植物生态学报 ›› 2023, Vol. 47 ›› Issue (6): 822-832.DOI: 10.17521/cjpe.2022.0195
所属专题: 全球变化与生态系统; 生态系统结构与功能; 青藏高原植物生态学:群落生态学; 生物多样性
吕自立1, 刘彬1,*(), 常凤1, 马紫荆1, 曹秋梅2
收稿日期:
2022-05-16
接受日期:
2022-12-09
出版日期:
2023-06-20
发布日期:
2022-12-26
通讯作者:
* (作者简介:
** 现工作单位: 莆田砺成中学, 福建莆田 351199。
基金资助:
LÜ Zi-Li1, LIU Bin1,*(), CHANG Feng1, MA Zi-Jing1, CAO Qiu-Mei2
Received:
2022-05-16
Accepted:
2022-12-09
Online:
2023-06-20
Published:
2022-12-26
Contact:
* (About author:
** Current workplace: Putian Licheng Middle School, Fujian 351199.
Supported by:
摘要:
明确植物功能多样性与生态系统多功能性(EMF)之间的关系, 可以更清晰地阐释生态系统功能的变化。以往生物多样性-生态系统功能关系的研究仅停留在对单一生态系统功能(SEF)的实验性或观察性调查, 忽略了生态系统能同时提供多种功能和服务这一最本质的重要价值。该研究以巴音布鲁克高寒草甸为研究区, 在海拔2 194-3 062 m范围内以200 m左右为间隔设置了5个海拔高度, 选取土壤全氮含量、硝态氮含量、铵态氮含量、全磷含量、速效磷含量、全钾含量、速效钾含量、土壤密度、植物群落地上与地下生物量10个与养分循环、土壤有机碳蓄积和植物生长有密切联系的指标, 综合各指标平均值来表征EMF。结果表明: (1)群落物种组成沿海拔梯度变化较大, 海拔2 600 m处物种丰富度显著高于其他海拔; 功能均匀度指数(FEve)、功能丰富度指数(FRic)和功能分散度指数(FDis)均随着海拔的升高呈现“单峰”变化趋势, 最高值分别出现在2 600、2 800、2 800 m处; Rao二次熵指数(Rao’Q)整体呈现单调递减趋势。(2)各海拔高度上FRic、FDis与EMF间均存在极显著的正相关关系, 分别解释了EMF 47%和43%的变化; 在海拔2 600 m处FEve与土壤养分循环指数、土壤有机碳蓄积指数间存在显著相关关系; 海拔3 000 m处Rao’Q与土壤养分循环指数、有机碳蓄积指数和EMF间均存在显著相关关系。(3)通过构建结构方程模型分析海拔梯度上植物功能多样性与EMF的关系可知, 海拔以功能多样性为媒介作用于EMF, 其中功能丰富度对EMF的影响最大, 验证了功能多样性与EMF间存在互补效应。综上, 随着海拔的变化, 功能多样性会做出相应的变化, 进而影响SEF和EMF, 功能多样性对于维持EMF具有重要的意义。
吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化. 植物生态学报, 2023, 47(6): 822-832. DOI: 10.17521/cjpe.2022.0195
LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient. Chinese Journal of Plant Ecology, 2023, 47(6): 822-832. DOI: 10.17521/cjpe.2022.0195
编号 Plot No. | 海拔 Altitude (m) | 经度 Longitude (° E) | 纬度 Latitude (° N) | 坡向 Aspect | 坡度 Slope (°) |
---|---|---|---|---|---|
2200-1 | 2 194.12 | 83.86 | 42.35 | 阳坡 Sunny slope | 13.2 |
2200-2 | 2 203.71 | 83.86 | 42.34 | 阳坡 Sunny slope | 3.1 |
2200-3 | 2 210.63 | 83.85 | 42.34 | 阳坡 Sunny slope | 5.4 |
2400-1 | 2 406.20 | 83.53 | 42.68 | 阳坡 Sunny slope | 7.2 |
2400-2 | 2 400.90 | 83.53 | 42.68 | 阳坡 Sunny slope | 12.1 |
2400-3 | 2 415.20 | 84.39 | 43.05 | 阳坡 Sunny slope | 10.7 |
2600-1 | 2 590.42 | 84.05 | 43.05 | 阳坡 Sunny slope | 7.9 |
2600-2 | 2 602.60 | 82.97 | 42.86 | 阳坡 Sunny slope | 9.4 |
2600-3 | 2 597.20 | 84.05 | 42.85 | 阳坡 Sunny slope | 6.7 |
2800-1 | 2 794.62 | 82.99 | 42.86 | 阳坡 Sunny slope | 3.9 |
2800-2 | 2 817.50 | 82.99 | 42.87 | 阳坡 Sunny slope | 8.4 |
2800-3 | 2 802.00 | 82.97 | 42.87 | 阳坡 Sunny slope | 17.5 |
3000-1 | 3 052.70 | 83.47 | 42.51 | 阳坡 Sunny slope | 10.6 |
3000-2 | 3 062.10 | 83.47 | 42.51 | 阳坡 Sunny slope | 9.5 |
3000-3 | 3 004.12 | 83.03 | 42.51 | 阳坡 Sunny slope | 7.7 |
表1 巴音布鲁克高寒草甸各样地地理信息列表
