植物生态学报 ›› 2022, Vol. 46 ›› Issue (11): 1422-1431.DOI: 10.17521/cjpe.2022.0082
所属专题: 生态化学计量; 青藏高原植物生态学:植物-土壤-微生物
• 研究论文 • 上一篇
牟文博1, 徐当会1,*(), 王谢军1, 敬文茂2, 张瑞英1, 顾玉玲1, 姚广前1, 祁世华1, 张龙1, 苟亚飞1
收稿日期:
2022-03-07
接受日期:
2022-07-01
出版日期:
2022-11-20
发布日期:
2022-09-06
通讯作者:
*徐当会(dhxu@lzu.edu.cn)
基金资助:
MOU Wen-Bo1, XU Dang-Hui1,*(), WANG Xie-Jun1, JING Wen-Mao2, ZHANG Rui-Ying1, GU Yu-Ling1, YAO Guang-Qian1, QI Shi-Hua1, ZHANG Long1, GOU Ya-Fei1
Received:
2022-03-07
Accepted:
2022-07-01
Online:
2022-11-20
Published:
2022-09-06
Contact:
*XU Dang-Hui(dhxu@lzu.edu.cn)
Supported by:
摘要:
研究海拔梯度上土壤养分化学计量特征的空间分布格局, 有助于明确山地生态系统的土壤养分限制状况, 揭示其潜在的影响因素, 为区域生态环境保护和植被恢复调控工作提供科学依据。该研究选取祁连山排露沟流域海拔3 100-3 700 m的灌丛样地, 采集0-10和10-20 cm层土壤样品, 分析有机碳(SOC)、全氮(TN)、全磷(TP)含量及其化学计量比在不同海拔、不同土层间的分布规律及其与气候因子、灌丛地上生物量和土壤pH的相关性。结果表明: (1)土壤养分更多地聚集在土壤表层, 各土层土壤SOC、TN含量均随海拔升高先增加后降低, TP含量持续增加。(2)土壤N:P在海拔3 100-3 400 m呈上升趋势, 于3 400 m处达到最大值, 之后呈下降趋势且N:P < 14, 说明土壤N限制增加。高海拔地区的土壤C:P明显低于中低海拔处, C:N则在海拔梯度上总体呈下降趋势。(3) SOC与TN含量呈极显著正相关关系, 与TP含量呈显著负相关关系, TN与TP含量之间无显著相关性。(4)土壤TN含量不受年平均气温和生长季降水量的影响。SOC含量及C:N:P均与气温和生长季降水量显著正相关, 而TP含量与其负相关。土壤SOC、TN含量与灌丛地上生物量呈正相关关系。土壤pH与TP含量存在负相关关系, 而对SOC和TN含量无显著影响。研究显示流域内高寒灌丛植物生产力受N制约严重, 适量增施氮肥有助于缓解高寒地区土壤N的限制性作用。
牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征. 植物生态学报, 2022, 46(11): 1422-1431. DOI: 10.17521/cjpe.2022.0082
MOU Wen-Bo, XU Dang-Hui, WANG Xie-Jun, JING Wen-Mao, ZHANG Rui-Ying, GU Yu-Ling, YAO Guang-Qian, QI Shi-Hua, ZHANG Long, GOU Ya-Fei. Soil carbon, nitrogen, and phosphorus stoichiometry along an altitude gradient in shrublands in Pailugou watershed, China. Chinese Journal of Plant Ecology, 2022, 46(11): 1422-1431. DOI: 10.17521/cjpe.2022.0082
样地 Sampling plot | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Slope aspect (°) | 生长季总降水量 Total precipitation of the growing season (mm) | 生长季平均气温 Mean air temperature of the growing season (℃) | 灌丛地上生物量(平均值±标准误) Aboveground biomass of shrublands (mean ± SE, g·m-2) |
---|---|---|---|---|---|---|
1 | 3 100 | 21 | 27 | 425.05 | 9.80 | 41.61 ± 5.96 |
2 | 3 200 | 34 | 15 | 418.97 | 9.60 | 51.37 ± 3.92 |
3 | 3 300 | 36 | 9 | 411.47 | 8.83 | 73.20 ± 5.06 |
4 | 3 400 | 33 | 41 | 406.21 | 8.97 | 80.94 ± 12.15 |
5 | 3 500 | 36 | 56 | 388.11 | 8.26 | 75.98 ± 8.62 |
6 | 3 600 | 35 | 10 | 374.89 | 7.39 | 62.76 ± 5.40 |
7 | 3 700 | 33 | 34 | 358.00 | 6.99 | 44.23 ± 4.38 |
表1 排露沟流域不同海拔灌丛群落样地概况
Table 1 Basic information of the sampling plots in Pailugou watershed at different altitudes
