Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (10): 1022-1032.doi: 10.17521/cjpe.2018.0121

• Research Articles • Previous Articles     Next Articles

Effects of desertification on the C:N:P stoichiometry of soil, microbes, and extracellular enzymes in a desert grassland

WU Xiu-Zhi1,YAN Xin1,WANG Bo2,LIU Ren-Tao1,AN Hui1,*()   

  1. 1 Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China / Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Yinchuan 750021, China
    2 Grassland Experiment Station of Yanchi, Yanchi, Ningxia 751506, China
  • Received:2018-05-23 Online:2019-01-30 Published:2018-10-20
  • Contact: Hui AN
  • Supported by:
    Supported by the Natural Science Foundation of Ningxia Hui Autonomous Region(NZ17004);the National Natural Science Foundation of China(31660168);the Project of First-Class Disciplines of Western China of Ningxia Hui Autonomous Region(NXYLXK2017B06)


Aims In order to discuss the underlying mechanism of desertification effect on the ecological stoichiometry of soil, microbes and extracellular enzymes, we studied the changes of soil, soil microbial and extracellular enzyme C:N:P stoichiometry during the desertification process in the desert grassland in Yanchi County, China.
Methods The “space-for-time” method was used.
Important findings The results demonstrated that: (1) Soil C, N, P contents and soil C:P, N:P significantly decreased, but soil C:N gradually increased with increasing desertification. (2) Soil microbial biomass C (MBC):soil microbial biomass P (MBP), soil microbial biomass N (MBN):MBP and soil β-1,4-glucosidase (BG):β-1,4-N- acetylglucosaminidase (NAG) gradually decreased, soil BG:alkaline phosphatase (AP) and NAG:AP basically showed an increasing trend with increasing desertification. (3) Desertification increased the soil microbial carbon use efficiency (CUEC:N and CUEC:P) gradually, while soil microbial nitrogen use efficiency (NUEN:C) and soil microbial phosphorus use efficiency (PUEP:C) basically decreased. (4) Soil, soil microbial and soil extracellular enzyme C:N stoichiometry (C:N, MBC:MBN, BG:NAG) were significantly negatively correlated with the soil, soil microbial and extracellular enzyme N:P stoichiometry (N:P, MBN:MBP, NAG:AP), the soil and extracellular enzymes C:N (C:N, BG:NAG) were significantly positively correlated with the soil and extracellular enzymes C:P (C:P, BG:AP). Soil N:P was significantly positively correlated with the soil MBN:MBP, but was significantly negatively correlated with the soil NAG:AP. The analysis demonstrated that soil microbial biomass and extracellular enzyme activity changed with soil nutrient during the desertification process in the desert grassland. The covariation relationship between soil nutrient and C:N:P stoichiometry of microbial-extracellular enzyme provides a theoretical basis for understanding the underlying mechanism of C, N, P cycling in the soil-microbial system in desert grasslands.

Key words: desert grassland, desertification, ecoenzymatic stoichiometry, soil microbes, nutrient use efficiency

Fig. 1

Characteristics of soil C、N、P content and C:N:P ecological stoichiometry (mean ± SD) at different stages of desertification. FD, fixed dunes; G, grasslands; MD, mobile dunes SFD, semi-fixed dunes. Different lowercase letters indicate significance differences among stages (p < 0.05)."

Fig. 2

C:N:P ecological stoichiometry of soil microbial biomass and soil extracellular enzymes (mean ± SD) at different stages of desertification. FD, fixed dunes; G, grasslands; MD, mobile dunes SFD, semi-fixed dunes. AP, alkaline phosphatase; BG, β-1,4-glucosidase; NAG, β-1,4-N-acetylglucosaminidase. Different lowercase letters indicate significance differences among stages (p < 0.05)."

