植物生态学报 ›› 2023, Vol. 47 ›› Issue (2): 275-288.DOI: 10.17521/cjpe.2022.0090
• 研究论文 • 上一篇
张尧1, 陈岚1, 王洁莹1, 李益1, 王俊1,2, 郭垚鑫3, 任成杰4, 白红英1, 孙昊田1, 赵发珠1,2,*()
收稿日期:
2022-03-09
接受日期:
2022-07-06
出版日期:
2023-02-20
发布日期:
2023-02-28
通讯作者:
*(基金资助:
ZHANG Yao1, CHEN Lan1, WANG Jie-Ying1, LI Yi1, WANG Jun1,2, GUO Yao-Xin3, REN Cheng-Jie4, BAI Hong-Ying1, SUN Hao-Tian1, ZHAO Fa-Zhu1,2,*()
Received:
2022-03-09
Accepted:
2022-07-06
Online:
2023-02-20
Published:
2023-02-28
Contact:
*(Supported by:
摘要:
探索森林根际土壤微生物碳利用效率(CUE)是权衡森林生态系统微生物合成代谢和分解代谢强弱的关键过程。然而不同海拔森林根际土壤微生物CUE的变化规律与影响因子尚不清楚。该研究选取秦岭太白山6个不同海拔的森林根际土壤为研究对象, 测定其理化性质、胞外酶活性、微生物群落与植被特征等指标, 利用酶化学计量比计算微生物CUE, 分析根际土壤微生物CUE沿海拔梯度的变化规律, 定量研究其影响因子。结果表明: 根际土壤微生物CUE随海拔升高总体呈上升趋势。CUE从最低海拔的0.505至最高海拔的0.527升高了4.36%, 但在海拔1 603和2 405 m处出现了下降。海拔梯度内根际土壤微生物CUE变化受多种环境因子综合影响, 土壤基质的影响(如可溶性有机碳和铵态氮含量)占主导地位, 植被因子次之, 二者分别解释了CUE变化的17.0%和5.7%, 且二者相互作用解释了CUE变化的31.9%。研究结果可为秦岭森林土壤微生物碳同化能力和固碳潜力, 以及全球变化背景下森林土壤碳循环提供科学依据。
张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素. 植物生态学报, 2023, 47(2): 275-288. DOI: 10.17521/cjpe.2022.0090
ZHANG Yao, CHEN Lan, WANG Jie-Ying, LI Yi, WANG Jun, GUO Yao-Xin, REN Cheng-Jie, BAI Hong-Ying, SUN Hao-Tian, ZHAO Fa-Zhu. Differences and influencing factors of microbial carbon use efficiency in forest rhizosphere soils at different altitudes in Taibai Mountain, China. Chinese Journal of Plant Ecology, 2023, 47(2): 275-288. DOI: 10.17521/cjpe.2022.0090
酶 Enzyme | 缩写 Abbreviation | 酶编号 Enzyme number | 底物 Substrate |
---|---|---|---|
纤维二糖水解酶 Cellobiohydrolase | CBH | 3.2.1.91 | 4-甲基伞形酮-β-D-纤维素二糖苷 4-Methylumbelliferyl-β-D-cellobioside |
β-1,4-木糖苷酶 β-1,4-xylosidase | BX | 3.2.1.37 | 4-甲基伞形酮酰-β-D-吡喃木糖苷 4-Methylumbelliferyl-β-D-xylopyranoside |
β-1,4-葡萄糖苷酶 β-1,4-glucosidase | BG | 3.2.1.21 | 4-甲基伞形酮酰-β-D-吡喃葡糖酸苷 4-Methylumbelliferyl-β-D-glucoside |
碱性磷酸酶 Alkaline phosphatase | AKP | 3.1.3.1 | 4-甲基伞形酮磷酸酯 4-Methylumbelliferyl-phosphate |
乙酰基氨基葡萄糖苷酶 β-1,4-N-acetylglucosaminidase | NAG | 3.2.1.14 | 4-甲基香豆素-2-乙酰氨基-2-脱氧-β-D-吡喃葡萄糖苷 4-Methylumbelliferyl-2-acetamido-2-deoxy-beta-D-glucopyranoside |
亮氨酸氨基肽酶 Leucine aminopeptidase | LAP | 3.4.11.1 | L-亮氨酰-7-氨基-4-甲基香豆素盐酸盐 L-Leucine-7-amino-4-methylcoumarin hydrochloride |
表1 土壤胞外酶基本信息
Table 1 Basic information of soil extracellular enzymes
酶 Enzyme | 缩写 Abbreviation | 酶编号 Enzyme number | 底物 Substrate |
---|---|---|---|
纤维二糖水解酶 Cellobiohydrolase | CBH | 3.2.1.91 | 4-甲基伞形酮-β-D-纤维素二糖苷 4-Methylumbelliferyl-β-D-cellobioside |
β-1,4-木糖苷酶 β-1,4-xylosidase | BX | 3.2.1.37 | 4-甲基伞形酮酰-β-D-吡喃木糖苷 4-Methylumbelliferyl-β-D-xylopyranoside |