样地 Sampling plot | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Slope aspect (°) | 生长季总降水量 Total precipitation of the growing season (mm) | 生长季平均气温 Mean air temperature of the growing season (℃) | 灌丛地上生物量(平均值±标准误) Aboveground biomass of shrublands (mean ± SE, g·m-2) |
---|---|---|---|---|---|---|
1 | 3 100 | 21 | 27 | 425.05 | 9.80 | 41.61 ± 5.96 |
2 | 3 200 | 34 | 15 | 418.97 | 9.60 | 51.37 ± 3.92 |
3 | 3 300 | 36 | 9 | 411.47 | 8.83 | 73.20 ± 5.06 |
4 | 3 400 | 33 | 41 | 406.21 | 8.97 | 80.94 ± 12.15 |
5 | 3 500 | 36 | 56 | 388.11 | 8.26 | 75.98 ± 8.62 |
6 | 3 600 | 35 | 10 | 374.89 | 7.39 | 62.76 ± 5.40 |
7 | 3 700 | 33 | 34 | 358.00 | 6.99 | 44.23 ± 4.38 |
图1 排露沟流域0-10 cm (A-F)和10-20 cm (G-L)土壤有机碳(SOC)、全氮(TN)、全磷(TP)含量与计量比沿海拔梯度分布状况(平均值±标准误)。不同小写字母表示不同海拔高度的同一指标差异显著(p < 0.05)。
Fig. 1 Variations of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) contents and stoichiometry for the 0-10 cm (A-F) and 10-20 cm (G-L) soil layer across the altitude gradient (mean ± SE) in Pailugou watershed. Different lowercase letters indicate significant difference of the same indicator among different altitudes (p < 0.05).
因素 Factor | SOC | TN | TP | SOC:TP | TN:TP | SOC:TN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
土层 Soil layer | 38.143 | 0.000 | 51.785 | 0.000 | 24.710 | 0.000 | 12.338 | 0.002 | 6.329 | 0.018 | 0.426 | 0.519 |
海拔 Altitude | 24.538 | 0.000 | 21.395 | 0.000 | 48.513 | 0.000 | 113.000 | 0.000 | 52.962 | 0.000 | 11.022 | 0.000 |
土层×海拔 Soil layer × altitude | 0.377 | 0.887 | 0.899 | 0.509 | 0.411 | 0.865 | 0.695 | 0.656 | 0.408 | 0.868 | 1.025 | 0.430 |
表2 海拔和土层对排露沟流域土壤有机碳(SOC)、全氮(TN)、全磷(TP)含量及化学计量特征的影响
Table 2 Effects of altitude and soil layer on the contents and stoichiometry of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) in Pailugou watershed
因素 Factor | SOC | TN | TP | SOC:TP | TN:TP | SOC:TN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
土层 Soil layer | 38.143 | 0.000 | 51.785 | 0.000 | 24.710 | 0.000 | 12.338 | 0.002 | 6.329 | 0.018 | 0.426 | 0.519 |
海拔 Altitude | 24.538 | 0.000 | 21.395 | 0.000 | 48.513 | 0.000 | 113.000 | 0.000 | 52.962 | 0.000 | 11.022 | 0.000 |
土层×海拔 Soil layer × altitude | 0.377 | 0.887 | 0.899 | 0.509 | 0.411 | 0.865 | 0.695 | 0.656 | 0.408 | 0.868 | 1.025 | 0.430 |
图2 排露沟流域土壤有机碳(SOC)、全氮(TN)、全磷(TP)含量及其化学计量比的相关性。虚线和实线分别代表0-10 cm和10-20 cm养分指标拟合线。
Fig. 2 Correlations between soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) contents and their stoichiometry in Pailugou watershed. Dashed line and solid line represents the nutrient indicator fitting line of 0-10 cm and 10-20 cm, respectively.
