植物生态学报 ›› 2022, Vol. 46 ›› Issue (7): 834-845.DOI: 10.17521/cjpe.2021.0430
收稿日期:
2021-11-23
接受日期:
2022-01-08
出版日期:
2022-07-20
发布日期:
2022-07-15
通讯作者:
孙彩丽
作者简介:
* E-mail: suncaili2007@126.com基金资助:
SUN Cai-Li1,2,*(), QIU Mo-Sheng1, HUANG Chao-Xiang1, WANG Yi-Wei1
Received:
2021-11-23
Accepted:
2022-01-08
Online:
2022-07-20
Published:
2022-07-15
Contact:
SUN Cai-Li
Supported by:
摘要:
为明确喀斯特石漠化过程中土壤胞外酶活性及其化学计量变化特征以及它们对环境变异的生态响应规律。该研究以5种不同石漠化程度的土壤生态系统为研究对象, 运用生态化学计量学理论与方法, 系统研究石漠化对6种胞外酶(β-1,4-葡糖苷酶(BG)、β-1,4-木糖苷酶(BX)和纤维素二糖水解酶、β-1,4-乙酰-葡糖胺糖苷酶、亮氨酸氨基肽酶(LAP)和酸性磷酸酶(AP))活性及其化学计量的影响, 并分析它们与环境因子之间的相关性。结果表明: 无石漠化、潜在和轻度石漠化阶段BG、BX、LAP和AP胞外酶活性显著高于中度和重度石漠化阶段, 但不同石漠化阶段土壤胞外酶化学计量特征差异不显著。不同石漠化程度土壤质量大体分为3类, 其中, 无石漠化土壤生化性状最优, 潜在和轻度石漠化土壤次之, 且均优于中度和重度石漠化土壤, 并且, 无石漠化、潜在和轻度石漠化土壤存在缺磷现象(酶矢量角度大于45°), 而中度和重度石漠化土壤氮缺乏(酶矢量角度小于45°)。此外, 石漠化过程中土壤胞外酶活性及其化学计量特征的变化主要受土壤全氮、速效磷、硝态氮、氨态氮和枯落物磷含量的影响, 总体表现为与土壤养分含量具有趋同性并受枯落物磷含量的限制。综上, 石漠化生态系统修复和治理过程中, 需考虑在潜在和轻度石漠化阶段补充磷, 在中度和重度石漠化阶段补充氮, 以缓解相关养分限制。
孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征. 植物生态学报, 2022, 46(7): 834-845. DOI: 10.17521/cjpe.2021.0430
SUN Cai-Li, QIU Mo-Sheng, HUANG Chao-Xiang, WANG Yi-Wei. Characteristics of soil extracellular enzyme activities and their stoichiometry during rocky desertification in southwestern Guizhou, China. Chinese Journal of Plant Ecology, 2022, 46(7): 834-845. DOI: 10.17521/cjpe.2021.0430
石漠化程度 Degree of rocky desertification | SOC (g·kg-1) | TN (g·kg-1) | TP (g·kg-1) | SAP (mg·kg-1) | NN (mg·kg-1) |
---|---|---|---|---|---|
无 No | 35.604 ± 2.304a | 4.682 ± 0.362a | 0.765 ± 0.045c | 1.833 ± 0.108a | 20.975 ± 1.808a |
潜在 Potential | 25.438 ± 3.054b | 4.679 ± 0.359a | 0.792 ± 0.074c | 1.502 ± 0.148ab | 10.510 ± 1.700b |
轻度 Slight | 26.806 ± 2.108b | 3.994 ± 0.668ab | 1.167 ± 0.043a | 1.176 ± 0.153bc | 10.435 ± 0.983b |
中度 Moderate | 24.152 ± 0.447b | 3.809 ± 0.016ab | 0.962 ± 0.044b | 1.034 ± 0.287c | 7.070 ± 1.672c |
重度 Severe | 22.234 ± 1.789b | 3.289 ± 0.670b | 0.691 ± 0.101c | 0.966 ± 0.244c | 7.745 ± 0.19bc |
石漠化程度 Degree of rocky desertification | AN (mg·kg-1) | pH | C:N | C:P | N:P |
无 No | 5.070 ± 0.368a | 4.523 ± 0.098d | 7.641 ± 0.807a | 46.598 ± 2.926a | 6.122 ± 0.322a |