β-1,4-葡萄糖苷酶 β-1,4-glucosidase | BG | 3.2.1.21 | 4-甲基伞形酮酰-β-D-吡喃葡糖酸苷 4-Methylumbelliferyl-β-D-glucoside |
碱性磷酸酶 Alkaline phosphatase | AKP | 3.1.3.1 | 4-甲基伞形酮磷酸酯 4-Methylumbelliferyl-phosphate |
乙酰基氨基葡萄糖苷酶 β-1,4-N-acetylglucosaminidase | NAG | 3.2.1.14 | 4-甲基香豆素-2-乙酰氨基-2-脱氧-β-D-吡喃葡萄糖苷 4-Methylumbelliferyl-2-acetamido-2-deoxy-beta-D-glucopyranoside |
亮氨酸氨基肽酶 Leucine aminopeptidase | LAP | 3.4.11.1 | L-亮氨酰-7-氨基-4-甲基香豆素盐酸盐 L-Leucine-7-amino-4-methylcoumarin hydrochloride |
图1 太白山不同海拔根际土壤理化性质特征(平均值±标准误)。DOC, 可溶性有机碳; DON, 可溶性有机氮; MBC, 微生物生物量碳; MBN, 微生物生物量氮; MBP, 微生物生物量磷; SOC, 土壤有机碳。不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Physical and chemical properties of rhizosphere soil at different altitudes in Taibai Mountain (mean ± SE). DOC, dissolved organic carbon; DON, dissolved organic nitrogen; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial biomass phosphorus; NH4+-N, ammonium nitrogen; NO3--N, nitrate nitrogen; SM, soil moisture; SOC, soil organic carbon; ST, soil temperature; TN, total nitrogen; TP, total phosphorus. Different lowercase letters indicate significant difference (p < 0.05).
海拔 Altitude (m) | α多样性 α diversity | β多样性 β diversity | ||
---|---|---|---|---|
细菌 Bacteria | 真菌 Fungi | 细菌 Bacteria | 真菌 Fungi | |
1 308 | 1.37 ± 0.01d | 0.52 ± 0.01c | 0.00 ± 0.00e | 0.00 ± 0.00c |
1 603 | 1.39 ± 0.01d | 0.60 ± 0.05bc | 0.04 ± 0.01d | 0.05 ± 0.01bc |
1 915 | 1.57 ± 0.01a | 0.99 ± 0.01a | 0.14 ± 0.01a | 0.38 ± 0.04a |
2 292 | 1.42 ± 0.00c | 0.32 ± 0.00d | 0.06 ± 0.00c | 0.10 ± 0.01b |
2 405 | 1.44 ± 0.00bc | 0.62 ± 0.02b | 0.08 ± 0.01b | 0.06 ± 0.03bc |
2 600 | 1.46 ± 0.01b | 0.61 ± 0.04b | 0.14 ± 0.01a | 0.06 ± 0.00bc |
表2 太白山不同海拔根际土壤微生物多样性(平均值±标准误)
Table 2 Microbial diversity in rhizosphere soil at different altitudes in Taibai Mountain (mean ± SE)
海拔 Altitude (m) | α多样性 α diversity | β多样性 β diversity | ||
---|---|---|---|---|
细菌 Bacteria | 真菌 Fungi | 细菌 Bacteria | 真菌 Fungi | |
1 308 | 1.37 ± 0.01d | 0.52 ± 0.01c | 0.00 ± 0.00e | 0.00 ± 0.00c |
1 603 | 1.39 ± 0.01d | 0.60 ± 0.05bc | 0.04 ± 0.01d | 0.05 ± 0.01bc |
1 915 | 1.57 ± 0.01a | 0.99 ± 0.01a | 0.14 ± 0.01a | 0.38 ± 0.04a |
2 292 | 1.42 ± 0.00c | 0.32 ± 0.00d | 0.06 ± 0.00c | 0.10 ± 0.01b |
2 405 | 1.44 ± 0.00bc | 0.62 ± 0.02b | 0.08 ± 0.01b | 0.06 ± 0.03bc |
2 600 | 1.46 ± 0.01b | 0.61 ± 0.04b | 0.14 ± 0.01a | 0.06 ± 0.00bc |
图2 太白山不同海拔根际土壤胞外酶活性(平均值±标准误)。AKP, 碱性磷酸酶; BG, β-1,4-葡萄糖苷酶; BX, β-1,4-木糖苷酶; CBH, 纤维二糖水解酶; LAP, 亮氨酸氨基肽酶; NAG, 乙酰基氨基葡萄糖苷酶。不同小写字母表示差异显著(p < 0.05)。