土壤养分 Soil nutrient | 土层 Soil layer (cm) | SOC | TN | TP | SOC:TP | TN:TP | SOC:TN |
---|---|---|---|---|---|---|---|
TN | 0-10 | 0.734*** | |||||
10-20 | 0.570** | ||||||
TP | 0-10 | -0.568** | -0.140 | ||||
10-20 | -0.581** | -0.277 | |||||
SOC:TP | 0-10 | 0.901*** | 0.516* | -0.846*** | |||
10-20 | 0.911*** | 0.457* | -0.857*** | ||||
TN:TP | 0-10 | 0.866*** | 0.746*** | -0.758*** | 0.915*** | ||
10-20 | 0.730*** | 0.728*** | -0.846*** | 0.864*** | |||
SOC:TN | 0-10 | 0.591** | -0.065 | -0.684** | 0.755*** | 0.438* | |
10-20 | 0.734*** | -0.123 | -0.520* | 0.739*** | 0.305 | ||
pH | 0-10 | 0.183 | -0.154 | -0.661** | 0.419 | 0.331 | 0.410 |
10-20 | 0.342 | 0.187 | -0.696*** | 0.561** | 0.601** | 0.259 | |
生长季总降水量 Total precipitation of the growing season | 0-10 | 0.660** | 0.271 | -0.943*** | 0.885*** | 0.798*** | 0.717*** |
10-20 | 0.666** | 0.280 | -0.957*** | 0.893*** | 0.823*** | 0.625** | |
生长季平均气温 Mean air temperature of the growing season | 0-10 | 0.600** | 0.202 | -0.929*** | 0.838*** | 0.742*** | 0.709*** |
10-20 | 0.581** | 0.250 | -0.933*** | 0.829*** | 0.792*** | 0.553** | |
灌丛地上生物量 Aboveground biomass of shrubs | 0-10 | 0.509* | 0.786*** | 0.064 | 0.245 | 0.452* | -0.201 |
10-20 | 0.383 | 0.590** | -0.042 | 0.214 | 0.338 | -0.060 |
表3 排露沟流域0-10 cm、10-20 cm层土壤养分化学计量特征和环境因子的相关分析
Table 3 Correlation analysis between soil nutrient stoichiometry and environmental factors for both 0-10 cm and 10-20 cm soil layers in Pailugou watershed
土壤养分 Soil nutrient | 土层 Soil layer (cm) | SOC | TN | TP | SOC:TP | TN:TP | SOC:TN |
---|---|---|---|---|---|---|---|
TN | 0-10 | 0.734*** | |||||
10-20 | 0.570** | ||||||
TP | 0-10 | -0.568** | -0.140 | ||||
10-20 | -0.581** | -0.277 | |||||
SOC:TP | 0-10 | 0.901*** | 0.516* | -0.846*** | |||
10-20 | 0.911*** | 0.457* | -0.857*** | ||||
TN:TP | 0-10 | 0.866*** | 0.746*** | -0.758*** | 0.915*** | ||
10-20 | 0.730*** | 0.728*** | -0.846*** | 0.864*** | |||
SOC:TN | 0-10 | 0.591** | -0.065 | -0.684** | 0.755*** | 0.438* | |
10-20 | 0.734*** | -0.123 | -0.520* | 0.739*** | 0.305 | ||
pH | 0-10 | 0.183 | -0.154 | -0.661** | 0.419 | 0.331 | 0.410 |
10-20 | 0.342 | 0.187 | -0.696*** | 0.561** | 0.601** | 0.259 | |
生长季总降水量 Total precipitation of the growing season | 0-10 | 0.660** | 0.271 | -0.943*** | 0.885*** | 0.798*** | 0.717*** |
10-20 | 0.666** | 0.280 | -0.957*** | 0.893*** | 0.823*** | 0.625** | |
生长季平均气温 Mean air temperature of the growing season | 0-10 | 0.600** | 0.202 | -0.929*** | 0.838*** | 0.742*** | 0.709*** |