Table 1

Characteristics of soil microbial nutrient utilization efficiency at different desertification stages (mean ± SD)"

沙化阶段 Desertification stage CUEC:N CUEC:P NUEN:C PUEP:C
荒漠草地 Grasslands 0.25 ± 0.06a 0.84 ± 0.02a 0.37 ± 0.06a 0.13 ± 0.03a
固定沙地 Fixed dunes 0.26 ± 0.05a 0.85 ± 0.03a 0.40 ± 0.04ab 0.08 ± 0.03a
半固定沙地 Semi-fixed dunes 0.36 ± 0.04ab 0.85 ± 0.02a 0.29 ± 0.05ab 0.10 ± 0.02ab
流动沙地 Mobile dunes 0.52 ± 0.04b 0.90 ± 0.01a 0.23 ± 0.02b 0.01 ± 0.01b

Table 2

Correlation analysis among soil, microbial and extracellular enzyme ecological stoichiometry"

Soil C:N 1 0.760** -0.396* 0.149 -0.118 -0.143 -0.249 -0.194 0.131
Soil C:P 1 0.159 0.100 0.096 0.260 0.230 0.071 -0.207
Soil N:P 1 -0.157 0.435* 0.573** 0.543** 0.217 -0.427**
MBC:MBN 1 -0.038 -0.604** -0.150 -0.185 0.039
MBC:MBP 1 0.570** 0.198 0.149 -0.224
MBN:MBP 1 0.427* 0.203 -0.366*
BG:NAG 1 0.542** -0.706**
BG:AP 1 0.102
1 Allison VJ, Condron LM, Peltzer DA, Richardson J, Turner BL ( 2007). Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology & Biochemistry, 39, 1770-1781.
doi: 10.1016/j.soilbio.2007.02.006
2 Anderson TR, Boersma M, Raubenheimer D ( 2004). Stoichiometry: Linking elements to biochemical. Ecology, 85, 1193-1202.
doi: 10.1890/02-0252
3 Bell CW, Fricks BE, Rocca JD ( 2013). High-throughput fluorometric measurement of potential soil extracellular enzyme activities. Journal of Visualized Experiments Jove, 81, e50961. DOI: 10.3791/50961.
doi: 10.3791/50961 pmid: 3991303
4 Blagodatskaya E, Kuzyakov Y ( 2013). Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology & Biochemistry, 67, 192-211.
doi: 10.1016/j.soilbio.2013.08.024
5 Burns RG, Dick RP ( 2002). Enzymes in the Environment: Activity, Ecology and Applications. Marcel Dekker, New York.
6 Chapin FS, Matson PA, Mooney HA ( 2011). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York.
7 Cheng B, Zhao YJ, Zhang WG, An SQ ( 2010). The research advances and prospect of ecological stoichiometry. Acta Ecologica Sinica, 30, 1628-1637.
[ 程滨, 赵永军, 张文广, 安树青 ( 2010). 生态化学计量学研究进展. 生态学报, 30, 1628-1637.]
8 Cheng H, Gong YB, Wu Q, Li Y, Liu Y, Zhu DW ( 2018). Content and ecological stoichiometry characteristics of organic carbon, nitrogen and phosphorus of typical soils in sub-alpine/alpine mountain of Western Sichuan. Journal of Natural Resources, 33(1), 161-172.
[ 程欢, 宫渊波, 吴强, 李瑶, 刘颖, 朱德雯 ( 2018). 川西亚高山/高山典型土壤类型有机碳、氮、磷含量及其生态化学计量特征. 自然资源学报, 33(1), 161-172.]
9 Chen XW, Li BL ( 2003). Change in soil carbon and nutrient storage after human disturbance of a primary Korean pine forest in Northeast China. Forest Ecology and Management, 186, 197-206.
doi: 10.1016/S0378-1127(03)00258-5
10 Cleveland C, Liptzin D ( 2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass. Biogeochemistry, 85, 235-252.
doi: 10.1007/s10533-007-9132-0
11 Ding GD ( 2004). Study on indicative feature and cover classification of vegetation in regional desertification assessment—Taking Mu Us sandland as an example. Journal of Soil and Water Conservation, 18, 158-160, 188.
