Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (12): 1257-1266.DOI: 10.17521/cjpe.2016.0218
Special Issue: 生态化学计量
• Research Articles • Previous Articles Next Articles
Zheng-Hu ZHOU, Chuan-Kuan WANG*
Online:
2016-12-10
Published:
2016-12-30
Contact:
Chuan-Kuan WANG
Zheng-Hu ZHOU, Chuan-Kuan WANG. Changes of the relationships between soil and microbes in carbon, nitrogen and phosphorus stoichiometry during ecosystem succession[J]. Chin J Plant Ecol, 2016, 40(12): 1257-1266.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0218
参考文献 Reference | 生态系统类型 Ecosystem type | 年龄阶段数 No. of age stages | 演替年龄跨度 Span of successional age (a) | Csoil | Nsoil | Psoil | Cmic | Nmic | Pmic |
---|---|---|---|---|---|---|---|---|---|
An et al., 2009 | 草地 Grassland | 8 | 78 | √ | √ | NA | √ | √ | NA |
Banning et al., 2008 | 森林 Forest | 7 | 27 | √ | √ | NA | √ | √ | NA |
森林 Forest | 7 | 27 | √ | √ | NA | √ | √ | NA | |
Cao et al., 2008 | 森林 Forest | 4 | 24 | √ | √ | NA | √ | √ | NA |
Hu et al., 2016 | 森林 Forest | 5 | 13 | √ | √ | NA | √ | √ | NA |
Jia et al., 2005 | 森林 Forest | 5 | 36 | √ | √ | NA | √ | √ | NA |
Jia, 2006 | 草地 Grassland | 9 | 27 | √ | √ | √ | √ | √ | √ |
Jiang et al., 2007 | 草地 Grassland | 6 | 24 | √ | √ | NA | √ | √ | NA |
Jiang et al., 2009 | 草地 Grassland | 6 | 139 | √ | √ | NA | √ | √ | NA |
Liu et al., 2012 | 森林 Forest | 5 | 39 | √ | √ | NA | √ | NA | √ |
Liu et al., 2010 | 森林 Forest | 7 | 101 | √ | √ | NA | √ | √ | √ |
Liu et al., 2013 | 森林 Forest | 5 | 56 | √ | √ | √ | √ | √ | NA |
Singh et al., 2001 | 森林 Forest | 5 | 58 | √ | √ | √ | √ | √ | √ |
Xiao et al., 2013 | 草地 Grassland | 8 | 30 | √ | √ | NA | √ | √ | NA |
Xue et al., 2008 | 森林 Forest | 6 | 31 | √ | √ | √ | √ | √ | √ |
Xue et al., 2007 | 森林 Forest | 9 | 51 | √ | √ | √ | √ | √ | √ |
Xue et al., 2009 | 草地 Grassland | 11 | 51 | √ | √ | √ | √ | √ | √ |
Yang et al., 2014 | 森林 Forest | 4 | 49 | √ | √ | √ | √ | √ | √ |
Zhu et al., 2012 | 森林 Forest | 4 | 51 | √ | √ | NA | √ | √ | NA |
Table 1 Summary of the data sets compiled in this study
参考文献 Reference | 生态系统类型 Ecosystem type | 年龄阶段数 No. of age stages | 演替年龄跨度 Span of successional age (a) | Csoil | Nsoil | Psoil | Cmic | Nmic | Pmic |
---|---|---|---|---|---|---|---|---|---|
An et al., 2009 | 草地 Grassland | 8 | 78 | √ | √ | NA | √ | √ | NA |
Banning et al., 2008 | 森林 Forest | 7 | 27 | √ | √ | NA | √ | √ | NA |
森林 Forest | 7 | 27 | √ | √ | NA | √ | √ | NA | |
Cao et al., 2008 | 森林 Forest | 4 | 24 | √ | √ | NA | √ | √ | NA |