Fig. 2 Extracellular enzyme activity in rhizosphere soil at different altitudes in Taibai Mountain (mean ± SE). AKP, alkaline phosphatase; BG, β-1,4-glucosidase; BX, β-1,4-xylosidase; CBH, cellobiohydrolase; LAP, leucine aminopeptidase; NAG, β-1,4-N-acetylglucosaminidase. Different lowercase letters indicate significant difference (p < 0.05).
图3 太白山不同海拔植物多样性特征(平均值±标准误)。不同大写字母表示不同生活型在同一海拔的差异显著(p < 0.05), 不同小写字母表示同一生活型在不同海拔的差异显著(p < 0.05)。
Fig. 3 Plant community diversity characteristics at different altitudes in Taibai Mountain (mean ± SE). Different uppercase letters indicate significant differences between different life forms at the same altitude (p < 0.05), and different lowercase letters indicate significant differences at different altitudes for the same life form (p < 0.05).
图4 太白山根际土壤微生物碳利用效率随海拔变化特征(平均值±标准误)。不同小写字母表示差异显著(p < 0.05)。
Fig. 4 Altitudinal variation of rhizosphere soil microbial carbon use efficiency in Taibai Mountain (mean ± SE). Different lowercase letters indicate significant difference (p < 0.05).
分类 Classification | 相关变量 Relevant variable | 参数 Parameter | ||
---|---|---|---|---|
Mantel分析 Mantel statistic (r) | p | |||
海拔 Altitude | SM, ST | 0.17 | 0.05 | |
土壤基质 Soil substrate | Soil density, pH, DOC, DON, NH4+-N, NO3--N, SOC, TN, TP | 0.34 | <0.01** | |
植物多样性 Plant diversity | 乔木(丰富度、Simpson多样性、Shannon-Wiener多样性) Tree (richness, Simpson diversity, Shannon-Wiener diversity) | |||
灌木(丰富度、Simpson多样性、Shannon-Wiener多样性) Shrub (richness, Simpson diversity, Shannon-Wiener diversity) | 0.29 | 0.01* | ||
草本(丰富度、Simpson多样性、Shannon-Wiener多样性) Herb (richness, Simpson diversity, Shannon-Wiener diversity) | ||||
微生物多样性 Microorganism diversity | α多样性, β多样性 α diversity, β diversity | 0.14 | 0.10 |
表3 太白山根际土壤碳利用效率与环境因子的关系
Table 3 Relationship between rhizosphere soil carbon use efficiency and environmental factors in Taibai Mountain
分类 Classification | 相关变量 Relevant variable | 参数 Parameter | ||
---|---|---|---|---|
Mantel分析 Mantel statistic (r) | p | |||
海拔 Altitude | SM, ST | 0.17 | 0.05 | |
土壤基质 Soil substrate | Soil density, pH, DOC, DON, NH4+-N, NO3--N, SOC, TN, TP | 0.34 | <0.01** | |
植物多样性 Plant diversity | 乔木(丰富度、Simpson多样性、Shannon-Wiener多样性) Tree (richness, Simpson diversity, Shannon-Wiener diversity) | |||
灌木(丰富度、Simpson多样性、Shannon-Wiener多样性) Shrub (richness, Simpson diversity, Shannon-Wiener diversity) | 0.29 | 0.01* | ||
草本(丰富度、Simpson多样性、Shannon-Wiener多样性) Herb (richness, Simpson diversity, Shannon-Wiener diversity) | ||||
微生物多样性 Microorganism diversity | α多样性, β多样性 α diversity, β diversity | 0.14 | 0.10 |
图5 太白山土壤微生物碳利用效率与环境因子方差分解分析。
Fig. 5 Variance partitioning analysis of soil microbial carbon use efficiency and environmental factors in Taibai Mountain.