doi: 10.3321/j.issn:1009-2242.2004.01.042
[ 丁国栋 ( 2004). 区域荒漠化评价中植被的指示性及盖度分级标准研究——以毛乌素沙区为例. 水土保持学报, 18, 158-160, 188.]
doi: 10.3321/j.issn:1009-2242.2004.01.042
12 Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW ( 2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
doi: 10.1046/j.1461-0248.2003.00518.x
13 Han W, Fang J, Guo D, Yan Z ( 2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168(2), 377-385.
doi: 10.1111/j.1469-8137.2005.01530.x pmid: 16219077
14 He JS, Han XG ( 2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6.
doi: 10.3773/j.issn.1005-264x.2010.01.002
[ 贺金生, 韩兴国 ( 2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.]
doi: 10.3773/j.issn.1005-264x.2010.01.002
15 Hu N, Li H, Tang Z ( 2016). Community size, activity and C:N stoichiometry of soil microorganisms following reforestation in a karst region. European Journal of Soil Biology, 73, 77-83.
doi: 10.1016/j.ejsobi.2016.01.007
16 Jia GM, He L, Cheng H, Wang ST, Xiang HY, Zhang XF, Xi Y ( 2016). Ecological stoichiometry characteristics of soil microbial biomass carbon, nitrogen and phosphorus under different vegetation covers in Three Gorges Reservoir area. Research of Soil and water conservation, 23(4), 23-27.
[ 贾国梅, 何立, 程虎, 王世彤, 向翰宇, 张雪飞, 席颖 ( 2016). 三峡库区不同植被土壤微生物生物量碳氮磷生态化学计量特征. 水土保持研究, 23(4), 23-27.]
17 Li YQ, Zhao HL, Zhao XY, Zhang TH, Yi XY, Zuo XA ( 2005). Characteristics of soil carbon and nitrogen during desertifcation process in Horqin Sandy Land. Journal of Soil and Water Conservation,( 5), 75- 78, 184.
doi: 10.3321/j.issn:1009-2242.2005.05.018
[ 李玉强, 赵哈林, 赵学勇, 张铜会, 移小勇, 左小安 ( 2005). 科尔沁沙地沙漠化过程中土壤碳氮特征. 水土保持学报,( 5), 75- 78, 184.]
doi: 10.3321/j.issn:1009-2242.2005.05.018
18 Li Y, Wu JS, Liu SL ( 2012). Is the C:N:P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China? Global Biogeochemical Cycles, 26, GB4002. DOI: 10.1029/2012GB004399.
doi: 10.1029/2012GB004399
19 Liu RT, Chai YQ, Xu K ( 2012). Variations of ground vegeta tion and soil properties during the growth process of artificial sand-fixing Caragana intermedia plantations in desert steppe. Chinese Journal of Applied Ecology, 23, 2955-2960.
[ 刘任涛, 柴永青, 徐坤 ( 2012). 荒漠草原区柠条人工固沙林生长过程中地表植被-土壤的变化. 应用生态学报, 23, 2955-2960.]
20 Luo YY, Zhang Y, Zhang JH, Ka ZJ, Shang LY, Wang SY ( 2012). Soil stoichiometry characteristics of alpine meadow at its different degradation stages. Chinese Journal of Ecology, 31, 254-260.
[ 罗亚勇, 张宇, 张静辉, 卡召加, 尚伦宇, 王少影 ( 2012). 不同退化阶段高寒草甸土壤化学计量特征. 生态学杂志, 31, 254-260.]
21 Makino W, Cotner JB, Sterner RW ( 2003). Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology, 17, 121-130.
doi: 10.1046/j.1365-2435.2003.00712.x
22 Michaels AF ( 2003). The ratios of life. Science, 300, 906-907.
doi: 10.1126/science.1083140
23 Moorhead DL, Sinsabaugh RL, Hill BH ( 2016). Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology & Biochemistry, 93, 1-7.
doi: 10.1016/j.soilbio.2015.10.019
24 Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, Blöchl A, Hämmerle I, Frank AH, Keiblinger KM, Zechmeister-Boltenstern S, Richter A ( 2012). Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 93, 770-782.