潜在 Potential | 4.246 ± 0.290bc | 6.800 ± 0.160c | 5.429 ± 0.370a | 32.271 ± 4.177bc | 5.947 ± 0.700ab |
轻度 Slight | 4.699 ± 0.455ab | 7.373 ± 0.156ab | 6.911 ± 1.710a | 22.981 ± 1.887c | 3.434 ± 0.650d |
中度 Moderate | 3.609 ± 0.276c | 7.190 ± 0.048b | 6.341 ± 0.100a | 25.153 ± 1.487bc | 3.965 ± 0.194cd |
重度 Severe | 4.018 ± 0.201bc | 7.468 ± 0.046a | 7.049 ± 1.998a | 33.009 ± 7.721b | 4.757 ± 0.722bc |
表1 黔西南不同石漠化程度土壤化学性质及化学计量(平均值±标准差)
Table 1 Soil physical and chemical properties at the different degrees of rocky desertification in southwestern Guizhou (mean ± SD)
石漠化程度 Degree of rocky desertification | SOC (g·kg-1) | TN (g·kg-1) | TP (g·kg-1) | SAP (mg·kg-1) | NN (mg·kg-1) |
---|---|---|---|---|---|
无 No | 35.604 ± 2.304a | 4.682 ± 0.362a | 0.765 ± 0.045c | 1.833 ± 0.108a | 20.975 ± 1.808a |
潜在 Potential | 25.438 ± 3.054b | 4.679 ± 0.359a | 0.792 ± 0.074c | 1.502 ± 0.148ab | 10.510 ± 1.700b |
轻度 Slight | 26.806 ± 2.108b | 3.994 ± 0.668ab | 1.167 ± 0.043a | 1.176 ± 0.153bc | 10.435 ± 0.983b |
中度 Moderate | 24.152 ± 0.447b | 3.809 ± 0.016ab | 0.962 ± 0.044b | 1.034 ± 0.287c | 7.070 ± 1.672c |
重度 Severe | 22.234 ± 1.789b | 3.289 ± 0.670b | 0.691 ± 0.101c | 0.966 ± 0.244c | 7.745 ± 0.19bc |
石漠化程度 Degree of rocky desertification | AN (mg·kg-1) | pH | C:N | C:P | N:P |
无 No | 5.070 ± 0.368a | 4.523 ± 0.098d | 7.641 ± 0.807a | 46.598 ± 2.926a | 6.122 ± 0.322a |
潜在 Potential | 4.246 ± 0.290bc | 6.800 ± 0.160c | 5.429 ± 0.370a | 32.271 ± 4.177bc | 5.947 ± 0.700ab |
轻度 Slight | 4.699 ± 0.455ab | 7.373 ± 0.156ab | 6.911 ± 1.710a | 22.981 ± 1.887c | 3.434 ± 0.650d |
中度 Moderate | 3.609 ± 0.276c | 7.190 ± 0.048b | 6.341 ± 0.100a | 25.153 ± 1.487bc | 3.965 ± 0.194cd |
重度 Severe | 4.018 ± 0.201bc | 7.468 ± 0.046a | 7.049 ± 1.998a | 33.009 ± 7.721b | 4.757 ± 0.722bc |
石漠化程度 Degree of rocky desertification | 枯落物碳含量 Litter carbon (C) content (g·kg-1) | 枯落物氮含量 Litter nitrogen (N) content (g·kg-1) | 枯落物磷含量 Litter phosphorus (P) content (g·kg-1) | 枯落物C:N Litter C:N | 枯落物C:P Litter C:P | 枯落物N:P Litter N:P |
---|---|---|---|---|---|---|
无 No | 485.775 ± 7.665a | 11.941 ± 1.745a | 1.328 ± 0.27b | 41.378 ± 6.398a | 376.570 ± 70.487a | 9.283 ± 2.355a |