Table 1 List of geographic information for sample plots in Bayanbulak alpine meadow
编号 Plot No. | 海拔 Altitude (m) | 经度 Longitude (° E) | 纬度 Latitude (° N) | 坡向 Aspect | 坡度 Slope (°) |
---|---|---|---|---|---|
2200-1 | 2 194.12 | 83.86 | 42.35 | 阳坡 Sunny slope | 13.2 |
2200-2 | 2 203.71 | 83.86 | 42.34 | 阳坡 Sunny slope | 3.1 |
2200-3 | 2 210.63 | 83.85 | 42.34 | 阳坡 Sunny slope | 5.4 |
2400-1 | 2 406.20 | 83.53 | 42.68 | 阳坡 Sunny slope | 7.2 |
2400-2 | 2 400.90 | 83.53 | 42.68 | 阳坡 Sunny slope | 12.1 |
2400-3 | 2 415.20 | 84.39 | 43.05 | 阳坡 Sunny slope | 10.7 |
2600-1 | 2 590.42 | 84.05 | 43.05 | 阳坡 Sunny slope | 7.9 |
2600-2 | 2 602.60 | 82.97 | 42.86 | 阳坡 Sunny slope | 9.4 |
2600-3 | 2 597.20 | 84.05 | 42.85 | 阳坡 Sunny slope | 6.7 |
2800-1 | 2 794.62 | 82.99 | 42.86 | 阳坡 Sunny slope | 3.9 |
2800-2 | 2 817.50 | 82.99 | 42.87 | 阳坡 Sunny slope | 8.4 |
2800-3 | 2 802.00 | 82.97 | 42.87 | 阳坡 Sunny slope | 17.5 |
3000-1 | 3 052.70 | 83.47 | 42.51 | 阳坡 Sunny slope | 10.6 |
3000-2 | 3 062.10 | 83.47 | 42.51 | 阳坡 Sunny slope | 9.5 |
3000-3 | 3 004.12 | 83.03 | 42.51 | 阳坡 Sunny slope | 7.7 |
海拔 Altitude (m) | 物种丰富度 (平均值±标准差) Specie richness (mean ± SD) | 优势种(重要值) Dominant species (importance value) |
---|---|---|
2 200 | 15.00 ± 2.00a | 薹草 Carex sp. (0.212 5) |
线叶嵩草 Kobresia capillifolia (0.187 5) | ||
2 400 | 14.49 ± 2.33ab | 丘陵老鹳草 Geranium collinum (0.212 2) |
线叶嵩草 Kobresia capillifolia (0.186 3) | ||
2 600 | 16.13 ± 3.14ab | 线叶嵩草 Kobresia capillifolia (0.251 6) |
薹草 Carex sp. (0.145 8) | ||
2 800 | 15.17 ± 1.47a | 珠芽蓼 Polygonum viviparum (0.276 5) |
针茅 Stipa sp. (0.266 0) | ||
3 000 | 12.25 ± 2.87b | 珠芽蓼 Polygonum viviparum (0.349 0) |
丘陵老鹳草 Geranium collinum (0.188 1) |
表2 巴音布鲁克高寒草甸不同海拔样地植物群落优势种组成
Table 2 Composition of dominant species of plant community in Bayanbulak alpine meadow at different altitudes
海拔 Altitude (m) | 物种丰富度 (平均值±标准差) Specie richness (mean ± SD) | 优势种(重要值) Dominant species (importance value) |
---|---|---|
2 200 | 15.00 ± 2.00a | 薹草 Carex sp. (0.212 5) |
线叶嵩草 Kobresia capillifolia (0.187 5) | ||
2 400 | 14.49 ± 2.33ab | 丘陵老鹳草 Geranium collinum (0.212 2) |
线叶嵩草 Kobresia capillifolia (0.186 3) | ||
2 600 | 16.13 ± 3.14ab | 线叶嵩草 Kobresia capillifolia (0.251 6) |
薹草 Carex sp. (0.145 8) | ||
2 800 | 15.17 ± 1.47a | 珠芽蓼 Polygonum viviparum (0.276 5) |
针茅 Stipa sp. (0.266 0) | ||
3 000 | 12.25 ± 2.87b | 珠芽蓼 Polygonum viviparum (0.349 0) |
丘陵老鹳草 Geranium collinum (0.188 1) |