Hu et al., 2016 | 森林 Forest | 5 | 13 | √ | √ | NA | √ | √ | NA |
Jia et al., 2005 | 森林 Forest | 5 | 36 | √ | √ | NA | √ | √ | NA |
Jia, 2006 | 草地 Grassland | 9 | 27 | √ | √ | √ | √ | √ | √ |
Jiang et al., 2007 | 草地 Grassland | 6 | 24 | √ | √ | NA | √ | √ | NA |
Jiang et al., 2009 | 草地 Grassland | 6 | 139 | √ | √ | NA | √ | √ | NA |
Liu et al., 2012 | 森林 Forest | 5 | 39 | √ | √ | NA | √ | NA | √ |
Liu et al., 2010 | 森林 Forest | 7 | 101 | √ | √ | NA | √ | √ | √ |
Liu et al., 2013 | 森林 Forest | 5 | 56 | √ | √ | √ | √ | √ | NA |
Singh et al., 2001 | 森林 Forest | 5 | 58 | √ | √ | √ | √ | √ | √ |
Xiao et al., 2013 | 草地 Grassland | 8 | 30 | √ | √ | NA | √ | √ | NA |
Xue et al., 2008 | 森林 Forest | 6 | 31 | √ | √ | √ | √ | √ | √ |
Xue et al., 2007 | 森林 Forest | 9 | 51 | √ | √ | √ | √ | √ | √ |
Xue et al., 2009 | 草地 Grassland | 11 | 51 | √ | √ | √ | √ | √ | √ |
Yang et al., 2014 | 森林 Forest | 4 | 49 | √ | √ | √ | √ | √ | √ |
Zhu et al., 2012 | 森林 Forest | 4 | 51 | √ | √ | NA | √ | √ | NA |
Fig. 1 Means and 95% confidence interval of the slopes of the linear relationships between soil and microbial C, N, P concentrations (A), stoichiometric ratios (B), stoichiometric imbalances (C), fraction of the elements in microbial biomass over the total amounts in soils (D) and the successional age. The dots and error bars represent the means and 95% confidence intervals, respectively; values in brackets are the numbers of age sequences. Csoil, soil organic C; Nsoil, soil total N; Psoil, soil total P; Cmic, microbial biomass C; Nmic, microbial biomass N; Pmic, microbial biomass P; C:Nsoil, soil C to N ratio; C:Psoil, soil C to P ratio; N:Psoil, soil N to P ratio; C:Nmic, microbial biomass C to N ratio; C:Pmic, microbial biomass C to P ratio; N:Pmic, microbial biomass N to P ratio; C:Nimb, C:N stoichiometric imbalance; C:Pimb, C:P stoichiometric imbalance; N:Pimb, N:P stoichiometric imbalance; qMBC, fraction of microbial biomass C in soil C; qMBN, fraction of microbial biomass N in soil total N; qMBP, fraction of microbial biomass P in soil total P.
Fig. 3 Means and 95% confidence interval of the slopes of the linear relationships between soil C:N:P and microbial C:N:P. The dots and error bars represent the means and 95% confidence intervals, respectively; the values in brackets are the numbers of age sequences. C:Nsoil vs. C:Nmic, relationship between soil C:N and microbial C:N; C:Psoil vs. C:Pmic, relationship between soil C:P and microbial C:P; N:Psoil vs. N:Pmic, relationship between soil N:P and microbial N:P.