10-20 | 0.581** | 0.250 | -0.933*** | 0.829*** | 0.792*** | 0.553** | |
灌丛地上生物量 Aboveground biomass of shrubs | 0-10 | 0.509* | 0.786*** | 0.064 | 0.245 | 0.452* | -0.201 |
10-20 | 0.383 | 0.590** | -0.042 | 0.214 | 0.338 | -0.060 |
[1] |
Aponte C, Marañón T, García LV (2010). Microbial C, N and P in soils of Mediterranean oak forests: influence of season, canopy cover and soil depth. Biogeochemistry, 101, 77-92.
DOI URL |
[2] |
Bui EN, Henderson BL (2013). C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant and Soil, 373, 553-568.
DOI URL |
[3] | Dong TF (2021). Soil nutrients and their ecological stoichiometry of Pinus yunnanensis forest along an elevation gradient. Chinese Journal of Ecology, 40, 672-679. |
[ 董廷发 (2021). 不同海拔云南松林土壤养分及其生态化学计量特征. 生态学杂志, 40, 672-679.] | |
[4] |
Famiglietti JS, Rudnicki JW, Rodell M (1998). Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology, 210, 259-281.
DOI URL |
[5] |
Feng XY, Lin PF, Zhao WZ (2022). The physiological constraints of alpine treeline in Qilian Mountains. Forest Ecology and Management, 503, 119761. DOI: 10.1016/j.foreco.2021. 119761.
DOI |
[6] | Gao HN, Li CX, Sun XM, Zhang Y, Chen NL (2021). Stoichiometry characteristics of soil at different altitudes in the Qilian Mountains. Journal of Desert Research, 41, 219-227. |
[ 高海宁, 李彩霞, 孙小妹, 张勇, 陈年来 (2021). 祁连山北麓不同海拔土壤化学计量特征. 中国沙漠, 41, 219-227.] | |
[7] |
He XJ, Hou EQ, Liu Y, Wen DZ (2016). Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Scientific Reports, 6, 24261. DOI: 10.1038/srep24261.
DOI |
[8] |
Hobbie SE, Gough L (2002). Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia, 131, 453-462.
DOI PMID |
[9] |
Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000). Controls over carbon storage and turnover in high-latitude soils. Global Change Biology, 6, 196-210.
DOI PMID |
[10] |
Hou EQ, Chen CR, Wen DZ, Liu X (2014). Relationships of phosphorus fractions to organic carbon content in surface soils in mature subtropical forests, Dinghushan, China. Soil Research, 52, 55-63.
DOI URL |
[11] |
Hu L, Xiang ZY, Wang GX, Rafique R, Liu W, Wang CT (2016). Changes in soil physicochemical and microbial properties along elevation gradients in two forest soils. Scandinavian Journal of Forest Research, 31, 242-253.
DOI URL |
[12] |
Jiang L, He ZS, Liu JF, Xing C, Gu XG, Wei CS, Zhu J, Wang XL (2019). Elevation gradient altered soil C, N, and P stoichiometry of Pinus taiwanensis forest on Daiyun Mountain. Forests, 10, 1089. DOI: 10.3390/f10121089.