doi: 10.1890/11-0721.1 pmid: 22690628
25 Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A ( 2014). Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology, 5, 22. DOI: 10.3389/fmicb.2014.00022.
doi: 10.3389/fmicb.2014.00022 pmid: 3910245
26 Olander LP, Vitousek PM ( 2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49, 175-191.
doi: 10.1023/A:1006316117817
27 Peng PQ, Wu JS, Huang DY, Wang HL, Tang GY, Huang WS, Zhu QH ( 2006). Microbial biomass C, N, P of farmland soils in different land uses and croppingsystems in Dongting Lake region. Acta Ecologica Sinica, 26, 2261-2267.
doi: 10.3321/j.issn:1000-0933.2006.07.027
[ 彭佩钦, 吴金水, 黄道友, 汪汉林, 唐国勇, 黄伟生, 朱奇宏 ( 2006). 洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响. 生态学报, 26, 2261-2267.]
doi: 10.3321/j.issn:1000-0933.2006.07.027
28 Peng XQ, Wang W ( 2016). Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biology & Biochemistry, 98, 74-84.
doi: 10.1016/j.soilbio.2016.04.008
29 Schimel JP, Weintraub MN ( 2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biology & Biochemistry, 35, 549-563.
30 Sinsabaugh RL, Follstad Shah JJ ( 2012). Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313-343.
doi: 10.1146/annurev-ecolsys-071112-124414
31 Sinsabaugh RL, Hill BH, Follstad Shah JJ ( 2009). Ecoenymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-798.
doi: 10.1038/nature08632
32 Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME ( 2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264.
doi: 10.1111/ele.2008.11.issue-11
33 Sinsabaugh RL, Turner BL, Talbot JM ( 2016). Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs, 86, 172-189.
doi: 10.1890/15-2110.1
34 Sterner RW, Elser JJ ( 2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.
35 Tang ZS, An H, Shangguan ZP ( 2015). Effects of desertification on soil nutrients and root-shoot ratio in desert steppe. Acta Agrestia Sinica, 23, 463-468.
[ 唐庄生, 安慧, 上官周平 ( 2015). 荒漠草原沙漠化对土壤养分与植被根冠比的影响. 草地学报, 23, 463-468.]
36 Tian H, Chen G, Zhang C ( 2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 98, 139-151.
doi: 10.1007/s10533-009-9382-0
37 Wang BB, Qu LY, Ma KM, Zhang XY, Song CJ ( 2015). Patterns of ecoenzymatic stoichiometry in the dominant shrubs in the semi-arid upper Minjiang River valley. Acta Ecologica Sinica, 35, 6078-6088.
[ 王冰冰, 曲来叶, 马克明, 张心昱, 宋成军 ( 2015). 岷江上游干旱河谷优势灌丛群落土壤生态酶化学计量特征. 生态学报, 35, 6078-6088.]
38 Wang BR, Yang JJ, An SS, Zhang HX, Bai XJ ( 2018). Effects of vegetation and topography features on ecological stoichiometry of soil microbial biomass in the hilly-gully region of the Loess Plateau, China. Chinese Journal of Applied Ecology, 29, 247-259.
王宝荣, 杨佳佳, 安韶山, 张海鑫, 白雪娟 ( 2018). 黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征的影响. 应用生态学报, 29, 247-259.]
39 Wang SQ, Yu GR ( 2008). Ecological stoichiometric characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28, 3937-3947.
[ 王绍强, 于贵瑞 ( 2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.]