分组 Group | 因子 Factor | 平方和 Sum of square | df | F | p | 方差解释率 Explanatory rate of variance (%) |
---|---|---|---|---|---|---|
C:N | 演替时间 Successional age | 1.8 | 1 | 28.1 | <0.001 | 2 |
C:N化学计量不平衡性 C:N stoichiometric imbalance | 31.9 | 1 | 484.8 | <0.001 | 37 | |
个体序列 Individual sequence | 46.5 | 17 | 41.6 | <0.001 | 54 | |
误差 Error | 6.2 | 95 | 7 | |||
C:P | 演替时间 Successional age | 0.4 | 1 | 15.1 | <0.001 | 5 |
C:P化学计量不平衡性 C:P stoichiometric imbalance | 3.7 | 1 | 157.6 | <0.001 | 57 | |
个体序列 Individual sequence | 1.7 | 5 | 14.3 | <0.001 | 26 | |
误差 Error | 0.8 | 34 | 12 | |||
N:P | 演替时间 Successional age | 0.4 | 1 | 9.8 | 0.004 | 5 |
C:N化学计量不平衡性 C:N stoichiometric imbalance | 2.7 | 1 | 73.2 | <0.001 | 41 | |
个体序列 Individual sequence | 2.3 | 5 | 12.6 | <0.001 | 35 | |
误差 Error | 1.2 | 34 | 19 |
Table 2 Summary of the results from a general linear model showing the integrative effects of successional ages, stoichiometric imbalances and individual sequence on microbial quotient
分组 Group | 因子 Factor | 平方和 Sum of square | df | F | p | 方差解释率 Explanatory rate of variance (%) |
---|---|---|---|---|---|---|
C:N | 演替时间 Successional age | 1.8 | 1 | 28.1 | <0.001 | 2 |
C:N化学计量不平衡性 C:N stoichiometric imbalance | 31.9 | 1 | 484.8 | <0.001 | 37 | |
个体序列 Individual sequence | 46.5 | 17 | 41.6 | <0.001 | 54 | |
误差 Error | 6.2 | 95 | 7 | |||
C:P | 演替时间 Successional age | 0.4 | 1 | 15.1 | <0.001 | 5 |
C:P化学计量不平衡性 C:P stoichiometric imbalance | 3.7 | 1 | 157.6 | <0.001 | 57 | |
个体序列 Individual sequence | 1.7 | 5 | 14.3 | <0.001 | 26 | |
误差 Error | 0.8 | 34 | 12 | |||
N:P | 演替时间 Successional age | 0.4 | 1 | 9.8 | 0.004 | 5 |
C:N化学计量不平衡性 C:N stoichiometric imbalance | 2.7 | 1 | 73.2 | <0.001 | 41 | |
个体序列 Individual sequence | 2.3 | 5 | 12.6 | <0.001 | 35 | |
误差 Error | 1.2 | 34 | 19 |
Fig. 4 Relationships between microbial quotient (qMBC) and soil C:N:P and C:N:P stoichiometric imbalances. C:Nsoil, soil C to N ratio; C:Psoil, soil C to P ratio; N:Psoil, soil N to P ratio; C:Nimb, C:N stoichiometric imbalance; C:Pimb, C:P stoichiometric imbalance; N:Pimb, N:P stoichiometric imbalance. The dots in the black box are outliers.
1 | An SS, Huang YM, Zheng FL (2009). Evaluation of soil microbial indices along a revegetation chronosequence in grassland soils on the Loess Plateau, Northwest China.Applied Soil Ecology, 41, 286-292. |
2 | Anderson TH, Domsch K (1990). Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology & Biochemistry, 22, 251-255. |
3 | Banning NC, Grant CD, Jones DL, Murphy DV (2008). Recovery of soil organic matter, organic matter turnover and nitrogen cycling in a post-mining forest rehabilitation chronosequence.Soil Biology & Biochemistry, 40, 2021-2031. |
4 | Cao CY, Jiang DM, Teng XH, Jiang Y, Liang WJ, Cui ZB (2008). Soil chemical and microbiological properties along a chronosequence ofCaragana microphylla Lam. plantations in the Horqin sandy land of Northeast China. Applied Soil Ecology, 40, 78-85. |
5 | Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass?Biogeochemistry, 85, 235-252. |
6 | Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota.Ecology Letters ,6, 936-943. |
7 | Fanin N, Fromin N, Buatois B, Hättenschwiler S (2013). An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system.Ecology Letters, 16, 764-772. |
8 | Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009). Global patterns in belowground communities.Ecology Letters, 12, 1238-1249. |
9 | Hu N, Li H, Tang Z, Li ZF, Li GC, Jiang Y, Hu XM, Lou YL (2016). Community size, activity and C:N stoichiometry of soil microorganisms following reforestation in a karst region.European Journal of Soil Biology, 73, 77-83. |