DOI |
[13] | Jiang ZH, Zhou Z, Chen JZ, Zhang DG, Chen JG, Liu XN (2019). Soil nutrient and stoichiometry of alpine steppe under different altitudes in the Three-River Headwaters Region. Acta Agrestia Sinica, 27, 1029-1036. |
[ 姜哲浩, 周泽, 陈建忠, 张德罡, 陈建纲, 柳小妮 (2019). 三江源区不同海拔高寒草原土壤养分及化学计量特征. 草地学报, 27, 1029-1036.]
DOI |
|
[14] |
Lal R (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627.
DOI PMID |
[15] | Li DW, Wang ZQ, Tian HX, He WX, Geng ZC (2017). Carbon, nitrogen and phosphorus contents in soils on Taibai Mountain and their ecological stoichiometry relative to elevation. Acta Pedologica Sinica, 54, 160-170. |
[ 李丹维, 王紫泉, 田海霞, 和文祥, 耿增超 (2017). 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征. 土壤学报, 54, 160-170.] | |
[16] | Ma J, Liu XD, Jin M, Zhao WJ, Jing WM, Wang RX (2021). Soil ecological stoichiometry of five typical shrubs in Qilian Mountain. Acta Botanica Boreali-Occidentalia Sinica, 41, 1391-1400. |
[ 马剑, 刘贤德, 金铭, 赵维俊, 敬文茂, 王荣新 (2021). 祁连山5种典型灌丛土壤生态化学计量特征. 西北植物学报, 41, 1391-1400.] | |
[17] |
Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80, 89-106.
DOI URL |
[18] |
Miki T (2012). Microbe-mediated plant-soil feedback and its roles in a changing world. Ecological Research, 27, 509-520.
DOI URL |
[19] |
Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014). Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology, 5, 22. DOI: 10.3389/fmicb. 2014.00022.
DOI |
[20] |
Müller M, Oelmann Y, Schickhoff U, Böhner J, Scholten T (2017). Himalayan treeline soil and foliar C:N:P stoichiometry indicate nutrient shortage with elevation. Geoderma, 291, 21-32.
DOI URL |
[21] | Niu RL, Gao X, Xu FL, Wang WL, Wang LL, Sun PY, Bai XF (2016). Carbon, nitrogen, and phosphorus stoichiometric characteristics of soil and leaves from young and middle aged Larix principis-rupprechtii growing in a Qinling Mountain plantation. Acta Ecologica Sinica, 36, 7384-7392. |
[ 牛瑞龙, 高星, 徐福利, 王渭玲, 王玲玲, 孙鹏跃, 白小芳 (2016). 秦岭中幼林龄华北落叶松针叶与土壤的碳氮磷生态化学计量特征. 生态学报, 36, 7384-7392.] | |
[22] |
Nottingham AT, Turner BL, Whitaker J, Ostle NJ, McNamara NP, Bardgett RD, Salinas N, Meir P (2015). Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences, 12, 6071-6083.
DOI URL |
[23] | Qiu XC, Peng DL, Li WL, Jiang HC (2018). Soil physicochemical properties of Pinus tabuliformis plantations of different ages in Yanqing, Beijing. Chinese Journal of Applied and Environmental Biology, 24, 221-229. |
[ 邱新彩, 彭道黎, 李伟丽, 姜昊辰 (2018). 北京延庆区不同林龄油松人工林土壤理化性质. 应用与环境生物学报, 24, 221-229.] | |
[24] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI PMID |
[25] | Ren CJ, Zhang W, Zhong ZK, Han XH, Yang GH, Feng YZ, Ren GX (2018). Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Science of the Total Environment, 610- 611, 750-758. |
[26] |
Ren CJ, Zhao FZ, Shi Z, Chen J, Han XH, Yang GH, Feng YZ, Ren GX (2017). Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation. Soil Biology & Biochemistry, 115, 1-10.