潜在 Potential | 421.896 ± 27.728c | 13.418 ± 0.910a | 1.353 ± 0.257b | 31.618 ± 3.777b | 318.252 ± 46.335ab | 10.241 ± 2.313a |
轻度 Slight | 413.988 ± 8.484c | 13.931 ± 0.434a | 1.810 ± 0.281b | 29.725 ± 0.363b | 232.707 ± 34.325bc | 7.833 ± 1.179ab |
中度 Moderate | 453.699 ± 7.376b | 12.869 ± 1.024a | 2.493 ± 0.361a | 35.439 ± 3.120ab | 184.557 ± 23.367c | 5.272 ± 1.044b |
重度 Severe | 356.203 ± 8.751d | 12.207 ± 0.455a | 1.620 ± 0.129b | 29.204 ± 1.088b | 221.131 ± 21.493c | 7.561 ± 0.474ab |
表2 黔西南不同石漠化程度枯落物元素含量和化学计量(平均值±标准差)
Table 2 Element content and stoichiometry of litter collected from the different degrees of rocky desertification in southwestern Guizhou (mean ± SD)
石漠化程度 Degree of rocky desertification | 枯落物碳含量 Litter carbon (C) content (g·kg-1) | 枯落物氮含量 Litter nitrogen (N) content (g·kg-1) | 枯落物磷含量 Litter phosphorus (P) content (g·kg-1) | 枯落物C:N Litter C:N | 枯落物C:P Litter C:P | 枯落物N:P Litter N:P |
---|---|---|---|---|---|---|
无 No | 485.775 ± 7.665a | 11.941 ± 1.745a | 1.328 ± 0.27b | 41.378 ± 6.398a | 376.570 ± 70.487a | 9.283 ± 2.355a |
潜在 Potential | 421.896 ± 27.728c | 13.418 ± 0.910a | 1.353 ± 0.257b | 31.618 ± 3.777b | 318.252 ± 46.335ab | 10.241 ± 2.313a |
轻度 Slight | 413.988 ± 8.484c | 13.931 ± 0.434a | 1.810 ± 0.281b | 29.725 ± 0.363b | 232.707 ± 34.325bc | 7.833 ± 1.179ab |
中度 Moderate | 453.699 ± 7.376b | 12.869 ± 1.024a | 2.493 ± 0.361a | 35.439 ± 3.120ab | 184.557 ± 23.367c | 5.272 ± 1.044b |
重度 Severe | 356.203 ± 8.751d | 12.207 ± 0.455a | 1.620 ± 0.129b | 29.204 ± 1.088b | 221.131 ± 21.493c | 7.561 ± 0.474ab |
图1 黔西南不同石漠化程度土壤胞外酶活性(平均值±标准差)。AP, 酸性磷酸酶; BG, β-1, 4-葡萄糖苷酶; BX, β-1, 4-木糖苷酶; CBH, 纤维素二糖水解酶; LAP, 亮氨酸氨基肽酶; NAG, β-1,4-乙酰-葡糖胺糖苷酶。不同小写字母表示同种胞外酶活性在不同石漠化阶段差异性显著(p < 0.05)。
Fig. 1 Soil extracellular enzyme activity at the different degrees of rocky desertification in southwestern Guizhou (mean ± SD). AP, acid phosphatase; BG, β-1,4-glucosidase; BX, β-1,4-xylosidase; CBH, Cellobiohydrolase; LAP, L-leucine aminopeptidase; NAG, β-1,4-N-acetylglucosaminidase. Different lowercase letters indicated that the extracellular enzyme activity in different degrees of rocky desertification were significantly different (p < 0.05).