图1 巴音布鲁克高寒草甸不同海拔样地植物群落的功能多样性指数(平均值±标准差)。FDis, 功能分散度指数; FEve, 功能均匀度指数; FRic, 功能丰富度指数; Rao’Q, Rao的二次熵。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 1 Distribution of functional diversity index of plant communities at different altitudes in Bayanbulak alpine meadow (mean ± SD). FDis, functional dispersion index; FEve, functional evenness index; FRic, functional richness index; Rao’Q, Rao’s quadratic entropy. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图2 巴音布鲁克高寒草甸群落功能多样性指数与单一生态系统功能(SEF)、生态系统多功能性(EMF)指数间的相关性分析。FDis, 功能分散度指数; FEve, 功能均匀度指数; FRic, 功能丰富度指数; NCI, 养分循环指数; PGI, 植物生长指数; Rao’Q, Rao的二次熵; SCSI, 土壤有机碳蓄积指数。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 2 Correlation analysis between community functional diversity index and single elosystem function (SEF) and elosystem multifuctionality (EMF) index in Bayanbulak alpine meadow. FDis, functional dispersion index; FEve, functional evenness index; FRic, functional richness index; NCI, nutrient cycling index; PGI, plant growth index; Rao’Q, Rao’s quadratic entropy; SCSI, soil carbon stock index. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图3 巴音布鲁克高寒草甸群落功能多样性指数与生态系统多功能性指数(EMF)间的回归分析。FDis, 功能分散度指数; FEve, 功能均匀度指数; FRic, 功能丰富度指数; Rao’Q, Rao的二次熵; 灰色部分代表置信区间。
Fig. 3 Regression analysis of community functional diversity index and ecosystem multifunctional index (EMF) in Bayanbulak alpine meadow. FDis, functional dispersion index; FEve, functional uniformity index; FRic, functional richness index; Rao’Q, Rao’s quadratic entropy; the gray part represents the confidence interval.
海拔 (m) Altitude | 生态系统功能指数 Ecosystem function index | 功能多样性指数 Functional diversity index | |||
---|---|---|---|---|---|
FRic | FDis | FEve | Rao’Q | ||
2 200 | EMF | 0.025 0* | 0.882 9* | 0.139 4 | 0.352 2* |
植物生长 Plant growth | 0.984 9* | 0.947 7* | 0.904 3 | -0.705 4 | |
养分循环 Nutrient cycling | 0.852 0* | 0.638 2* | 0.890 6 | -0.707 8 | |
有机碳蓄积 Soil carbon stock | 0.918 4*** | 0.820 7* | 0.934 5 | -0.577 2 | |
2 400 | EMF | 0.957 3** | 0.926 7* | -0.280 9 | 0.162 8 |
植物生长 Plant growth | 0.938 5*** | 0.843 0*** | -0.248 2 | 0.201 0 | |
养分循环 Nutrient cycling | 0.867 3*** | 0.968 4*** | -0.323 6 | 0.011 4 | |
有机碳蓄积 Soil carbon stock | -0.568 1* | -0.642 5** | -0.186 3 | 0.137 0 | |
2 600 | EMF | 0.080 7* | 0.244 9 | 0.265 8 | 0.152 0 |
植物生长 Plant growth | 0.099 7* | 0.004 5 | -0.100 6 | 0.176 0 | |
养分循环 Nutrient cycling | 0.168 0 | 0.078 8** | 0.262 3** | 0.184 9 | |
有机碳蓄积 Soil carbon stock | 0.171 4** | 0.080 3* | 0.257 2* | 0.268 7 | |
2 800 | EMF | 0.585 7** | 0.222 7 | 0.373 7 | -0.449 0 |
植物生长 Plant growth | 0.345 3 | 0.194 2 | -0.004 2 | -0.238 8 | |
养分循环 Nutrient cycling | 0.961 4*** | 0.504 5 | 0.203 5 | -0.161 9 | |
有机碳蓄积 Soil carbon stock | 0.523 5* | 0.220 6 | 0.495 6 | -0.486 0 | |
3 000 | EMF | 0.868 2* | 0.918 5* | -0.044 4 | 0.695 3* |