图6 太白山土壤微生物碳利用效率与土壤基质线性拟合分析。DOC, 可溶性有机碳; DON, 可溶性有机氮; SOC, 土壤有机碳; TN, 总氮; TP, 总磷.
Fig. 6 Linear fitting analysis of soil microbial carbon use efficiency (CUE) and soil matrix in Taibai Mountain. DOC, dissolved organic carbon; DON, dissolved organic nitrogen; NH4+-N, ammonium nitrogen; NO3--N, nitrate nitrogen; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus.
图7 太白山土壤微生物碳利用效率与植物群落α多样性线性拟合分析。R2为调整后的值, 表示线性拟合分析的拟合程度, 负值表示拟合度差。
Fig. 7 Linear fitting analysis of soil microbial carbon use efficiency and α diversity of plant communities in Taibai Mountain. R2 is corrected, represents the fitting dagree of linear fitting analysis, and its negative value represents poor fitting degree.
[1] |
Allison SD, Wallenstein MD, Bradford MA (2010). Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 3, 336-340.
DOI |
[2] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[3] |
Bever JD (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157, 465-473.
DOI PMID |
[4] |
Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008). Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proceedings of the National Academy of Sciences of the United States of America, 105, 10583-10588.
DOI PMID |
[5] | Cao CY, Shao JF, Jiang DM, Cui ZB (2011). Effects of fence enclosure on soil nutrients and biological activities in highly degraded grasslands. Journal of Northeastern University (Natural Science), 32, 427-430. |
[曹成有, 邵建飞, 蒋德明, 崔振波 (2011). 围栏封育对重度退化草地土壤养分和生物活性的影响. 东北大学学报(自然科学版), 32, 427-430.] | |
[6] |
Cao R, Wu FZ, Yang WQ, Xu ZF, Tan B, Wang B, Li J, Chang CH (2016). Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions. Chinese Journal of Applied Ecology, 27, 1257-1264.
DOI |
[曹瑞, 吴福忠, 杨万勤, 徐振锋, 谭波, 王滨, 李俊, 常晨晖 (2016). 海拔对高山峡谷区土壤微生物生物量和酶活性的影响. 应用生态学报, 27, 1257-1264.]
DOI |
|
[7] | Chen Z, Yu GR (2020). Advances in the soil microbial carbon use efficiency. Acta Ecologica Sinica, 40, 756-767. |
[陈智, 于贵瑞 (2020). 土壤微生物碳素利用效率研究进展. 生态学报, 40, 756-767.] | |
[8] | Chu HY, Wang YF, Shi Y, Lyu XT, Zhu YG, Han XG (2017). Current status and development trend of soil microbial biogeography. Bulletin of Chinese Academy of Sciences, 32, 585-592. |
[褚海燕, 王艳芬, 时玉, 吕晓涛, 朱永官, 韩兴国 (2017). 土壤微生物生物地理学研究现状与发展态势. 中国科学院院刊, 32, 585-592.] | |
[9] |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
DOI PMID |
[10] |
Cui YX, Wang X, Zhang XC, Ju WL, Duan CJ, Guo XB, Wang YQ, Fang LC (2020). Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology & Biochemistry, 147, 107814. DOI: 10.1016/j.soilbio.2020.107814.
DOI |
[11] | Curl EA, Truelove B (1986). The Rhizosphere. Springer, Berlin. |
[12] |
del Giorgio PA, Cole JJ (1998). Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics, 29, 503-541.