DOI URL |
[27] | Shan S, Coleman M, Kimsey Jr M (2014). Soil soluble nitrogen availability across an elevation gradient in a cold- temperate forest ecosystem. Soil Science Society of America Journal, 78, S217-S224. |
[28] |
Su YQ, Wu ZL, Xie PY, Zhang L, Chen H (2020). Warming effects on topsoil organic carbon and C:N:P stoichiometry in a subtropical forested landscape. Forests, 11, 66. DOI: 10.3390/f11010066.
DOI |
[29] |
Tan QQ, Wang GA (2016). Decoupling of nutrient element cycles in soil and plants across an altitude gradient. Scientific Reports, 6, 34875. DOI: 10.1038/srep34875.
DOI |
[30] |
Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534.
DOI URL |
[31] |
Tian H, Chen G, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in Chinaʼs soils: a synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
[32] |
Tsunoda T, Kachi N, Suzuki JI (2014). Interactive effects of soil nutrient heterogeneity and belowground herbivory on the growth of plants with different root foraging traits. Plant and Soil, 384, 327-334.
DOI URL |
[33] | Wang J, Zhou WJ, Shang GD, Tan J, Tang D, Cao S (2022). Comprehensive evaluation of soil nutrient characteristics and fertility of citrus orchard with different parent materials. Chinese Journal of Ecology, 41, 933-940. |
[ 王珏, 周卫军, 商贵铎, 谭洁, 唐豆, 曹胜 (2022). 不同母质柑橘园土壤养分特征及肥力综合评价. 生态学杂志, 41, 933-940.] | |
[34] | Wang XN, Xu DH, Wang XJ, Fang XW (2022). Changes of shrub community structure with altitudinal gradient and longitude in Qilian Mountains. Ecology and Environmental Sciences, 31, 231-238. |
[ 王小娜, 徐当会, 王谢军, 方向文 (2022). 祁连山灌丛群落结构特征随海拔梯度和经度的变化. 生态环境学报, 31, 231-238.] | |
[35] | Wu H, Zou MR, Wang SQ, Wan HX (2019). Eco-stoichiometry characteristics of soil within pine and oak mixed forest and theirs responses to elevation gradient in Qinling Mountains. Ecology and Environmental Sciences, 28, 2323-2331. |
[ 吴昊, 邹梦茹, 王思芊, 万洪秀 (2019). 秦岭松栎林土壤生态化学计量特征及其对海拔梯度的响应. 生态环境学报, 28, 2323-2331.] | |
[36] | Wu JX, Wang YX, Chen QB, Tong ZL (2013). Soil improvement of Pinus yunnanensis forest at different age in central Yunnan Plateau. Advanced Materials Research, 864- 867, 2565-2568. |
[37] | Wu W, He XD, Zhou QX (2010). Review on N:P stoichiometry in eco-system. Journal of Desert Research, 30, 296-302. |
[ 邬畏, 何兴东, 周启星 (2010). 生态系统氮磷比化学计量特征研究进展. 中国沙漠, 30, 296-302.] | |
[38] |
Wu YH, Zhou J, Yu D, Sun SQ, Luo J, Bing HJ, Sun HY (2013). Phosphorus biogeochemical cycle research in mountainous ecosystems. Journal of Mountain Science, 10, 43-53.
DOI URL |
[39] |
Xiao L, Li P, Shi P, Liu Y (2019). Soil nutrient stoichiometries and enzymatic activities along an elevational gradient in the dry-hot valley region of southwestern China. Archives of Agronomy and Soil Science, 65, 322-333.
DOI |
[40] | Xiao Y, Shang LN, Huang ZG, Zhang WG, Xue ZS, Zhang ZS, Lü XG (2014). Ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in mountain swamps of eastern Jilin Province. Scientia Geographica Sinica, 34, 994-1001. |
[ 肖烨, 商丽娜, 黄志刚, 张文广, 薛振山, 张仲胜, 吕宪国 (2014). 吉林东部山地沼泽湿地土壤碳、氮、磷含量及其生态化学计量学特征. 地理科学, 34, 994-1001.]
