植物生态学报 ›› 2022, Vol. 46 ›› Issue (5): 569-579.DOI: 10.17521/cjpe.2021.0419
所属专题: 青藏高原植物生态学:种群生态学
收稿日期:
2021-11-18
接受日期:
2022-03-23
出版日期:
2022-05-20
发布日期:
2022-06-09
通讯作者:
孙坤
作者简介:
* (kunsun@nwnu.edu.cn) ORCID:卢晶: 0000-0002-0319-4491基金资助:
LU Jing, MA Zong-Qi, GAO Peng-Fei, FAN Bao-Li, SUN Kun()
Received:
2021-11-18
Accepted:
2022-03-23
Online:
2022-05-20
Published:
2022-06-09
Contact:
SUN Kun
Supported by:
摘要:
西藏沙棘(Hippophae tibetana)是青藏高原高寒区特有的低矮灌木和植被演替先锋物种, 具有优良的水土保持功效, 对高海拔环境表现出良好的生态适应性, 但有关其种群结构及动态对海拔梯度的响应规律少有研究, 阻碍了对西藏沙棘适应高寒生境生态策略的理解。青藏高原东北缘的祁连山区生态脆弱, 乡土物种西藏沙棘常在海拔2 700-3 300 m的高寒退化草地呈斑块状分布, 对该区水源涵养林的维持具有重要作用。该研究以祁连山区3个海拔(2 868、3 012、3 244 m)的西藏沙棘为研究对象, 通过编制静态生命表及绘制存活曲线, 分析西藏沙棘的种群结构特征和种群动态, 并利用种群动态量化分析和时间序列模型定量研究其未来发展趋势。结果显示: 1)西藏沙棘种群的基径、株高和冠幅均随海拔的升高而降低; 3个海拔种群均呈中龄期个体丰富, 老幼龄期个体较少的纺锤型年龄结构, 充足的中龄期个体可以维持种群短期稳定。2)种群存活曲线均为Deevey-II型, 存活能力为低海拔>中海拔>高海拔; 死亡率和消失率均较高, 呈高海拔>低海拔>中海拔的趋势, 3个海拔种群均缺乏幼苗, 未来均将走向衰退, 高海拔种群较其他海拔提前进入衰退期; 各海拔老龄期生命期望值为中海拔>低海拔>高海拔。3)各海拔种群动态指数(V′pi)均趋于0, 表明各种群均趋于稳定, 中海拔种群受随机干扰风险概率的极大值(Pmax)最小, 表明受随机干扰时中海拔种群最稳定, 中海拔更适宜西藏沙棘的生存。4)未来2、4、6个龄级时间后, 3个海拔的中、老龄期苗木增多, 小龄期苗木数目减少, 且各海拔种群均面临幼苗补充不及时的风险, 各种群将由稳定向衰退发展, 幼苗的缺少, 种内、种间竞争及环境胁迫是造成种群走向衰退的重要原因。
卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应. 植物生态学报, 2022, 46(5): 569-579. DOI: 10.17521/cjpe.2021.0419
LU Jing, MA Zong-Qi, GAO Peng-Fei, FAN Bao-Li, SUN Kun. Changes in the Hippophae tibetana population structure and dynamics, a pioneer species of succession, to altitudinal gradients in the Qilian Mountains, China. Chinese Journal of Plant Ecology, 2022, 46(5): 569-579. DOI: 10.17521/cjpe.2021.0419
图1 祁连山区不同海拔西藏沙棘种群形态特征(平均值±标准误)。不同小写字母代表差异显著(p < 0.05)。
Fig. 1 Morphological characteristics of Hippophae tibetana populations at different altitudes in the Qilian Mountains (mean ± SE). Different lowercase letters indicate significant difference (p < 0.05).
图2 祁连山区不同海拔西藏沙棘种群年龄结构。I, BD ≤ 0.3 cm; II, BD 0.3-0.6 cm; III, BD 0.6-0.9 cm; IV, BD 0.9-1.2 cm; V, BD 1.2-1.5 cm; VI, BD 1.5-1.8 cm; VII, BD > 1.8 cm; BD, 基径。
Fig. 2 Age structure of Hippophae tibetana populations at different altitudes in the Qilian Mountains. I, BD ≤ 0.3 cm; II, BD 0.3-0.6 cm; III, BD 0.6-0.9 cm; IV, BD 0.9-1.2 cm; V, BD 1.2-1.5 cm; VI, BD 1.5-1.8 cm; VII, BD > 1.8 cm; BD, basal diameter.