石漠化程度 Degree of rock desertification | 酶C:N Enzyme C:N | 酶C:P Enzyme C:P | 酶N:P Enzyme N:P | 矢量长度 Vector length | 矢量角度 Vector angle |
---|---|---|---|---|---|
无 No | 0.882 ± 0.145a | 0.706 ± 0.238a | 0.81 ± 0.299a | 0.620 ± 0.068a | 49.289 ± 5.402a |
潜在 Potential | 1.006 ± 0.170a | 0.705 ± 0.192a | 0.699 ± 0.121a | 0.645 ± 0.067a | 50.817 ± 2.829a |
轻度 Slight | 0.828 ± 0.093a | 0.655 ± 0.111a | 0.793 ± 0.128a | 0.600 ± 0.042a | 49.029 ± 2.763a |
中度 Moderate | 0.789 ± 0.105a | 1.090 ± 0.491a | 1.354 ± 0.514a | 0.669 ± 0.107a | 42.000 ± 6.153a |
重度 Severe | 0.884 ± 0.213a | 1.158 ± 0.360a | 1.305 ± 0.289a | 0.701 ± 0.106a | 41.612 ± 2.813a |
表3 黔西南不同石漠化程度土壤胞外酶化学计量及矢量长度和角度(平均值±标准差)
Table 3 Vector characteristic of soil enzyme in different degrees of rocky desertification in southwestern Guizhou (mean ± SD)
石漠化程度 Degree of rock desertification | 酶C:N Enzyme C:N | 酶C:P Enzyme C:P | 酶N:P Enzyme N:P | 矢量长度 Vector length | 矢量角度 Vector angle |
---|---|---|---|---|---|
无 No | 0.882 ± 0.145a | 0.706 ± 0.238a | 0.81 ± 0.299a | 0.620 ± 0.068a | 49.289 ± 5.402a |
潜在 Potential | 1.006 ± 0.170a | 0.705 ± 0.192a | 0.699 ± 0.121a | 0.645 ± 0.067a | 50.817 ± 2.829a |
轻度 Slight | 0.828 ± 0.093a | 0.655 ± 0.111a | 0.793 ± 0.128a | 0.600 ± 0.042a | 49.029 ± 2.763a |
中度 Moderate | 0.789 ± 0.105a | 1.090 ± 0.491a | 1.354 ± 0.514a | 0.669 ± 0.107a | 42.000 ± 6.153a |
重度 Severe | 0.884 ± 0.213a | 1.158 ± 0.360a | 1.305 ± 0.289a | 0.701 ± 0.106a | 41.612 ± 2.813a |
图2 黔西南不同石漠化程度枯落物化学含量、土壤化学性质和胞外酶活性的相关性分析。AN, 土壤氨态氮含量; LC, 枯落物碳含量; LN, 枯落物氮含量; LP, 枯落物磷含量; NN, 土壤硝态氮含量; SAP, 土壤速效磷含量; SOC, 土壤有机碳含量; TN, 土壤总氮含量; TP, 土壤总磷含量。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 2 Correlation analysis of litter chemical content, soil chemical properties and extracellular enzyme activity at the different degrees of rocky desertification in southwestern Guizhou. AN, soil ammoniacal nitrogen content; LC, litter carbon content; LN, litter nitrogen content; LP, litter phosphorus content; NN, soil nitrate nitrogen content; SAP, soil available phosphorus content; SOC, soil organic carbon content; TN, soil total nitrogen content; TP, soil total phosphorus content. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图3 黔西南枯落物和土壤化学性质与胞外酶活性的冗余分析(RDA)。AN, 土壤氨态氮含量; AP, 酸性磷酸酶; BG, β-1, 4-葡萄糖苷酶; BX, β-1,4-木糖苷酶; CBH, 纤维素二糖水解酶; C:N, 土壤碳氮比; C:P, 土壤碳磷比; Enzyme C:N, 胞外酶碳氮比; Enzyme C:P, 胞外酶碳磷比; Enzyme N:P, 胞外酶氮磷比; LC, 枯落物碳含量; LC:P, 枯落物碳磷比; LN, 枯落物氮含量; LAP, 亮氨酸氨基肽酶; LP, 枯落物磷含量; NAG, β-1,4-乙酰-葡糖胺糖苷酶; NN, 土壤硝态氮含量; N:P, 土壤N:P; SAP, 土壤速效磷含量; SOC, 土壤有机碳含量; TN, 土壤总氮含量; TP, 土壤总磷含量。
Fig. 3 Redundancy analysis (RDA) of litter chemical content, soil chemical properties and extracellular enzyme activity in southwestern Guizhou. AN, soil ammoniacal nitrogen content; AP, acid phosphatase; BG, β-1,4-glucosidase; BX, β-1,4-xylosidase; CBH, Cellobiohydrolase; C:N, soil carbon (C):nitrogen (N); C:P, soil C:phosphorus (P); Enzyme C:N, extracellular enzyme C:N; Enzyme C:P, extracellular enzyme C:P; Enzyme N:P, extracellular enzyme N:P; LC, litter C content; LC:P, litter C:P; LN, litter N content; LAP, L-leucine aminopeptidase; LP, litter phosphorus content; NAG, β-1,4-N-acetylglucosaminidase; NN, soil nitrate N content; N:P, soil N:P; SAP, soil available phosphorus content; SOC, soil organic carbon content; TN, soil total nitrogen content; TP, soil total phosphorus content.