10 | Insam H, Domsch KH (1988). Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites.Microbial Ecology, 15, 177-188. |
11 | Jia GM (2006). The Effects of Vegetation Succession and Land Management on Soil Nutrient, Activity and Structure of Microbial Community in Loess Plateau of Northwest China. PhD dissertation, Lanzhou University, Lanzhou.(in Chinese with English abstract)[贾国梅 (2006). 黄土高原地区植被演替和土地管理对土壤养分、微生物活性和群落结构的影响. 博士学位论文, 兰州大学, 兰州.] |
12 | Jia GM, Cao J, Wang CY, Wang G (2005). Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, Northwest China.Forest Ecology & Management, 217, 117-125. |
13 | Jiang JP, Xiong YC, Jia Y, Li FM, Xu JZ, Jiang HM (2007). Soil quality dynamics under successional alfalfa field in the semi-arid Loess Plateau of northwestern China.Arid Land Research & Management, 21, 287-303. |
14 | Jiang JP, Xiong YC, Jiang HM, Ye DY, Song YJ, Li FM (2009). Soil microbial activity during secondary vegetation succession in semiarid abandoned lands of Loess Plateau.Pedosphere, 19, 735-747. |
15 | Li P, Han WX, Yang YH, Fang JY (2014). Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems. Global Ecology & Biogeography, 23, 979-987. |
16 | Li Y, Wu JS, Liu SL, Shen JL, Huang DY, Su YR, Wei WW, Syers JK (2012). Is the C:N:P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China? Global Biogeochemical Cycles, 26, GB4002. doi: 10.1029/2012GB004399. |
17 | Liu D, Huang YM, An SS (2012). Changes in soil nitrogen and microbial activity duringRobinia pseudoacacia recovery period in the Loess Hilly-Gully region. Chinese Journal of Eco-Agriculture, 20, 322-329.(in Chinese with English abstract)[刘栋, 黄懿梅, 安韶山 (2012). 黄土丘陵区人工刺槐林恢复过程中土壤氮素与微生物活性的变化. 中国生态农业学报, 20, 322-329.] |
18 | Liu Y, Zheng FL, An SS, He WX, Guo M, Lü CH (2010). Soil microbial biomass characteristics in response to vegetation restoration on abandoned lands in Yangou Watershed of China.Plant Nutrition & Fertilizer Science, 16, 824-832.(in Chinese with English abstract)[刘雨, 郑粉莉, 安韶山, 和文祥, 郭曼, 吕春华 (2010). 燕沟流域土壤微生物学性质对植被恢复过程的响应. 植物营养与肥料学报, 16, 824-832.] |
19 | Liu YM, Li XR, Xing ZS, Zhao X, Pan YX (2013). Responses of soil microbial biomass and community composition to biological soil crusts in the revegetated areas of the Tengger Desert.Applied Soil Ecology, 65, 52-59. |
20 | McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios.Ecology, 85, 2390-2401. |
21 | Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014). Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources.Frontiers in Microbiology, 5, 22. doi: 10.3389/ fmicb.2014.00022. |
22 | Odum EP (1969). The strategy of ecosystem development.Science, 164, 262-270. |
23 | Redfield AC (1958). The biological control of chemical factors in the environment.American Scientist, 64, 205-221. |
24 | Shi XM, Qi JH, Song L, Liu WY, Huang JB, Li S, Lu HZ, Chen X (2015). C, N and P stoichiometry of two dominant seedlings and their responses to nitrogen additions in the montane moist evergreen broad-leaved forest in Ailao Mountains, Yunnan.Chinese Journal of Plant Ecology, 39, 962-970.(in Chinese with English abstract)[石贤萌, 杞金华, 宋亮, 刘文耀, 黄俊彪, 李苏, 卢华正, 陈曦 (2015). 哀牢山中山湿性常绿阔叶林两种优势幼苗C、N、P化学计量特征及其对N沉降增加的响应. 植物生态学报, 39, 962-970.] |
25 | Singh KP, Mandal TN, Tripathi SK (2001). Patterns of restoration of soil physciochemical properties and microbial biomass in different landslide sites in the sal forest ecosystem of Nepal Himalaya.Ecological Engineering, 17, 385-401. |