海拔 Altitude | x | ax | lx | dx | qx | Lx | Tx | ex | lnlx | Kx |
---|---|---|---|---|---|---|---|---|---|---|
低 Low | I | 13 | 1 000 | -16 462 | -16.46 | 9 231 | 48 923 | 48.92 | 6.91 | -2.86 |
II | 227 | 17 462 | -2 385 | -0.14 | 18 654 | 39 692 | 2.27 | 9.77 | -0.13 | |
III | 258 | 19 846 | 11 231 | 0.57 | 14 231 | 21 038 | 1.06 | 9.90 | 0.83 | |
IV | 112 | 8 615 | 6 538 | 0.76 | 5 346 | 6 808 | 0.79 | 9.06 | 1.42 | |
V | 27 | 2 077 | 1 692 | 0.81 | 1 231 | 1 462 | 0.70 | 7.64 | 1.69 | |
VI | 5 | 385 | 308 | 0.80 | 231 | 231 | 0.60 | 5.95 | 1.61 | |
VII | 1 | 77 | - | - | - | - | - | 4.34 | - | |
中 Middle | I | 217 | 1 000 | -1 406 | -1.41 | 1 703 | 5 005 | 5.00 | 6.91 | -0.88 |
II | 522 | 2 406 | 1 171 | 0.49 | 1 820 | 3 302 | 1.37 | 7.79 | 0.67 | |
III | 268 | 1 235 | 700 | 0.57 | 885 | 1 482 | 1.20 | 7.12 | 0.84 | |
IV | 116 | 535 | 318 | 0.59 | 376 | 597 | 1.12 | 6.28 | 0.90 | |
V | 47 | 217 | 143 | 0.66 | 145 | 221 | 1.02 | 5.38 | 1.08 | |
VI | 16 | 74 | -5 | -0.06 | 76 | 76 | 1.03 | 4.30 | -0.06 | |
VII | 17 | 78 | - | - | - | - | - | 4.36 | - | |
高 High | I | 156 | 1 000 | -1 590 | -1.59 | 1 795 | 3 967 | 3.97 | 6.91 | -0.95 |
II | 404 | 2 590 | 1 763 | 0.68 | 1 708 | 2 172 | 0.84 | 7.86 | 1.14 | |
III | 129 | 827 | 788 | 0.95 | 433 | 464 | 0.56 | 6.72 | 3.07 | |
IV | 6 | 38 | 32 | 0.83 | 22 | 31 | 0.81 | 3.65 | 1.79 | |
V | 1 | 6 | 0 | 0.00 | 6 | 9 | 1.40 | 1.86 | 0.00 | |
VI | 1 | 6 | 6 | 1.00 | 3 | 3 | 0.47 | 1.86 | - | |
VII | 0 | 0 | - | - | - | - | - | - | - |
表1 祁连山区不同海拔西藏沙棘种群的静态生命表
Table 1 Time-specific life table of Hippophae tibetana populations at different altitudes in the Qilian Mountains
海拔 Altitude | x | ax | lx | dx | qx | Lx | Tx | ex | lnlx | Kx |
---|---|---|---|---|---|---|---|---|---|---|
低 Low | I | 13 | 1 000 | -16 462 | -16.46 | 9 231 | 48 923 | 48.92 | 6.91 | -2.86 |
II | 227 | 17 462 | -2 385 | -0.14 | 18 654 | 39 692 | 2.27 | 9.77 | -0.13 | |
III | 258 | 19 846 | 11 231 | 0.57 | 14 231 | 21 038 | 1.06 | 9.90 | 0.83 | |
IV | 112 | 8 615 | 6 538 | 0.76 | 5 346 | 6 808 | 0.79 | 9.06 | 1.42 | |
V | 27 | 2 077 | 1 692 | 0.81 | 1 231 | 1 462 | 0.70 | 7.64 | 1.69 | |
VI | 5 | 385 | 308 | 0.80 | 231 | 231 | 0.60 | 5.95 | 1.61 | |
VII | 1 | 77 | - | - | - | - | - | 4.34 | - | |
中 Middle | I | 217 | 1 000 | -1 406 | -1.41 | 1 703 | 5 005 | 5.00 | 6.91 | -0.88 |
II | 522 | 2 406 | 1 171 | 0.49 | 1 820 | 3 302 | 1.37 | 7.79 | 0.67 | |
III | 268 | 1 235 | 700 | 0.57 | 885 | 1 482 | 1.20 | 7.12 | 0.84 | |
IV | 116 | 535 | 318 | 0.59 | 376 | 597 | 1.12 | 6.28 | 0.90 | |