变量 Variable | RDA1 | RDA2 | R2 | p | 变量 Variable | RDA1 | RDA2 | R2 | p |
---|---|---|---|---|---|---|---|---|---|
TN | -0.919 | -0.392 | 0.483 | 0.003** | LC | -0.999 | 0.013 | 0.245 | 0.090 |
TP | -0.271 | -0.962 | 0.076 | 0.543 | LN | 0.047 | -0.998 | 0.026 | 0.820 |
SAP | -0.979 | 0.201 | 0.612 | 0.001** | LP | 0.964 | -0.264 | 0.364 | 0.023* |
NN | -0.934 | 0.355 | 0.677 | 0.001** | C:N | -0.439 | 0.898 | 0.226 | 0.107 |
AN | -0.991 | 0.129 | 0.654 | 0.001** |
表4 黔西南土壤和枯落物相关指标作为解释变量的蒙特卡罗置换检验分析
Table 4 Monte-Carlo permutation test of explanatory variable including soil and litter indexes in southwestern Guizhou
变量 Variable | RDA1 | RDA2 | R2 | p | 变量 Variable | RDA1 | RDA2 | R2 | p |
---|---|---|---|---|---|---|---|---|---|
TN | -0.919 | -0.392 | 0.483 | 0.003** | LC | -0.999 | 0.013 | 0.245 | 0.090 |
TP | -0.271 | -0.962 | 0.076 | 0.543 | LN | 0.047 | -0.998 | 0.026 | 0.820 |
SAP | -0.979 | 0.201 | 0.612 | 0.001** | LP | 0.964 | -0.264 | 0.364 | 0.023* |
NN | -0.934 | 0.355 | 0.677 | 0.001** | C:N | -0.439 | 0.898 | 0.226 | 0.107 |
AN | -0.991 | 0.129 | 0.654 | 0.001** |
图4 黔西南不同石漠化程度土壤化学性质及胞外酶活性的聚类分析。
Fig. 4 Cluster analysis of soil chemical properties and extracellular enzyme activities at the different degrees of rocky desertification in southwestern Guizhou.
[1] |
Adekanmbi AA, Dale L, Shaw L, Sizmur T (2021). Temperature sensitivity of intracellular and extracellular soil enzyme activities. EGU General Assembly 2021, EGU21-4801. DOI: 10.5194/egusphere-egu21-4801.
DOI |
[2] |
Ananbeh H, Stojanović M, Pompeiano A, Voběrková S, Trasar-Cepeda C (2019). Use of soil enzyme activities to assess the recovery of soil functions in abandoned coppice forest systems. Science of the Total Environment, 694, 133692. DOI: 10.1016/j.scitotenv.2019.133692.
DOI URL |
[3] |
Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry, 58, 216-234.
DOI URL |
[4] | Chen HS, Yue YM, Wang KL (2018). Comprehensive control on rocky desertification in karst regions of southwestern China: achievements, problems, and countermeasures. Carsologica Sinica, 37, 37-42. |
[陈洪松, 岳跃民, 王克林 (2018). 西南喀斯特地区石漠化综合治理: 成效、问题与对策. 中国岩溶, 37, 37-42.] | |
[5] | Cheng C, Li YJ, Zhang YD, Gao M, Li XN (2020). Effects of moss crusts on soil nutrients and ecological stoichiometry characteristics in karst rocky desertification region. Acta Ecologica Sinica, 40, 9234-9244. |
[程才, 李玉杰, 张远东, 高敏, 李晓娜 (2020). 石漠化地区苔藓结皮对土壤养分及生态化学计量特征的影响. 生态学报, 40, 9234-9244.] | |
[6] |
Curtright AJ, Tiemann LK (2021). Meta-analysis dataset of soil extracellular enzyme activities in intercropping systems. Data in Brief, 38, 107284. DOI: 10.1016/j.dib.2021.107284.