植物生长 Plant growth | 0.952 1** | 0.975 1*** | 0.054 0 | 0.690 9 | |
养分循环 Nutrient cycling | 0.782 2** | 0.838 6*** | -0.267 6 | 0.668 2** | |
有机碳蓄积 Soil carbon stock | 0.856 8* | 0.927 4** | 0.005 6 | 0.734 5** |
表3 巴音布鲁克高寒草甸不同海拔功能多样性指数与生态系统多功能性指数(EMF)间相关性分析
Table 3 Correlation analysis between functional diversity index and ecosystem multifunctional index (EMF) at different altitudes in Bayanbulak alpine meadow
海拔 (m) Altitude | 生态系统功能指数 Ecosystem function index | 功能多样性指数 Functional diversity index | |||
---|---|---|---|---|---|
FRic | FDis | FEve | Rao’Q | ||
2 200 | EMF | 0.025 0* | 0.882 9* | 0.139 4 | 0.352 2* |
植物生长 Plant growth | 0.984 9* | 0.947 7* | 0.904 3 | -0.705 4 | |
养分循环 Nutrient cycling | 0.852 0* | 0.638 2* | 0.890 6 | -0.707 8 | |
有机碳蓄积 Soil carbon stock | 0.918 4*** | 0.820 7* | 0.934 5 | -0.577 2 | |
2 400 | EMF | 0.957 3** | 0.926 7* | -0.280 9 | 0.162 8 |
植物生长 Plant growth | 0.938 5*** | 0.843 0*** | -0.248 2 | 0.201 0 | |
养分循环 Nutrient cycling | 0.867 3*** | 0.968 4*** | -0.323 6 | 0.011 4 | |
有机碳蓄积 Soil carbon stock | -0.568 1* | -0.642 5** | -0.186 3 | 0.137 0 | |
2 600 | EMF | 0.080 7* | 0.244 9 | 0.265 8 | 0.152 0 |
植物生长 Plant growth | 0.099 7* | 0.004 5 | -0.100 6 | 0.176 0 | |
养分循环 Nutrient cycling | 0.168 0 | 0.078 8** | 0.262 3** | 0.184 9 | |
有机碳蓄积 Soil carbon stock | 0.171 4** | 0.080 3* | 0.257 2* | 0.268 7 | |
2 800 | EMF | 0.585 7** | 0.222 7 | 0.373 7 | -0.449 0 |
植物生长 Plant growth | 0.345 3 | 0.194 2 | -0.004 2 | -0.238 8 | |
养分循环 Nutrient cycling | 0.961 4*** | 0.504 5 | 0.203 5 | -0.161 9 | |
有机碳蓄积 Soil carbon stock | 0.523 5* | 0.220 6 | 0.495 6 | -0.486 0 | |
3 000 | EMF | 0.868 2* | 0.918 5* | -0.044 4 | 0.695 3* |
植物生长 Plant growth | 0.952 1** | 0.975 1*** | 0.054 0 | 0.690 9 | |
养分循环 Nutrient cycling | 0.782 2** | 0.838 6*** | -0.267 6 | 0.668 2** | |
有机碳蓄积 Soil carbon stock | 0.856 8* | 0.927 4** | 0.005 6 | 0.734 5** |
关系 Regression | 完全中介模型 Full mediation model (df = 15, SRMR = 0.08, GFI = 0.92) | 部分中介模型 Partial mediation model (df = 13, SRMR = 0.08, GFI = 0.81) | ||||
---|---|---|---|---|---|---|
Est. std | SE | p | Est. std | SE | p | |
Alt-FRic | 0.067 | 0.127 | 0.008 | 0.004 | 0.059 | 0.952 |
Alt-FEve | -0.044 | 0.111 | 0.147 | -0.015 | 0.029 | 0.606 |
Alt-FDis | -0.049 | 0.129 | 0.309 | -0.080 | 0.058 | 0.165 |
Alt-Rao’Q | -0.980 | 0.023 | <0.001 | -0.980 | 0.023 | 0.000 |
FRic-EMF | 0.475 | 0.275 | <0.001 | 0.506 | 0.161 | 0.002 |
FEve-EMF | 0.127 | 0.089 | <0.001 | 0.143 | 0.084 | 0.087 |
FDis-EMF | 0.283 | 0.274 | <0.001 | 0.233 | 0.167 | 0.163 |
Rao’Q-EMF | 0.050 | 0.570 | 0.017 | 0.067 | 0.068 | 0.325 |
Alt-EMF | 0.007 | 0.400 | 0.857 |