V | 47 | 217 | 143 | 0.66 | 145 | 221 | 1.02 | 5.38 | 1.08 | |
VI | 16 | 74 | -5 | -0.06 | 76 | 76 | 1.03 | 4.30 | -0.06 | |
VII | 17 | 78 | - | - | - | - | - | 4.36 | - | |
高 High | I | 156 | 1 000 | -1 590 | -1.59 | 1 795 | 3 967 | 3.97 | 6.91 | -0.95 |
II | 404 | 2 590 | 1 763 | 0.68 | 1 708 | 2 172 | 0.84 | 7.86 | 1.14 | |
III | 129 | 827 | 788 | 0.95 | 433 | 464 | 0.56 | 6.72 | 3.07 | |
IV | 6 | 38 | 32 | 0.83 | 22 | 31 | 0.81 | 3.65 | 1.79 | |
V | 1 | 6 | 0 | 0.00 | 6 | 9 | 1.40 | 1.86 | 0.00 | |
VI | 1 | 6 | 6 | 1.00 | 3 | 3 | 0.47 | 1.86 | - | |
VII | 0 | 0 | - | - | - | - | - | - | - |
图3 祁连山区不同海拔西藏沙棘种群的存活曲线和生命期望曲线。龄级同图2。
Fig. 3 Survivorship and life expectancy curves of Hippophae tibetana populations at different altitudes in the Qilian Mountains. See Fig. 2 for age class.
图4 祁连山区不同海拔西藏沙棘种群的死亡率和消失率曲线。龄级同图2。
Fig. 4 Mortality and disappearance curves of Hippophae tibetana populations at different altitudes in the Qilian Mountains. See Fig. 2 for age class.
海拔 Altitude | 方程 Equation | R2 | F | p |
---|---|---|---|---|
低 Low | y = 13.712e-0.125x | 0.807 | 17.724 | 0.024 |
y = 14.454x-0.420 | 0.636 | 7.986 | 0.066 | |
中 Middle | y = 10.867e-0.147x | 0.961 | 99.555 | 0.002 |
y = 11.881x-0.514 | 0.861 | 25.819 | 0.015 | |
高 High | y = 19.451e-0.417x | 0.905 | 39.069 | 0.008 |
y = 26.450x-1.501 | 0.874 | 28.852 | 0.013 |
表2 祁连山区不同海拔西藏沙棘种群存活曲线拟合方程
Table 2 Calculated equations of survival curves of Hippophae tibetana populations at different altitudes in the Qilian Mountains
海拔 Altitude | 方程 Equation | R2 | F | p |
---|---|---|---|---|
低 Low | y = 13.712e-0.125x | 0.807 | 17.724 | 0.024 |
y = 14.454x-0.420 | 0.636 | 7.986 | 0.066 | |
中 Middle | y = 10.867e-0.147x | 0.961 | 99.555 | 0.002 |
y = 11.881x-0.514 | 0.861 | 25.819 | 0.015 | |
高 High | y = 19.451e-0.417x | 0.905 | 39.069 | 0.008 |
y = 26.450x-1.501 | 0.874 | 28.852 | 0.013 |
海拔 Altitude | 动态指数级 Dynamic index level | ||||||||
---|---|---|---|---|---|---|---|---|---|
VI | VII | VIII | VIV | VV | VVI | Vpi | V′pi | Pmax | |
低 Low | -0.943 | -0.120 | 0.566 | 0.759 | 0.815 | 0.800 | 0.339 | 0.048 | 0.143 |
中 Middle | -0.584 | 0.487 | 0.567 | 0.595 | 0.660 | -0.059 | 0.319 | 0.003 | 0.009 |
高 High | -0.614 | 0.681 | 0.954 | 0.833 | 0 | 1.000 | 0.442 | 0.063 | 0.143 |
表3 祁连山区不同海拔西藏沙棘种群年龄结构动态指数
Table 3 Dynamic index of Hippophae tibetana population age structure at different altitudes in the Qilian Mountains
海拔 Altitude | 动态指数级 Dynamic index level | ||||||||
---|---|---|---|---|---|---|---|---|---|
VI | VII | VIII | VIV | VV | VVI | Vpi | V′pi | Pmax | |
低 Low | -0.943 | -0.120 | 0.566 | 0.759 | 0.815 | 0.800 | 0.339 | 0.048 | 0.143 |