DOI URL |
[13] |
Dijkstra P, Thomas SC, Heinrich PL, Heinrich PL, Koch GW, Schwartz E, Hungate BA (2011). Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biology & Biochemistry, 43, 2023-2031.
DOI URL |
[14] | Fang JY, Shen ZH, Tang ZY, Wang ZH (2004). The protocol for the survey plan for plant species diversity of China’s Mountains. Chinese Biodiversity, 12, 5-9. |
[方精云, 沈泽昊, 唐志尧, 王志恒 (2004). “中国山地植物物种多样性调查计划”及若干技术规范. 生物多样性, 12, 5-9.]
DOI |
|
[15] | Guo ZM, Zhang XY, Li DD, Dong WT, Li ML (2017). Characteristics of soil organic carbon and related exo-enzyme activities at different altitudes in temperate forests. Chinese Journal of Applied Ecology, 28, 2888-2896. |
[郭志明, 张心昱, 李丹丹, 董文亭, 李美玲 (2017). 温带森林不同海拔土壤有机碳及相关胞外酶活性特征. 应用生态学报, 28, 2888-2896.]
DOI |
|
[16] |
Hagerty SB, van Groenigen KJ, Allison SD, Hungate BA, Schwartz E, Koch GW, Kolka RK, Dijkstra P (2014). Accelerated microbial turnover but constant growth efficiency with warming in soil. Nature Climate Change, 4, 903-906.
DOI |
[17] | Han XM, Huang ZY, Cheng F, Yang M (2020). Physiochemical properties and microbial community characteristics of rhizosphere soil in Parashorea chinensis plantation. Chinese Journal of Applied Ecology, 31, 3365-3375. |
[韩小美, 黄则月, 程飞, 杨梅 (2020). 望天树人工林根际土壤理化性质及微生物群落特征. 应用生态学报, 31, 3365-3375.]
DOI |
|
[18] | He H (2014). Study on Response of Taibai Mountain High Altitude Timberline to Temperature Change Based on RS and DEM. Master degree dissertation, Northwest University, Xi’an. |
[何红 (2014). 基于RS和DEM的太白山高山林线对气温变化响应的研究. 硕士学位论文, 西北大学, 西安.] | |
[19] |
Herron PM, Stark JM, Holt C, Hooker T, Cardon ZG (2009). Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas. Soil Biology & Biochemistry, 41, 1262-1269.
DOI URL |
[20] |
Hu ZY, Wang GX, Sun XY, Wang J, Chen XP, Song CL, Song XY, Lin S (2019). Variations in belowground carbon use strategies under different climatic conditions. Agricultural and Forest Meteorology, 268, 32-39.
DOI URL |
[21] |
Jones DL, Hill PW, Smith AR, Farrell M, Ge T, Banning NC, Murphy DV (2018). Role of substrate supply on microbial carbon use efficiency and its role in interpreting soil microbial community-level physiological profiles (CLPP). Soil Biology & Biochemistry, 123, 1-6.
DOI URL |
[22] |
Keiblinger KM, Hall EK, Wanek W, Szukics U, Hämmerle I, Ellersdorfer G, Böck S, Strauss J, Sterflinger K, Richter A, Zechmeister-Boltenstern S (2010). The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology, 73, 430-440.
DOI PMID |
[23] |
Lee ZM, Schmidt TM (2014). Bacterial growth efficiency varies in soils under different land management practices. Soil Biology & Biochemistry, 69, 282-290.
DOI URL |
[24] | Li DW (2016). Spatial Variation Pattern of Soil Microorganism and Soil Enzyme Activity in Different Altitude at Taibai Mountain. Master degree dissertation, Northwest A&F University, Yangling, Shaanxi. |
[李丹维 (2016). 太白山不同海拔土壤微生物及酶活性的空间变异特征. 硕士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[25] | Liang C, Zhu XF (2021). The soil microbial carbon pump as a new concept for terrestrial carbon sequestration. Scientia Sinica (Terrae), 51, 680-695. |
[梁超, 朱雪峰 (2021). 土壤微生物碳泵储碳机制概论. 中国科学: 地球科学, 51, 680-695.] | |
[26] | Liu YJ, Fan DD, Li XZ, Zhao WQ, Kou YP (2021). Diversity and network features of fungal community in the soils of planted and natural Picea asperata forests. Chinese Journal of Applied Ecology, 32, 1441-1451. |
[刘艳娇, 樊丹丹, 李香真, 赵文强, 寇涌苹 (2021). 人工与天然云杉林土壤真菌群落多样性及菌群网络关系特征. 应用生态学报, 32, 1441-1451.]