表4 巴音布鲁克高寒草甸海拔对功能多样性与生态系统多功能(EMF)影响的结构方程模型概述
Table 4 A summary of structural equation model of the effect of altitude on functional diversity and ecosystem multifunctional index (EMF) in Bayanbulak alpine meadow
关系 Regression | 完全中介模型 Full mediation model (df = 15, SRMR = 0.08, GFI = 0.92) | 部分中介模型 Partial mediation model (df = 13, SRMR = 0.08, GFI = 0.81) | ||||
---|---|---|---|---|---|---|
Est. std | SE | p | Est. std | SE | p | |
Alt-FRic | 0.067 | 0.127 | 0.008 | 0.004 | 0.059 | 0.952 |
Alt-FEve | -0.044 | 0.111 | 0.147 | -0.015 | 0.029 | 0.606 |
Alt-FDis | -0.049 | 0.129 | 0.309 | -0.080 | 0.058 | 0.165 |
Alt-Rao’Q | -0.980 | 0.023 | <0.001 | -0.980 | 0.023 | 0.000 |
FRic-EMF | 0.475 | 0.275 | <0.001 | 0.506 | 0.161 | 0.002 |
FEve-EMF | 0.127 | 0.089 | <0.001 | 0.143 | 0.084 | 0.087 |
FDis-EMF | 0.283 | 0.274 | <0.001 | 0.233 | 0.167 | 0.163 |
Rao’Q-EMF | 0.050 | 0.570 | 0.017 | 0.067 | 0.068 | 0.325 |
Alt-EMF | 0.007 | 0.400 | 0.857 |
图4 巴音布鲁克高寒草甸海拔对功能多样性指数和态系统多功能性指数(EMF)影响的结构方程模型图。Alt, 海拔; FDis, 功能分散度; FEve, 功能均匀度; FRic, 功能丰富度; Rao’Q, Rao的二次熵。箭头旁边的数字为标准化路径系数(正值代表正效应, 负值表示负效应)。实线代表存在显著相关性,虚线代表不存在显著相关性。箭头的粗细代表显著性差异(粗代表显著性高, 细代表显著性低)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 4 Structural equation model diagram of the effect of altitude on functional diversity index and ecosystem multifunctional index (EMF) in Bayanbulak alpine meadow. Alt, altitude; FDis, functional dispersion; FEve, functional uniformity; FRic, functional richness; Rao’Q, Rao’s quadratic entropy. The number next to the arrow in the plot is the normalized path coefficient (positive values represent positive effects, negative values represent negative effects). A solid line indicates a significant correlation, and a dashed line indicates no significant correlation. The thickness of the arrow represents significant difference (thick represents high significance, thin represents low significance). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
[1] |
Aiba M, Takafumi H, Hiura T (2012). Interspecific differences in determinants of plant species distribution and the relationships with functional traits. Journal of Ecology, 100, 950-957.
DOI URL |
[2] | Bao SD (2005). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. 9-54. |
[鲍士旦 (2005). 土壤农化分析. 3版. 中国农业出版社, 北京. 9-54.] | |
[3] |
Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Duffy JE (2014). Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution, 5, 111-124.
DOI URL |
[4] |
Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzalez A (2011). The functional role of producer diversity in ecosystems. American Journal of Botany, 98, 572-592.