中 Middle | -0.584 | 0.487 | 0.567 | 0.595 | 0.660 | -0.059 | 0.319 | 0.003 | 0.009 |
高 High | -0.614 | 0.681 | 0.954 | 0.833 | 0 | 1.000 | 0.442 | 0.063 | 0.143 |
龄级 Age class | 低海拔 Low altitude | 中海拔 Middle altitude | 高海拔 High altitude | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M0 | M2(1) | M4(1) | M6(1) | M0 | M2(1) | M4(1) | M6(1) | M0 | M2(1) | M4(1) | M6(1) | |
I | 13 | 217 | 156 | |||||||||
II | 227 | 120 | 522 | 370 | 404 | 280 | ||||||
III | 258 | 243 | 268 | 395 | 129 | 267 | ||||||
IV | 112 | 185 | 153 | 116 | 192 | 281 | 6 | 68 | 174 | |||
V | 27 | 70 | 156 | 47 | 82 | 238 | 1 | 4 | 135 | |||
VI | 5 | 16 | 101 | 107 | 16 | 32 | 112 | 198 | 1 | 1 | 34 | 116 |
VII | 1 | 3 | 36 | 105 | 17 | 17 | 49 | 164 | 0 | 1 | 2 | 90 |
表4 祁连山区不同海拔西藏沙棘种群数量动态时间序列预测
Table 4 Time sequence prediction of number dynamics of Hippophae tibetana populations at different altitudes in the Qilian Mountains
龄级 Age class | 低海拔 Low altitude | 中海拔 Middle altitude | 高海拔 High altitude | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M0 | M2(1) | M4(1) | M6(1) | M0 | M2(1) | M4(1) | M6(1) | M0 | M2(1) | M4(1) | M6(1) | |
I | 13 | 217 | 156 | |||||||||
II | 227 | 120 | 522 | 370 | 404 | 280 | ||||||
III | 258 | 243 | 268 | 395 | 129 | 267 | ||||||
IV | 112 | 185 | 153 | 116 | 192 | 281 | 6 | 68 | 174 | |||
V | 27 | 70 | 156 | 47 | 82 | 238 | 1 | 4 | 135 | |||
VI | 5 | 16 | 101 | 107 | 16 | 32 | 112 | 198 | 1 | 1 | 34 | 116 |
VII | 1 | 3 | 36 | 105 | 17 | 17 | 49 | 164 | 0 | 1 | 2 | 90 |
[1] |
Armesto JJ, Casassa I, Dollenz O (1992). Age structure and dynamics of Patagonian beech forests in Torres del Paine National Park, Chile. Vegetatio, 98, 13-22.
DOI URL |
[2] | Chen XD (1998). A study on the method of quantitative analysis for plant population and community structural dynamics. Acta Ecologica Sinica, 18, 104-107. |
[ 陈晓德 (1998). 植物种群与群落结构动态量化分析方法研究. 生态学报, 18, 104-107.] | |
[3] | Chen XL, Lian YS (2007). Distribution pattern and cause of formation of the Genus Hippophae. Hippophae, 20(4), 1-5. |
[ 陈学林, 廉永善 (2007). 沙棘属植物的分布格局及其成因. 沙棘, 20(4), 1-5.] | |
[4] | Cheng ZM, Wang N, Mu F, Xu XH, Li XG, Li YL (2018). Structure and dynamic of natural Armeniaca sibirica populations at different altitudes in mountain areas of northern Hebei. Acta Botanica Boreali-Occidentalia Sinica, 38, 2303-2313. |
[ 程子敏, 王南, 穆枫, 徐学华, 李晓刚, 李玉灵 (2018). 冀北山地不同海拔天然山杏种群的结构与动态. 西北植物学报, 38, 2303-2313.] | |
[5] |
Deevey ES (1947). Life tables for natural populations of animals. The Quarterly Review of Biology, 22, 283-314.