DOI |
|
[27] | Liu ZX, Zhu TH, Zhang J (2005). Research advances in root exudates and rhizosphere microorganisms of forest trees. World Forestry Research, 18, 25-31. |
[刘子雄, 朱天辉, 张建 (2005). 林木根系分泌物与根际微生物研究进展. 世界林业研究, 18, 25-31.] | |
[28] | Lü K, Wang JJ, Wu GP, Lin SN, Su YG, Huang G (2022). Elevational pattern and control factors of soil microbial carbon use efficiency in the Daiyun Mountain. Environmental Science, 43, 4364-4371. |
[吕坤, 王晶晶, 吴国朋, 林思诺, 苏延桂, 黄刚 (2022). 戴云山土壤微生物碳源利用效率的海拔变异规律及影响因素. 环境科学, 43, 4364-4371.] | |
[29] | Lu YH, Zhang FS (2006). The advances in rhizosphere microbiology. Soils, 38, 113-121. |
[陆雅海, 张福锁 (2006). 根际微生物研究进展. 土壤, 38, 113-121.] | |
[30] |
Luo Z, Feng W, Luo Y, Baldock J, Wang E (2017). Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Global Change Biology, 23, 4430-4439.
DOI PMID |
[31] | Ma ZL, Zhao WQ, Liu M (2019). Responses of polyphenoloxidase and catalase activities of rhizosphere and bulk soils to warming during the growing season in an alpine scrub ecosystem. Chinese Journal of Applied Ecology, 30, 3681-3688. |
[马志良, 赵文强, 刘美 (2019). 高寒灌丛生长季根际和非根际土壤多酚氧化酶和过氧化氢酶活性对增温的响应. 应用生态学报, 30, 3681-3688.]
DOI |
|
[32] |
Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist, 196, 79-91.
DOI PMID |
[33] |
Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, Salata RA, Lederman MM, Gillevet PM, Ghannoum MA (2014). Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathogens, 10, e1003996. DOI: 10.1371/journal.ppat.1003996.
DOI |
[34] |
Qiao Y, Wang J, Liang GP, Du ZG, Zhou J, Zhu C, Huang K, Zhou XH, Luo YQ, Yan LM, Xia JY (2019). Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply. Scientific Reports, 9, 5621. DOI: 10.1038/S41598-019-42145-6.
DOI |
[35] | Ren CJ (2018). Effects of Plant-Soil Collaborative Recovery and Microbial Responses in the Loess Plateau. PhD dissertation, Northwest A&F University, Yangling, Shaanxi. |
[任成杰 (2018). 黄土高原植被-土壤协同恢复效应及微生物响应机理. 博士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[36] |
Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.
DOI URL |
[37] | Shao YH, Zhang WX, Liu SJ, Wang XL, Fu SL (2015). Diversity and function of soil fauna. Acta Ecologica Sinica, 35, 6614-6625. |
[邵元虎, 张卫信, 刘胜杰, 王晓丽, 傅声雷 (2015). 土壤动物多样性及其生态功能. 生态学报, 35, 6614-6625.] | |
[38] |
Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013). Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecology Letters, 16, 930-939.
DOI PMID |
[39] |
Sinsabaugh RL, Turner BL, Talbot JM, Waring BG, Powers JS, Kuske CR, Moorhead DL, Follstad Shah JJ(2016). Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs, 86, 172-189.
DOI URL |
[40] |
Soares M, Rousk J (2019). Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biology & Biochemistry, 131, 195-205.
DOI URL |
[41] | Su SF, Lin ZP, Wang XY, Chen ZL, Xue Y (2020). Vegetation survey and species diversity analysis of waste titanium mining area in Wenchang. Chinese Journal of Tropical Agriculture, 40(1), 59-66. |
[宿少锋, 林之盼, 王小燕, 陈珠琳, 薛杨 (2020). 海南文昌废弃钛矿区植被调查与物种多样性分析. 热带农业科学, 40(1), 59-66.] | |
[42] |
Takriti M, Wild B, Schnecker J, Mooshammer M, Knoltsch A, Lashchinskiy N, Eloy Alves RJ, Gentsch N, Gittel A, Mikutta R, Wanek W, Richter A (2018). Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biology & Biochemistry, 121, 212-220.