DOI URL |
[7] | Dai QH, Yan YJ (2018). Research progress of karst rocky desertification and soil erosion in southwest China. Journal of Soil and Water Conservation, 32(2), 1-10. |
[戴全厚, 严友进 (2018). 西南喀斯特石漠化与水土流失研究进展. 水土保持学报, 32(2), 1-10.] | |
[8] | Fu WB, Yan YJ, Wang K, Hu G, Lin ZH, Huang CH (2021). Effects of control measures on soil quality evolution in the karst rocky desertification area in southwestern China. Research of Soil and Water Conservation, 28(2), 27-32. |
[伏文兵, 严友进, 王凯, 胡刚, 林梽桓, 黄朝海 (2021). 喀斯特石漠化区治理措施对土壤质量演变的影响. 水土保持研究, 28(2), 27-32.] | |
[9] | Gan L, Chen FS, Hu XF, Tian QX, Ge G, Zhan SX (2008). Leaf N and P concentrations and their stoichiometric ratios of different functional groups of plants in Nanchang City. Chinese Journal of Ecology, 27, 344-348. |
[甘露, 陈伏生, 胡小飞, 田秋香, 葛刚, 詹书侠 (2008). 南昌市不同植物类群叶片氮磷浓度及其化学计量比. 生态学杂志, 27, 344-348.] | |
[10] |
Guan HL, Fan JW, Lu XK (2022). Soil specific enzyme stoichiometry reflects nitrogen limitation of microorganisms under different types of vegetation restoration in the karst areas. Applied Soil Ecology, 169, 104253. DOI: 10.1016/j.apsoil.2021.104253.
DOI URL |
[11] |
Guo Z, Zhang X, Green SM, Dungait JAJ, Wen X, Quine TA (2019). Soil enzyme activity and stoichiometry along a gradient of vegetation restoration at the Karst Critical Zone Observatory in Southwest China. Land Degradation & Development, 30, 1916-1927.
DOI URL |
[12] |
Hu QJ, Sheng MY, Yin J, Bai YX (2020). Stoichiometric characteristics of fine roots and rhizosphere soil of Broussonetia papyrifera adapted to the karst rocky desertification environment in southwest China. Chinese Journal of Plant Ecology, 44, 962-972.
DOI URL |
[胡琪娟, 盛茂银, 殷婕, 白义鑫 (2020). 西南喀斯特石漠化环境适生植物构树细根、根际土壤化学计量特征. 植物生态学报, 44, 962-972.] | |
[13] | Hu ZE, Xiao ML, Wang S, Tong YY, Lu SB, Chen JP, Ge TD (2022). Effects of plastic mulch film on soil nutrients and ecological enzyme stoichiometry in farmland. Environmental Science, 43, 1649-1656. |
[胡志娥, 肖谋良, 王双, 童瑶瑶, 鲁顺保, 陈剑平, 葛体达 (2022). 地膜覆盖对农田土壤养分和生态酶计量学特征的影响. 环境科学, 43, 1649-1656.] | |
[14] | Ji L, Ma LX, Cheng ZL, Zhu QC, Zhang Y, Yang YC, Yang LX (2020). Stoichiometry of soil extracellular enzymes and its seasonal variation in natural forests with different altitudes in northern Greater Khingan Mountains, China. Chinese Journal of Applied Ecology, 31, 2491-2499. |
[及利, 马立新, 程政磊, 祝清超, 张岩, 杨雨春, 杨立学 (2020). 大兴安岭北部不同海拔天然林土壤胞外酶化学计量特征及其季节动态. 应用生态学报, 31, 2491-2499.]
DOI |
|
[15] |
Jiang WT, Gong L, Yang LH, He SP, Liu XH (2021). Dynamics in C, N, and P stoichiometry and microbial biomass following soil depth and vegetation types in low mountain and hill region of China. Scientific Reports, 11, 19631. DOI: 10.1038/s41598-021-99075-5.
DOI URL |
[16] |
Jiang ZC, Lian YQ, Qin XQ (2014). Rocky desertification in Southwest China: impacts, causes, and restoration. Earth-Science Reviews, 132, 1-12.
DOI URL |
[17] |
Lan JC (2021). Responses of soil organic carbon components and their sensitivity to karst rocky desertification control measures in Southwest China. Journal of Soils and Sediments, 21, 978-989.
DOI URL |
[18] | Li R, Wang LJ, Sheng MY, Guo J (2016). Plant species diversity and its relationship with soil properties in Karst rocky desertification succession. Research of Soil and Water Conservation, 23(5), 111-119. |
[李瑞, 王霖娇, 盛茂银, 郭杰 (2016). 喀斯特石漠化演替中植物多样性及其与土壤理化性质的关系. 水土保持研究, 23(5), 111-119.] | |
[19] |
Liu JB, Chen J, Chen GS, Guo JF, Li YQ (2019). Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests. PLOS ONE, 15, e220599. DOI: 10.1371/journal.pone.0220599.