DOI URL |
[6] | Fang JY, Zhu JL, Shi Y (2018). The response of ecosystems to global warming. Chinese Science Bulletin, 63, 136-140. |
[ 方精云, 朱江玲, 石岳 (2018). 生态系统对全球变暖的响应. 科学通报, 63, 136-140.] | |
[7] |
Fuchs MA, Krannitz PG, Harestad AS (2000). Factors affecting emergence and first-year survival of seedlings of Garry oaks (Quercus garryana) in British Columbia, Canada. Forest Ecology and Management, 137, 209-219.
DOI URL |
[8] |
Gao LL, Gou XH, Deng Y, Liu WH, Yang MX, Zhao ZQ (2013). Climate-growth analysis of Qilian juniper across an altitudinal gradient in the central Qilian Mountains, northwest China. Trees, 27, 379-388.
DOI URL |
[9] | Han F, Ben GY, Shi SB (1997). Contents of protein, fat and starch of Kobresia humilis plants grown at different altitudes in Qinghai-Xizang Plateau. Acta Phytoecologica Sinica, 21, 97-104. |
[ 韩发, 贲桂英, 师生波 (1997). 青藏高原不同海拔矮嵩草蛋白质、脂肪和淀粉含量的变异. 植物生态学报, 21, 97-104.] | |
[10] | Han L, Wang JQ, Wang HZ, Yu ZR (2014). The population structure and dynamics of Populus euphratica at the upper reaches of the Tarim River. Acta Ecologica Sinica, 34, 4640-4651. |
[ 韩路, 王家强, 王海珍, 宇振荣 (2014). 塔里木河上游胡杨种群结构与动态. 生态学报, 34, 4640-4651.] | |
[11] |
Hett JM, Loucks OL (1976). Age structure models of balsam fir and eastern hemlock. Journal of Ecology, 64, 1029-1044.
DOI URL |
[12] | He XH, Si JH, Zhao CY, Wang CL, Zhou DM (2021). Potential distribution of Hippophae thibetana and its predicted responses to climate change. Journal of Desert Research, 41(3), 101-109. |
[ 贺晓慧, 司建华, 赵春彦, 王春林, 周冬蒙 (2021). 西藏沙棘(Hippophae thibetana)潜在地理分布及其对未来气候变化的响应模拟. 中国沙漠, 41(3), 101-109.] | |
[13] | Jiang H (1992). Population Ecology of Spruce. China Forestry Publishing House, Beijing. 8-26. |
[ 江洪 (1992). 云杉种群生态学. 中国林业出版社, 北京. 8-26.] | |
[14] | Jin H, Zhao Y, Yin H, Qin LW, Liu LJ, Wang C, Jia X, Li BY (2017). Quantitative characteristics and dynamic analysis of the endangered species Rhododendron chrysanthum population in Changbai Mountain. Chinese Journal of Ecology, 36, 3123-3130. |
[ 金慧, 赵莹, 尹航, 秦立武, 刘丽杰, 王超, 贾翔, 李冰岩 (2017). 长白山濒危植物牛皮杜鹃(Rhododendron chrysanthum)种群数量特征与动态分析. 生态学杂志, 36, 3123-3130.] | |
[15] | Kang JP, Ma YY, Ma SQ, Xue ZW, Yang LL, Han L, Liu WY (2019). Dynamic changes of spatial pattern and structure of the Tamarix ramosissima population at the desert-oasis ecotone of the Tarim Basin. Acta Ecologica Sinica, 39, 265-276. |
[ 康佳鹏, 马盈盈, 马淑琴, 薛正伟, 杨丽丽, 韩路, 柳维扬 (2019). 荒漠绿洲过渡带柽柳种群结构与空间格局动态. 生态学报, 39, 265-276.] | |
[16] |
Kiełtyk P (2018). Variation of vegetative and floral traits in the alpine plant Solidago minuta: evidence for local optimum along an elevational gradient. Alpine Botany, 128, 47-57.
DOI URL |
[17] |
La Q, Zhang WJ, Ou L, Deji (2010). Habitat types and phenotypic variation of Hippophae tibetana along an altitudinal gradient in the Rongbu Valley of Mt. Everest, Tibet, China. Chinese Journal of Applied And Environmental Biology, 16, 173-178.