DOI PMID |
[5] | Chang F (2021). Relationship Between Plant Diversity and Productivity of Gentianella turkestanorum Adaptive Communities in Bayinbulak Mountains of Xinjiang. Master degree dissertation, Xinjiang Normal University, Ürümqi. |
[常凤 (2021). 天山巴音布鲁克新疆假龙胆适生地群落植物多样性与生产力的关系. 硕士学位论文, 新疆师范大学, 乌鲁木齐.] | |
[6] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[7] | Dong SK, Tang L, Zhang XF, Liu SL, Liu QR, Su XK, Zhang Y, Wu XY, Zhao ZZ, Li Y, Sha W (2017). Relationship between plant species diversity and functional diversity in alpine grasslands. Acta Ecologica Sinica, 37, 1472-1483. |
[董世魁, 汤琳, 张相锋, 刘世梁, 刘全儒, 苏旭坤, 张勇, 武晓宇, 赵珍珍, 李钰, 沙威 (2017). 高寒草地植物物种多样性与功能多样性的关系. 生态学报, 37, 1472-1483.] | |
[8] |
Gamfeldt L, Hillebrand H, Jonsson PR (2008). Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223-1231.
DOI PMID |
[9] |
Guo J, Zhang Q, Song MH, Shi Y, Zhou BR, Wang WY, Li YK, Zhao XQ, Zhou HK (2020). Status and function improvement technology of the grassland ecosystem in the upper Yellow River Basin. Acta Agrestia Sinica, 28, 1173-1184.
DOI |
[郭婧, 张骞, 宋明华, 师燕, 周秉荣, 王文颖, 李以康, 赵新全, 周华坤 (2020). 黄河上游草地生态现状及功能提升技术. 草地学报, 28, 1173-1184.]
DOI |
|
[10] |
Hector A, Bagchi R (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190.
DOI |
[11] |
Hou ZF, Lv GH, Jiang LM (2021). Functional diversity can predict ecosystem functions better than dominant species: the case of desert plants in the Ebinur Lake Basin. Sustainability, 13, 2858. DOI: 10.3390/su13052858.
DOI |
[12] | Huang C, Wei H, Wu KJ, He XR, Wang P, Qi YC, Qi HD (2020). The functional divernity of understory plants during the trausomaion from Pinus massoniana to Cinnamomum camphora forest. Acta Ecologica Sinica, 40, 4573-4584. |
[黄超, 魏虹, 吴科君, 何欣芮, 汪鹏, 綦远才, 齐代华 (2020). 马尾松林向香樟林改造林下植物功能多样性研究. 生态学报, 40, 4573-4584.] | |
[13] |
Huang XB, Su JR, Li SF, Liu WD, Lang XD (2019). Functional diversity drives ecosystem multifunctionality in a Pinus yunnanensis natural secondary forest. Scientific Reports, 9, 6979. DOI: 10.1038/s41598-019-43475-1.
DOI |
[14] |
Khalil MI, Gibson DJ, Baer SG, Willand JE (2018). Functional diversity is more sensitive to biotic filters than phylogenetic diversity during community assembly. Ecosphere, 9, e02164. DOI: 10.1002/ecs2.2164.
DOI |
[15] | Klimešáová J, Latzel V, de Bello F, van Groenendael JM (2008). Plant functional traits in studies of vegetation changes in response to grazing and mowing: towards a use of more specific traits. Preslia, 80, 245-253. |
[16] |
Lei LJ, Kong DL, Li XM, Zhou ZX, Li GY (2016). Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives. Biodiversity Science, 24, 922-931.
DOI |
[雷羚洁, 孔德良, 李晓明, 周振兴, 李国勇 (2016). 植物功能性状、功能多样性与生态系统功能: 进展与展望. 生物多样性, 24, 922-931.]
DOI |
|
[17] |
Lepš J (2004). What do the biodiversity experiments tell us about consequences of plant species loss in the real world? Basic and Applied Ecology, 5, 529-534.
DOI URL |
[18] | Li H, Yu YH, Long J, Li J (2021). Responses of leaf functional traits of Zanthoxylum planispinum var. dintanensis to premature senescence. Chinese Journal of Ecology, 40, 1695-1704. |
[李红, 喻阳华, 龙健, 李娟 (2021). 顶坛花椒叶片功能性状对早衰的响应. 生态学杂志, 40, 1695-1704.] | |
[19] |
Li JP, Zheng ZR, Zhao NX, Gao YB (2016). Relationship between ecosystem multifuntionality and species diversity in grassland ecosystems under land-use types of clipping, enclosure and grazing. Chinese Journal of Plant Ecology, 40, 735-747.
DOI URL |
[李静鹏, 郑志荣, 赵念席, 高玉葆 (2016). 刈割、围封、放牧三种利用方式下草原生态系统的多功能性与植物物种多样性之间的关系. 植物生态学报, 40, 735-747.]