26 | Spohn M, Novak TJ, Incze J, Giani L (2016). Dynamics of soil carbon, nitrogen, and phosphorus in calcareous soils after land-use abandonment—A chronosequence study.Plant & Soil, 401, 185-196. |
27 | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, USA. |
28 | Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data.Biogeochemistry, 98, 139-151. |
29 | Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants.Ecological Monographs, 82, 205-220. |
30 | Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: Mechanisms implica- tions and nitrogen-phosphorus interactions.Ecological Applications, 20, 5-15. |
31 | Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291. |
32 | Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA (2009). Global meta-analysis of wood decomposition rates: A role for trait variation among tree species?Ecology Letters, 12, 45-56. |
33 | Xiao L, Liu GB, Xue S, Zhang C (2013). Soil microbial community composition during natural recovery in the Loess Plateau, China.Journal of Integrative Agriculture, 12, 1872-1883. |
34 | Xu XF, Schimel JP, Thornton PE, Song X, Yuan FM, Goswami S (2014). Substrate and environmental controls on microbial assimilation of soil organic carbon: A framework for Earth system models.Ecology Letters, 17, 547-555. |
35 | Xu XF, Thornton PE, Post WM (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology & Biogeography, 22, 737-749. |
36 | Xue S, Liu GB, Dai QH, Li XL, Wu RJ (2008). Dynamic changes of soil microbial biomass in the restoration process of shrub plantations in Loess Hilly area.Chinese Journal of Applied Ecology, 19, 517-523.(in Chinese with English abstract)[薛萐, 刘国彬, 戴全厚, 李小利, 吴瑞俊 (2008). 黄土丘陵区人工灌木林恢复过程中的土壤微生物生物量演变. 应用生态学报, 19, 517-523.] |
37 | Xue S, Liu GB, Dai QH, Wei W, Hou XL (2007). Evolution of soil microbial biomass in the restoration process of artificialRobinia pseudoacacia under erosion environment. Acta Ecologica Sinica, 27, 909-917.(in Chinese with English abstract)[薛萐, 刘国彬, 戴全厚, 卫伟, 侯喜禄 (2007). 侵蚀环境生态恢复过程中人工刺槐林(Robinia pseudoacacia)土壤微生物量演变特征. 生态学报, 27, 909-917.] |
38 | Xue S, Liu GB, Dai QH, Zhang C, Yu N (2009). Dynamics of soil microbial biomass on the abandoned cropland in Loess Hilly area.Scientia Agricultura Sinica, 42, 943-950.(in Chinese with English abstract)[薛萐, 刘国彬, 戴全厚, 张超, 余娜 (2009). 黄土丘陵区退耕撂荒地土壤微生物量演变过程. 中国农业科学, 42, 943-950.] |
39 | Yang N, Zou DS, Yang MY, Lin ZG, Song GT, Chen ZY, Zhao LF (2014). Changes of soil properties in re-vegetation stages on sloping-land with purple soils in Hengyang of Hunan Province, South-central China.Acta Ecologica Sinica, 34, 2693-2701.(in Chinese with English abstract)[杨宁, 邹冬生, 杨满元, 林仲桂, 宋光桃, 陈志阳, 赵林峰 (2014). 衡阳紫色土丘陵坡地植被恢复阶段土壤特性的演变. 生态学报, 34, 2693-2701.] |
40 | Yang YH, Luo YQ (2011). Carbon : nitrogen stoichiometry in forest ecosystems during stand development.Global Ecology & Biogeography, 20, 354-361. |
41 | Yang YH, Luo YQ, Finzi AC (2011). Carbon and nitrogen dynamics during forest stand development: A global synthesis.New Phytologist ,190, 977-989. |
42 | Yuan ZY, Chen HY, Reich PB (2011). Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus.Nature Communications, 2, 344. |
43 | Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015). The application of ecological stoichiometry to plant-microbial- soil organic matter transformations.Ecological Mono- graphs, 85, 133-155. |
44 | Zeng DH, Chen GS (2005). Ecological stoichiometry: A science to explore the complexity of living systems.Acta Phytoecologica Sinica, 29, 1007-1019.(in Chinese with English abstract)[曾德慧, 陈广生 (2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.] |