DOI URL |
[ 拉琼, 张文驹, 欧朗, 德吉 (2010). 珠穆朗玛峰绒布沟西藏沙棘生境类型及海拔梯度下表型变异. 应用与环境生物学报, 16, 173-178.] | |
[18] | Lhagchong, Ngudrub N, Duan SQ (2009). A preliminary study on flowering date, flower morphology and flower number of Hippophae tibetana. Journal of Tibet University (Natural Science Edition), 24(1), 21-23. |
[ 拉琼, 欧珠朗杰, 段双全 (2009). 西藏沙棘(Hippophae tibetana)的花期、花形态及其花朵数量的初步研究. 西藏大学学报(自然科学版), 24(1), 21-23.] | |
[19] |
Li CY, Xu G, Zang RG, Korpelainen H, Berninger F (2007). Sex-related differences in leaf morphological and physiological responses in Hippophae rhamnoides along an altitudinal gradient. Tree Physiology, 27, 399-406.
DOI URL |
[20] | Liu M, Li GQ, Wei Y, Li XZ, He B (2009). Height-class structure dynamics of Hippophae rhamnoides ssp. sinensis clone population in the Loess Plateau. International Seabuckthorn Research and Development, 6(4), 18-23. |
[ 刘明, 李根前, 韦宇, 李秀寨, 贺斌 (2009). 黄土高原中国沙棘克隆种群高度结构动态. 国际沙棘研究与开发, 6(4), 18-23.] | |
[21] | Liu M, Tang CP, Guo F, Wei Y, Li XZ, He B, Li GQ (2014). A study on the population dynamics and its biomass adjustment mechanisms of clonal plant Hippophae rhamnoides L. ssp. inensis. sJournal of Nanjing Forestry University (Natural Sciences Edition), 38(4), 57-63. |
[ 刘明, 唐翠平, 郭峰, 韦宇, 李秀寨, 贺斌, 李根前 (2014). 克隆植物中国沙棘种群动态及其生物量调节机制. 南京林业大学学报(自然科学版), 38(4), 57-63.] | |
[22] | Liu PX (2011). Study on population structure and dynamics of Populus euphratica in the middle and lower reaches of the Shule River Basin oasis, Hexi Corridor. Journal of Natural Resources, 26, 429-439. |
[ 刘普幸 (2011). 疏勒河中下游绿洲胡杨种群结构与动态研究. 自然资源学报, 26, 429-439.] | |
[23] | Niu CJ, Lou AR, Sun RY, Li QF (2015), Foundations in Ecology. 3rd ed. Higher Education Press, Beijing. 63-64. |
[ 牛翠娟, 娄安如, 孙儒泳, 李庆芬 (2015). 基础生态学. 3版. 高等教育出版社, 北京. 63-64.] | |
[24] |
Proctor MCF, Wratten SD, Fry GLA (1981). Field and laboratory exercises in ecology. Journal of Ecology, 69, 1074.
DOI URL |
[25] | Su ZH, Zhou XB, Zhou L, Jiang XL, Kang XS (2021). Population structure and dynamics of an endangered desert shrub endemic to northwestern China. Pakistan Journal of Botany, 53, 1361-1370. |
[26] | Ta F, Huang DL, Liu XD, Wang L, Liu RH, Zhao WJ, Jing WM (2021). Quantitative dynamics of Picea crassifolia population in Dayekou basin of Qilian Mountains. Acta Ecologica Sinica, 41, 6871-6882. |
[ 拓锋, 黄冬柳, 刘贤德, 王立, 刘润红, 赵维俊, 敬文茂 (2021). 祁连山大野口流域青海云杉种群数量动态. 生态学报, 41, 6871-6882.] | |
[27] |
Wang J, Yao L, Ai XR, Zhu J, Liu SB (2020). Structure and dynamic characteristics of Betula luminifera populations in different regions of Southwest Hubei Province, China. Chinese Journal of Applied Ecology, 31, 357-365.
DOI PMID |
[ 王进, 姚兰, 艾训儒, 朱江, 刘松柏 (2020). 鄂西南不同区域亮叶桦种群结构与动态特征. 应用生态学报, 31, 357-365.]
PMID |
|
[28] |
Wang LL, Wang L, Zhang LF, Liu YY, Xu SJ (2015). Structure and dynamic characteristics of Gymnocarpos przewalskii in different habitats. Chinese Journal of Plant Ecology, 39, 980-989.