40 Waring BG, Weintraub SR, Sinsabaugh RL ( 2014). Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry, 117, 101-113.
doi: 10.1007/s10533-013-9849-x
41 Wu JP, Han XH, Xu YD, Ren CJ, Yang GH, Ren GX ( 2016). Ecological stoichiometric of soil and microbial C, N, P under Grain-to-Green in loess hilly region. Acta Agrestia Sinica, 24, 783-792.
[ 吴建平, 韩新辉, 许亚东, 任成杰, 杨改河, 任广鑫 ( 2016). 黄土丘陵区不同植被类型下土壤与微生物C, N, P化学计量特征研究. 草地学报, 24, 783-792.
42 Xu XF, Thornton PE, Post WM ( 2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology & Biogeography, 22, 737-749.
43 Xu YC, Shen QR, Ran W ( 2002). Effects of zero-tillage and application of manure on soil microbial biomass C, N and P. Acta Pedologica Sinica, 39, 83-90.
[ 徐阳春, 沈其荣, 冉炜 ( 2002). 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响. 土壤学报, 39, 83-90.]
44 Yu J, Fang L, Bian ZF, Wang Q, Yu YC ( 2014). A review of the composition of soil carbon pool. Acta Ecologica Sinica, 34, 4829-4838.
[ 余健, 房莉, 卞正富, 汪青, 俞元春 ( 2014). 土壤C库构成研究进展. 生态学报, 34, 4829-4838.]
45 Zhang C, McBean EA ( 2016). Estimation of desertification risk from soil erosion: A case study for Gansu Province, China. Stochastic Environmental Research & Risk Assessment, 30, 1-15.
46 Zhao LL, Li X, Xu DM ( 2013). Changes of soil microbes during sandy desertification for grassland in Yanchi County. Acta Agriculturae Boreali-Occidentalis Sinica, 22(7), 187-192.
[ 赵丽莉, 李侠, 许冬梅 ( 2013). 盐池县草地沙漠化过程中土壤微生物的变化. 西北农业学报, 22(7), 187-192.]
47 Zhou ZH, Wang CK ( 2015). Reviews and syntheses: Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China’s forest ecosystems. Biogeosciences, 12, 11191-11216.
doi: 10.5194/bgd-12-11191-2015
48 Zhou ZH, Wang CK ( 2016). Changes of the relationships between soil and microbes in carbon, nitrogen and phosphorus stoichiometry during ecosystem succession. Chinese Journal of Plant Ecology, 40 , 1257-1266.
[ 周正虎, 王传宽 ( 2016). 生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化. 植物生态学报, 40, 1257-1266.]
49 Zuo XA, Zhao HL, Zhao XY, Guo YR, Yun JY, Wang SK, Miyasaka T ( 2009). Vegetation pattern variation, soil degradation and their relationship along a grassland desertification gradient in Horqin Sandy Land, northern China. Environmental Geology, 58, 1227-1237.
doi: 10.1007/s00254-008-1617-1
[1] CHEN Chan,ZHANG Shi-Ji,LI Lei-Da,LIU Zhao-Dan,CHEN Jin-Lei,GU Xiang,WANG Liu-Fang,FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671.
[2] YU Xiao-Ya, LI Yu-Hui, YANG Guang-Rong. Fruit types and seed dispersal modes of plants in different communities in Shilin Geopark, Yunnan, China [J]. Chin J Plan Ecolo, 2018, 42(6): 663-671.
[3] YANG Hao-Tian, WANG Zeng-Ru, JIA Rong-Liang. Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China [J]. Chin J Plan Ecolo, 2018, 42(3): 288-296.
[4] Yanmeng Bi, Zhenjun Sun. Mechanisms of earthworms to alleviate continuous cropping obstacles through regulating soil microecology [J]. Biodiv Sci, 2018, 26(10): 1103-1115.