DOI |
|
[20] | Li RX, Ding Y, Ma WJ, Niu JM, Zhang Q (2016). Research advances in plant functional diversity and its relationship with ecosystem functions. Ecology and Environmental Science, 25, 1069-1075. |
[李瑞新, 丁勇, 马文静, 牛建明, 张庆 (2016). 植物功能多样性及其与生态系统功能关系研究进展. 生态环境学报, 25, 1069-1075.]
DOI |
|
[21] | Liu MX, Zhang GJ, Li L, Mu RL, Xu L, Yu RX (2022). Relationship between functional diversity and ecosystem multifunctionality of alpine meadow along an altitude gradient in Gannan, China. Chinese Journal of Applied Ecology, 33, 1291-1299. |
[刘旻霞, 张国娟, 李亮, 穆若兰, 徐璐, 于瑞新 (2022). 甘南高寒草甸海拔梯度上功能多样性与生态系统多功能的关系. 应用生态学报, 33, 1291-1299.]
DOI |
|
[22] | Liu MX, Zhao RD, Zhang C, Li R, Shao P (2017). Responses of physiological parameters in plants on sub-alpine meadow to slope aspects. Chinese Journal of Applied Ecology, 28, 2863-2869. |
[刘旻霞, 赵瑞东, 张灿, 李瑞, 邵鹏 (2017). 亚高寒草甸植物叶片生理指标对坡向的响应. 应用生态学报, 28, 2863-2869.]
DOI |
|
[23] | Liu Y (2021). Study on Variation in Ecosystem Multifunctionality Driven by Plant Diversity and Environmental Factors in Inner Mongolia Grassland. Master degree dissertation, Inner Mongolia University, Hohhot. |
[刘阳 (2021). 内蒙古草原生态系统多功能性变化的生物多样性与环境驱动因素研究. 硕士学位论文, 内蒙古大学, 呼和浩特.] | |
[24] |
Qin H, Zhang YB, Dong G, Zhang F (2019). Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China. Chinese Journal of Plant Ecology, 43, 762-773.
DOI |
[秦浩, 张殷波, 董刚, 张峰 (2019). 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43, 762-773.]
DOI |
|
[25] |
Roscher C, Schumacher J, Gubsch M, Lipowsky A, Weigelt A, Buchmann N, Schmid B, Schulze ED (2012). Using plant functional traits to explain diversity-productivity relationships. PLoS ONE, 7, e36760. DOI: 10.1371/journal.pone.0036760.
DOI |
[26] | Sun L, Yue Y, Hu TX (2022). Research progress on the effects of disturbance on ecosystem multifunctionality. Acta Ecologica Sinica, 42, 6066-6075. |
[孙龙, 岳阳, 胡同欣(2022). 干扰对生态系统多功能性的影响研究进展. 生态学报, 42, 6066-6075.] | |
[27] |
Wondimu MT, Nigussie ZA, Yusuf MM (2021). Tree species diversity predicts aboveground carbon storage through functional diversity and functional dominance in the dry evergreen Afromontane forest of Hararghe highland, Southeast Ethiopia. Ecological Processes, 10, 47. DOI: 10.1186/s13717-021-00322-4.
DOI |
[28] | Xiong DP, Zhao GS, Wu JS, Shi PL, Zhang XZ (2016). The relationship between species diversity and ecosystem multifunctionality in alpine grasslands on the Tibetan Changtang Plateau. Acta Ecologica Sinica, 36, 3362-3371. |
[熊定鹏, 赵广帅, 武建双, 石培礼, 张宪洲 (2016). 羌塘高寒草地物种多样性与生态系统多功能关系格局. 生态学报, 36, 3362-3371.] | |
[29] | Xu Y (2017). Plant Community Functional Diversity of Tropical Rainforests in Xishuangbanna. Master degree dissertation, Yunnan University, Kunming. |
许彧 (2017). 西双版纳热带雨林植物功能多样性研究. 硕士学位论文, 云南大学, 昆明.] | |
[30] |
Zhang ZH, Hou JH, He NP (2021). Predictability of functional diversity depends on the number of traits. Journal of Resources and Ecology, 12, 332-345.
DOI |
[1] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[2] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[3] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[4] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[5] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[6] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[7] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[8] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[9] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[10] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[11] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[12] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[13] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[14] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[15] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19