in natural and agricultural ecosystems. Acta Ecologica Sinica, 41, 9130-9143. |
[王光州, 贾吉玉, 张俊伶 (2021). 植物-土壤反馈理论及其在自然和农田生态系统中的应用研究进展. 生态学报, 41, 9130-9143.] | |
[106] |
Wang GZ, Schultz P, Tipton A, Zhang JL, Zhang FS, Bever JD (2019). Soil microbiome mediates positive plant diversity- productivity relationships in late successional grassland species. Ecology Letters, 22, 1221-1232.
DOI URL |
[107] |
Wardle DA, Bardgett RD, Callaway RM, van der Putten WH (2011). Terrestrial ecosystem responses to species gains and losses. Science, 332, 1273-1277.
DOI PMID |
[108] |
Weigelt A, Bol R, Bardgett RD (2005). Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia, 142, 627-635.
PMID |
[109] |
Wubs ERJ, Bezemer TM (2016). Effects of spatial plant-soil feedback heterogeneity on plant performance in monocultures. Journal of Ecology, 104, 364-376.
DOI URL |
[110] |
Xi NX, Adler PB, Chen DX, Wu HY, Catford JA, van Bodegom PM, Bahn M, Crawford KM, Chu CJ (2021). Relationships between plant-soil feedbacks and functional traits. Journal of Ecology, 109, 3411-3423.
DOI URL |
[111] |
Xi NX, Bloor JMG, Chu CJ (2020). Soil microbes alter seedling performance and biotic interactions under plant competition and contrasting light conditions. Annals of Botany, 126, 1089-1098.
DOI PMID |
[112] |
Xi NX, Bloor JMG, Wang Y, Chu CJ (2019). Contribution of conspecific soil microorganisms to tree seedling light responses: insights from two tropical species with contrasting shade tolerance. Environmental and Experimental Botany, 166, 103826. DOI: 10.1016/j.envexpbot.2019.103826.
DOI |
[113] |
Xi NX, Chen DX, Bahn M, Wu HY, Chu CJ, Cadotte MW, Bloor JMG (2022a). Drought soil legacy alters drivers of plant diversity-productivity relationships in oldfield systems. Science Advances, 8, eabn3368. DOI: 10.1126/sciadv.abn3368.
DOI |
[114] |
Xi NX, Chu CJ, Bloor JMG (2018). Plant drought resistance is mediated by soil microbial community structure and soil- plant feedbacks in a savanna tree species. Environmental and Experimental Botany, 155, 695-701.
DOI URL |
[115] |
Xi NX, Crawford KM, de Long JR (2022b). Plant landscape abundance and soil fungi modulate drought effects on plant-soil feedbacks. Oikos, 2022, e08836. DOI: 10.1111/oik.08836.
DOI |
[116] |
Yelenik SG, Levine JM (2011). The role of plant-soil feedbacks in driving native-species recovery. Ecology, 92, 66-74.
PMID |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[3] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[4] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[5] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[6] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[7] | 樊凡, 赵联军, 马添翼, 熊心雨, 张远彬, 申小莉, 李晟. 川西王朗亚高山暗针叶林25.2 hm2动态监测样地物种组成与群落结构特征[J]. 植物生态学报, 2022, 46(9): 1005-1017. |
[8] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[9] | 秦江环, 张春雨, 赵秀海. 基于温带针阔混交林植物-土壤反馈的Janzen- Connell假说检验[J]. 植物生态学报, 2022, 46(6): 624-631. |
[10] | 谢育杭, 贾璞, 郑修坛, 李金天, 束文圣, 王宇涛. 驯化对作物微生物组多样性和群落结构的影响及作用途径[J]. 植物生态学报, 2022, 46(3): 249-266. |
[11] | 周亮, 杨君珑, 杨虎, 窦建德, 黄维, 李小伟. 宁夏蒙古扁桃群落特征与分类[J]. 植物生态学报, 2022, 46(2): 243-248. |
[12] | 黄侩侩, 胡刚, 庞庆玲, 张贝, 何业涌, 胡聪, 徐超昊, 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[13] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[14] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[15] | 贺忠权, 刘长成, 蔡先立, 郭柯. 黔中高原喀斯特常绿与落叶阔叶混交林类型及群落特征[J]. 植物生态学报, 2021, 45(6): 670-680. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19