[5] Chengqiang Dang, Huimin Huang, Rong Dong, Miao Chen, Ting Gao, Jianping Tao. Spatial Distribution Pattern of Epilithic Moss Homomallium simlaense Patches in Rocky Desertification Habitats in Zhongliang Mountain, Chongqing, Southwest China [J]. Chin Bull Bot, 2017, 52(5): 598-607.
[6] Hong-Yan ZHOU, Qin WU, Ming-Yue CHEN, Wei KUANG, Ling-Ling CHANG, Qi-Wu HU. C, N and P stoichiometry in different organs of Vitex rotundifolia in a Poyang Lake desertification hill [J]. Chin J Plan Ecolo, 2017, 41(4): 461-470.
[7] Wei Fu, Ning Wang, Fang Pang, Yulong Huang, Jun Wu, Shanshan Qi, Zhicong Dai, Daolin Du. Soil microbiota and plant invasions: current and future [J]. Biodiv Sci, 2017, 25(12): 1295-1302.
[8] Wen-Ting LIU, Zhi-Jun WEI, Shi-Jie LÜ, Shi-Xian SUN, Li-Juan JIA, Shuang ZHANG, Tian-Le WANG, Jing-Zhong DAI, Zhi-Hong LU. Response mechanism of plant diversity to herbivore foraging in desert grassland [J]. Chin J Plan Ecolo, 2016, 40(6): 564-573.
[9] Zheng-Hu ZHOU, Chuan-Kuan WANG. Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry [J]. Chin J Plan Ecolo, 2016, 40(6): 620-630.
[10] Zheng-Hu ZHOU, Chuan-Kuan WANG. Changes of the relationships between soil and microbes in carbon, nitrogen and phosphorus stoichiometry during ecosystem succession [J]. Chin J Plan Ecolo, 2016, 40(12): 1257-1266.
[11] ZHAO Xin-Feng, XU Hai-Liang, ZHANG Peng, TU Wen-Xia, and ZHANG Qing-Qing. Effects of nutrient and water additions on plant community structure and species diversity in desert grasslands [J]. Chin J Plan Ecolo, 2014, 38(2): 167-177.
[12] ZHAO Xin-Feng, XU Hai-Liang, ZHANG Peng, and ZHANG Qing-Qing. Influence of nutrient and water additions on functional traits of Salsola nitraria in desert grassland [J]. Chin J Plan Ecolo, 2014, 38(2): 134-146.
[13] WANG Min, SU Yong-Zhong, YANG Rong, and YANG Xiao. Allocation patterns of above- and belowground biomass in desert grassland in the middle reaches of Heihe River, Gansu Province, China [J]. Chin J Plan Ecolo, 2013, 37(3): 209-219.
[14] YIN He, LI Zheng-Guo, WANG Yang-Lin. A review on the research progress of desertification assessment [J]. Chin J Plan Ecolo, 2011, 35(3): 345-352.
[15] LIU Cheng-Gang and XUE Jian-Hui. Basic soil properties and comprehensive evaluation in different plantations in rocky desertification sites of the karst region of Guizhou Province, China [J]. Chin J Plan Ecolo, 2011, 35(10): 1050-1060.
Full text



[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chin Bull Bot, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chin Bull Bot, 1999, 16(04): 439 -443 .
[5] CHEN Shao-Liang LI Jin-Ke BI Wang-Fu WANG Sha-Sheng. Genotypic Variation in Accumulation of Salt Ions, Betaine and Sugars in Poplar Under Conditions of Salt Stress[J]. Chin Bull Bot, 2001, 18(05): 587 -596 .
[6] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[7] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[8] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[9] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .
[10] Li Jiandong, Zheng Huiying. ?ber die Anwendung der Braun-Blanquet's Methode in der Steppen-Untersuchung[J]. Chin J Plan Ecolo, 1983, 7(3): 186 -203 .