DOI |
[20] | Liu Y, Chen YM, Liang SQ, Chen C (2019). Soil ecological stoichiometry characteristics of Robinia pseudoacacia plantation in the loess hilly region of northern Shaanxi Province. Research of Soil and Water Conservation, 26(4), 43-49. |
[刘愿, 陈云明, 梁思琦, 陈晨 (2019). 陕北黄土丘陵区刺槐人工林土壤生态化学计量特征. 水土保持研究, 26(4), 43-49.] | |
[21] | Lu RK (2000). Soil Agrochemical Analysis. China Agricultural Science and Technology Press, Beijing. 228-264. |
[鲁如坤 (2000). 土壤农业化学分析法. 中国农业科技出版社, 北京. 228-264.] | |
[22] |
Malik AA, Puissant J, Goodall T, Allison SD, Griffiths RI (2019). Soil microbial communities with greater investment in resource acquisition have lower growth yield. Soil Biology & Biochemistry, 132, 36-39.
DOI URL |
[23] |
Moorhead DL, Sinsabaugh RL, Hill BH, Weintraub MN (2016). Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology & Biochemistry, 93, 1-7.
DOI URL |
[24] | Pan FJ, Zhang W, Wang KL, He XY, Liang SC, Wei GF (2011). Litter C:N:P ecological stoichiometry character of plant communities in typical Karst Peak-Cluster Depression. Acta Ecologica Sinica, 31, 335-343. |
[潘复静, 张伟, 王克林, 何寻阳, 梁士楚, 韦国富 (2011). 典型喀斯特峰丛洼地植被群落凋落物C:N:P生态化学计量特征. 生态学报, 31, 335-343.] | |
[25] |
Peng XQ, Wang W (2016). Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biology & Biochemistry, 98, 74-84.
DOI URL |
[26] |
Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.
DOI URL |
[27] |
Sinsabaugh RL, Follstad Shah JJ (2012). Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313-343.
DOI URL |
[28] |
Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-798.
DOI URL |
[29] |
Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, et al. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264.
DOI PMID |
[30] | Song TQ, Peng WX, Du H, Wang KL, Zeng FP (2014). Occurrence, spatial-temporal dynamics and regulation strategies of karst rocky desertification in southwest China. Acta Ecologica Sinica, 34, 5328-5341. |
[宋同清, 彭晚霞, 杜虎, 王克林, 曾馥平 (2014). 中国西南喀斯特石漠化时空演变特征、发生机制与调控对策. 生态学报, 34, 5328-5341.] | |
[31] | Sun CL, Wang YW, Wang CJ, Li QJ, Wu ZH, Yuan DS, Zhang JL (2021). Effects of land use conversion on soil extracellular enzyme activity and its stoichiometric characteristics in karst mountainous areas. Acta Ecologica Sinica, 41, 4140-4149. |
[孙彩丽, 王艺伟, 王从军, 黎庆菊, 吴志红, 袁东昇, 张建利 (2021). 喀斯特山区土地利用方式转变对土壤酶活性及其化学计量特征的影响. 生态学报, 41, 4140-4149.] | |
[32] |
Tian H, Chen G, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China's soils: a synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
[33] | Wang MC, Zhang XC, Li HX, Zhou HY, Wei XH, Guan GC (2016). An analysis of soil quality changes in the process of ecological restoration in karst rocky desertification area: a case study in karst ecological restoration and rehabilitation region of Guzhou village. Ecology and Environmental Sciences, 25, 947-955. |
[汪明冲, 张新长, 李辉霞, 周红艺, 魏兴琥, 关共凑 (2016). 喀斯特石漠化生态恢复过程中土壤质量变化分析--以古周生态恢复重建区为例. 生态环境学报, 25, 947-955.] | |
[34] |
Wei L, Razavi BS, Wang W, Zhu Z, Liu S, Wu J, Kuzyakov Y, Ge T (2019). Labile carbon matters more than temperature for enzyme activity in paddy soil. Soil Biology & Biochemistry, 135, 134-143.