DOI |
|
[41] | Xie J, Chang SL, Zhang YT, Wang HJ, Song CC, He P, Sun XJ (2016). Plant and soil ecological stoichiometry with vertical zonality on the northern slope of the middle Tianshan Mountains. Acta Ecologica Sinica, 36, 4363-4372. |
[ 谢锦, 常顺利, 张毓涛, 王慧杰, 宋成程, 何平, 孙雪娇 (2016). 天山北坡植物土壤生态化学计量特征的垂直地带性. 生态学报, 36, 4363-4372.] | |
[42] |
Yu YH, Chi YK (2020). Ecological stoichiometric characteristics of soil at different depths in a karst plateau mountain area of China. Polish Journal of Environmental Studies, 29, 969-978.
DOI URL |
[43] |
Zeng ZX, Wang KL, Liu XL, Zeng FP, Song TQ, Peng WX, Zhang H, Du H (2015). Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi. Chinese Journal of Plant Ecology, 39, 682-693.
DOI URL |
[ 曾昭霞, 王克林, 刘孝利, 曾馥平, 宋同清, 彭晚霞, 张浩, 杜虎 (2015). 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 39, 682-693.]
DOI |
|
[44] |
Zhang AL, Li XY, Wu SX, Li L, Jiang Y, Wang RZ, Ahmed Z, Zeng FJ, Lin LS, Li L (2021). Spatial pattern of C:N:P stoichiometry characteristics of alpine grassland in the Altunshan Nature Reserve at North Qinghai-Tibet Plateau. CATENA, 207, 105691. DOI: 10.1016/j.catena.2021. 105691.
DOI |
[45] | Zhang GS, Deng HJ, Du K, Lin YM, Ma RF, Yu W, Wang DJ, Wu CZ, Hong W (2016). Soil stoichiometry characteristics at different elevation gradients of a mountain in an area with high frequency debris flow: a case study in Xiaojiang Watershed, Yunnan. Acta Ecologica Sinica, 36, 675-687. |
[ 张广帅, 邓浩俊, 杜锟, 林勇明, 马瑞丰, 俞伟, 王道杰, 吴承祯, 洪伟 (2016). 泥石流频发区山地不同海拔土壤化学计量特征——以云南省小江流域为例. 生态学报, 36, 675-687.] | |
[46] | Zhang SS, Li AQ, Wang HR, Wang JJ, Xu XN (2020). Ecological stoichiometry of soil carbon, nitrogen and phosphorus in Cunninghamia lanceolata plantation across an elevation gradient. Ecology and Environmental Sciences, 29, 97-104. |
[ 张莎莎, 李爱琴, 王会荣, 王晶晶, 徐小牛 (2020). 不同海拔杉木人工林土壤碳氮磷生态化学计量特征. 生态环境学报, 29, 97-104.] | |
[47] |
Zhang Y, Li C, Wang ML (2019). Linkages of C:N:P stoichiometry between soil and leaf and their response to climatic factors along altitudinal gradients. Journal of Soils and Sediments, 19, 1820-1829.
DOI |
[48] | Zhao WJ, Liu XD, Jin M, Zhang XL, Che ZX, Jing WM, Wang SL, Niu Y, Qi P, Li WJ (2016). Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in leaf- litter-soil system of Picea crassifolia forest in the Qilian Mountains. Acta Pedologica Sinica, 53, 477-489. |
[ 赵维俊, 刘贤德, 金铭, 张学龙, 车宗玺, 敬文茂, 王顺利, 牛赟, 齐鹏, 李雯靖 (2016). 祁连山青海云杉林叶片-枯落物-土壤的碳氮磷生态化学计量特征. 土壤学报, 53, 477-489.] |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[5] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[6] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[7] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[8] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[9] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[10] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[11] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[12] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[13] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[14] | 王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析[J]. 植物生态学报, 2022, 46(8): 961-970. |
[15] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19