DOI URL |
[43] |
Tiemann LK, Billings SA (2011). Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biology & Biochemistry, 43, 1837-1847.
DOI URL |
[44] |
Tucker CL, Jennifer B, Elise P, Kiona O (2013). Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Global Change Biology, 19, 252-263.
DOI PMID |
[45] |
Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, Liu Z, Wang Q, Fang Y, Bai E (2021). Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology, 27, 2039-2048.
DOI PMID |
[46] | Wang Q, Geng ZC, Xu CY, Guo JY, Li QQ, Liu LL, Zhao HH, Du XG (2020). Effects of biochar application on soil microbial nutrient limitations and carbon use efficiency in Lou soil. Environmental Science, 41, 2425-2433. |
[王强, 耿增超, 许晨阳, 郭靖宇, 李倩倩, 刘莉丽, 赵汉红, 杜旭光 (2020). 施用生物炭对塿土土壤微生物代谢养分限制和碳利用效率的影响. 环境科学, 41, 2425-2433.] | |
[47] | Wang Y, Zong N, He NP, Zhang JJ, Tian J, Li LT (2018). Soil microbial functional diversity patterns and drivers along an elevation gradient on Qinghai-Tibet, China. Acta Ecologica Sinica, 38, 5837-5845. |
[王颖, 宗宁, 何念鹏, 张晋京, 田静, 李良涛 (2018). 青藏高原高寒草甸不同海拔梯度下土壤微生物群落碳代谢多样性. 生态学报, 38, 5837-5845.] | |
[48] |
Widdig M, Schleuss PM, Biederman LA, Borer ET, Crawley MJ, Kirkman KP, Seabloom EW, Wragg PD, Spohn M (2020). Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions. Soil Biology & Biochemistry, 146, 107815. DOI: 10.1016/j.soilbio.2020.107815.
DOI |
[49] |
Zheng Q, Hu Y, Zhang S, Noll L, Böckle T, Richter A, Wanek W (2019). Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biology & Biochemistry, 128, 45-55.
DOI URL |
[50] | Zhou WJ, Lü DG, Qin SJ (2016). Research progress in interaction between plant and rhizosphere microorganism. Journal of Jilin Agricultural University, 38, 253-260. |
[周文杰, 吕德国, 秦嗣军 (2016). 植物与根际微生物相互作用关系研究进展. 吉林农业大学学报, 38, 253-260.] | |
[51] |
Zhou ZH, Wang CK (2016). Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry. Chinese Journal of Plant Ecology, 40, 620-630.
DOI URL |
[周正虎, 王传宽 (2016). 微生物对分解底物碳氮磷化学计量的响应和调节机制. 植物生态学报, 40, 620-630.]
DOI |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[3] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[4] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[5] | 何春梅, 李雨姗, 尹秋龙, 贾仕宏, 郝占庆. 秦岭皇冠暖温性落叶阔叶林优势树种的径级结构和数量特征[J]. 植物生态学报, 2023, 47(12): 1658-1667. |
[6] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[7] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[8] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[9] | 王嘉童, 牛春跃, 胡天宇, 李文楷, 刘玲莉, 郭庆华, 苏艳军. 三维辐射传输模型在森林生态系统研究中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1200-1218. |
[10] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[11] | 胡琪娟, 盛茂银, 殷婕, 白义鑫. 西南喀斯特石漠化环境适生植物构树细根、根际土壤化学计量特征[J]. 植物生态学报, 2020, 44(9): 962-972. |
[12] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[13] | 扈明媛, 袁野, 戴晓琴, 付晓莉, 寇亮, 王辉民. 亚热带人工林乔灌草根际土壤氮矿化特征[J]. 植物生态学报, 2020, 44(12): 1285-1295. |
[14] | 杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭. 青海森林生态系统中灌木层和土壤生态化学计量特征[J]. 植物生态学报, 2019, 43(4): 352-364. |
[15] | 冯婵莹, 郑成洋, 田地. 氮添加对森林植物磷含量的影响及其机制[J]. 植物生态学报, 2019, 43(3): 185-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19