DOI |
[ 王立龙, 王亮, 张丽芳, 刘玉洋, 徐世健 (2015). 不同生境下濒危植物裸果木种群结构及动态特征. 植物生态学报, 39, 980-989.]
DOI |
|
[29] | Wen JB, Sun K, Yan MS, Hu R, Sun WB (2010). Variation in fruit characteristics of Hippophae tibetana (Elaeagnaceae) in the eastern Qinghai-Tibet Plateau, China. Bulletin of Botanical Research, 30, 164-169. |
[ 温江波, 孙坤, 晏民生, 虎瑞, 孙文斌 (2010). 青藏高原东缘西藏沙棘(Hippophae tibetana)果实性状变异. 植物研究, 30, 164-169.] | |
[30] | Wu CZ, Hong W (1999). Multidimensional time series analysis on tree growth. Chinese Journal of Applied Ecology, 10, 395-398. |
[ 吴承祯, 洪伟 (1999). 林木生长的多维时间序列分析. 应用生态学报, 10, 395-398.] | |
[31] | Xie ZJ (1990). Time Series Analysis. Peking University Press, Beijing. 85-90. |
[ 谢衷洁 (1990). 时间序列分析. 北京大学出版社, 北京. 85-90.] | |
[32] | Zhang WH, Guo LJ, Liu GB (2005). Quantity dynamics of Hippophae rhamnoides population in different habitats standing in hilly loess regions. Acta Botanica Boreali- Occidentalia Sinica, 25, 641-647. |
[ 张文辉, 郭连金, 刘国彬 (2005). 黄土丘陵区不同生境沙棘种群数量动态分析. 西北植物学报, 25, 641-647.] | |
[33] | Zhang ZX, Liu P, Cai MZ, Kang HJ, Liao CC, Liu CS, Lou ZH (2008). Population quantitative characteristics and dynamics of rare and endangered Tsuga tchekiangensis in Jiulongshan Nature Reserve of China. Journal of Plant Ecology (Chinese Version), 32, 1146-1156. |
[ 张志祥, 刘鹏, 蔡妙珍, 康华靖, 廖承川, 刘春生, 楼中华 (2008). 九龙山珍稀濒危植物南方铁杉种群数量动态. 植物生态学报, 32, 1146-1156.]
DOI |
|
[34] | Zhao JH, Ye YQ, Sun XD, Lan WJ, Fang Y, Chen B, Guan QW (2022). Population dynamics and spatial distribution of the rare and endangered plant Tsuga chinensis var. tchekiangensis in Wuyishan, Jiangxi Province. Acta Ecologica Sinica, 42, 4032-4040. |
[ 赵家豪, 叶钰倩, 孙晓丹, 兰文军, 方毅, 陈斌, 关庆伟 (2022). 江西武夷山珍稀濒危植物南方铁杉种群动态与空间分布. 生态学报, 42, 4032-4040.] | |
[35] | Zhao Y, Liu JQ, Chen XL, Yang MM, Cao JH, Qi R, Cao XW (2020). Population structure characteristics of Picea purpurea in the upstream of Taohe River. Journal of Plant Ecology (Chinese Version), 44, 266-276. |
[ 赵阳, 刘锦乾, 陈学龙, 杨萌萌, 曹家豪, 齐瑞, 曹秀文 (2020). 洮河上游紫果云杉种群结构特征. 植物生态学报, 44, 266-276.]
DOI |
|
[36] |
Zhu X, He ZB, Du J, Chen LF, Lin PF, Li J (2017). Temporal variability in soil moisture after thinning in semi-arid Picea crassifolia plantations in northwestern China. Forest Ecology and Management, 401, 273-285.
DOI URL |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 管岳, 王妍欣, 褚佳瑶, 冯琳骄, 宋晓萌, 周龙. 新疆野扁桃种群年龄结构及动态分析[J]. 植物生态学报, 2023, 47(7): 967-977. |
[3] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[4] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[5] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[6] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[7] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[8] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[9] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[10] | 张金峰, 葛树森, 梁金花, 李俊清. 长白山阔叶红松林红松种群年龄结构与数量动态特征[J]. 植物生态学报, 2022, 46(6): 667-677. |
[11] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[12] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[13] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[14] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[15] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19