DOI URL |
[35] | Wu XZ, Yan X, Wang B, Liu RT, An H (2018a). Effects of desertification on soil nutrients and extracellular enzyme activities in desert grassland. Ecology and Environmental Sciences, 27, 1082-1088. |
[吴秀芝, 阎欣, 王波, 刘任涛, 安慧 (2018a). 荒漠草地沙漠化对土壤养分和胞外酶活性的影响. 生态环境学报, 27, 1082-1088.] | |
[36] |
Wu XZ, Yan X, Wang B, Liu RT, An H (2018b). Effects of desertification on the C:N:P stoichiometry of soil, microbes, and extracellular enzymes in a desert grassland. Chinese Journal of Plant Ecology, 42, 1022-1032.
DOI URL |
[吴秀芝, 阎欣, 王波, 刘任涛, 安慧 (2018b). 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响. 植物生态学报, 42, 1022-1032.] | |
[37] | Xiong KN, Li P, Zhou ZF, An YL, Lv T, Lan AJ (2002). Typical Study of Remote Sensing-GIS on Karst Rocky Desertification: A Case Study of Guizhou Province. Geological Publishing House, Beijing. 134-137. |
[熊康宁, 黎平, 周忠发, 安裕伦, 吕涛, 蓝安军 (2002). 喀斯特石漠化的遥感-GIS典型研究--以贵州省为例. 地质出版社, 北京. 134-137.] | |
[38] |
Xu ZW, Yu GR, Zhang XY, He NP, Wang QF, Wang SZ, Wang RL, Zhao N, Jia YL, Wang CY (2017). Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology & Biochemistry, 104, 152-163.
DOI URL |
[39] | Yu YF, Peng WX, Song TQ, Zeng FP, Wang KL, Wen L, Fan FJ (2014). Stoichiometric characteristics of plant and soil C, N and P in different forest types in depressions between karst hills, southwest China. Chinese Journal of Applied Ecology, 25, 947-954. |
[俞月凤, 彭晚霞, 宋同清, 曾馥平, 王克林, 文丽, 范夫静 (2014). 喀斯特峰丛洼地不同森林类型植物和土壤C、N、P化学计量特征. 应用生态学报, 25, 947-954.] | |
[40] |
Zeng ZX, Wang KL, Liu XL, Zeng FP, Song TQ, Peng WX, Zhang H, Du H (2015). Stoichiometric characteristics of plants, litter and soils in karst plant communities of northwest Guangxi. Chinese Journal of Plant Ecology, 39, 682-693.
DOI URL |
[曾昭霞, 王克林, 刘孝利, 曾馥平, 宋同清, 彭晚霞, 张浩, 杜虎 (2015). 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 39, 682-693.]
DOI |
|
[41] |
Zhao FZ, Ren CJ, Han XH, Yang GH, Wang J, Doughty R (2018). Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems. Forest Ecology and Management, 427, 289-295.
DOI URL |
[42] | Zhao XL, He XD, Xue PP, Zhang N, Wu W, Li R, Ci HC, Xu JJ, Gao YB, Zhao HL (2012). Effects of soil stoichiometry of the CaCO3/available phosphorus ratio on plant density in Artemisia ordosica communities. Chinese Science Bulletin, 57(1), 80-87. |
[赵雪莱, 何兴东, 薛苹苹, 张宁, 邬畏, 李荣, 慈华聪, 徐静静, 高玉葆, 赵哈林 (2012). 土壤碳酸钙/有效磷化学计量特征对油蒿群落植物密度的影响. 科学通报, 57(1), 80-87.] | |
[43] |
Zhou J, Tang YQ, Zhang XH, She TY, Yang P, Wang JX (2012). The influence of water content on soil erosion in the desertification area of Guizhou, China. Carbonates and Evaporites, 27, 185-192.
DOI URL |
[44] | Zuo YP, Zhang XY, Zeng H, Wang W (2018). Spatiotemporal dynamics of soil extracellular enzyme activity and its influence on potential mineralization rate of soil organic carbon in forests of Daxing'an Mountain range. Acta Scientiarum Naturalium Universitatis Pekinensis, 54, 1311-1324. |
[左宜平, 张馨月, 曾辉, 王娓 (2018). 大兴安岭森林土壤胞外酶活力的时空动态及其对潜在碳矿化的影响. 北京大学学报(自然科学版), 54, 1311-1324.] |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[6] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[7] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[8] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[9] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[10] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[11] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[12] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[13] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[14] | 王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析[J]. 植物生态学报, 2022, 46(8): 961-970. |
[15] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19