45 | Zeng DP, Jiang LL, Zeng CS, Wang WQ, Wang C (2013). Reviews on the ecological stoichiometry characteristics and its applications.Acta Ecologica Sinica, 33, 5484-5492.(in Chinese with English abstract)[曾冬萍, 蒋利玲, 曾从盛, 王维奇, 王纯 (2013). 生态化学计量学特征及其应用研究进展. 生态学报, 33, 5484-5492.] |
46 | Zhou ZH, Wang CK (2015). Reviews and syntheses: Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China’s forest ecosystems.Biogeosciences, 12, 6751-6760. |
47 | Zhou ZH, Wang CK (2016). Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry.Chinese Journal of Plant Ecology ,40, 620-630.(in Chinese with English abstract)[周正虎, 王传宽 (2016). 微生物对分解底物碳氮磷化学计量的响应和调节机制. 植物生态学报, 40, 620-630.] |
48 | Zhou ZH, Wang CK (2017). Soil-microbe-mineralization car- bon and nitrogen stoichiometry under different land-uses in the Maoershan region. Acta Ecologica Sinica, 37, in press. doi: 10.5846/stxb201512242569.(in Chinese with English abstract)[周正虎, 王传宽 (2017). 帽儿山地区不同土地利用方式下土壤-微生物-矿化碳氮化学计量特征. 生态学报, 37, 待发表. doi: 10.5846/stxb201512242569.] |
49 | Zhou ZH, Wang CK, Zhang QZ (2015). The effect of land use change on soil carbon, nitrogen, and phosphorus contents and their stoichiometry in temperate sapling stands in northeastern China.Acta Ecologica Sinica, 35, 6694-6702.(in Chinese with English abstract)[周正虎, 王传宽, 张全智 (2015). 土地利用变化对东北温带幼龄林土壤碳氮磷含量及其化学计量特征的影响. 生态学报, 35, 6694-6702.] |
50 | Zhu HH, He XY, Wang KL, Su YR, Wu JS (2012). Interactions of vegetation succession, soil bio-chemical properties and microbial communities in a Karst ecosystem.European Journal of Soil Biology, 51, 1-7. |
[1] | Qingshui Yu xiaofeng ni Jiangling Zhu Zhi-Yao TANG Jing-Yun FANG. Effects of 10 years of nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in two tropical rainforests in the Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | 建 周 Han Wang. A review of forest size structure studies: from statistical description to theoretical deduction [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[3] | Zhiyang Zhang Yinghui Zhao Zhen Zhen. Dynamic monitoring of carbon storage of the terrestrial ecosystem in Songhua River Basin from 1986 to 2022 [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[4] | Wei-Wei SHE Qin shugao Yan-Gui QIAO Yuqing Zhang. Effects of nitrogen and water addition on leaf nitrogen and phosphorus stoichiometry of dominant species in an Artemisia ordosica community [J]. Chin J Plant Ecol, 2024, 48(5): 590-600. |
[5] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[6] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[7] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[8] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[9] | YANG An-Na, LI Zeng-Yan, MOU Ling, YANG Bai-Yu, SAI Bi-Le, ZHANG Li, ZHANG Zeng-Ke, WANG Wan-Sheng, DU Yun-Cai, YOU Wen-Hui, YAN En-Rong. Variation in soil bacterial community across vegetation types in Dajinshan Island, Shanghai [J]. Chin J Plant Ecol, 2024, 48(3): 377-389. |
[10] | NIU Yi-Di, CAI Ti-Jiu. Changes in species diversity and influencing factors in secondary forest succession in northern Da Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 349-363. |
[11] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[12] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[13] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[14] | HAN Lu, FENG Yu, LI Yuan-Kai, WANG Yu-Qing, WANG Hai-Zhen. Effects of groundwater depth on carbon, nitrogen, phosphorus ecological stoichiometric and homeostasis characteristics of Populus pruinosa leaves and soil in Tarim Basin, Xinjiang, China [J]. Chin J Plant Ecol, 2024, 48(1): 92-102. |
[15] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn