植物生态学报 ›› 2022, Vol. 46 ›› Issue (1): 18-26.DOI: 10.17521/cjpe.2021.0163
所属专题: 全球变化与生态系统; 青藏高原植物生态学:生态系统生态学
收稿日期:
2021-04-28
接受日期:
2021-08-19
出版日期:
2022-01-20
发布日期:
2022-04-13
通讯作者:
彭守璋
作者简介:
*(szp@nwsuaf.edu.cn)基金资助:
Ning LIU1,2, Shou-Zhang PENG3,*(), Yun-Ming CHEN3
Received:
2021-04-28
Accepted:
2021-08-19
Online:
2022-01-20
Published:
2022-04-13
Contact:
Shou-Zhang PENG
Supported by:
摘要:
植被生长与气候存在着不对称的时间关系, 考虑气候因子对植被生长的时间效应可为准确理解植被与气候关系、预测植被对全球气候变化的动态响应提供重要科学依据。该研究基于MODIS归一化植被指数(NDVI)、气候以及植被类型数据, 通过构建气候与植被NDVI之间的4种时间效应方程, 揭示了气候因子对青藏高原植被生长的时间效应以及影响植被生长的主导因子。在4种时间效应中, 同时考虑气候滞后和累加效应对植被生长的解释度最高(47%), 相比于不考虑时间效应, 其解释度可整体提高4%-18%; 同时考虑气候滞后和累加效应时, 青藏高原有超过43%的区域受时间滞后与累加联合效应的影响, 只受时间累加效应或滞后效应影响的区域面积次之, 而不受时间效应影响的区域面积最小; 青藏高原NDVI与降水的偏相关性整体上高于其与气温的偏相关性, 其中降水占主导地位的区域主要分布在青藏高原东北部和西南部, 面积占比约为40.1%, 而气温占主导地位的区域集中在青藏高原中部和东南部, 面积占比约为29.7%。
刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应. 植物生态学报, 2022, 46(1): 18-26. DOI: 10.17521/cjpe.2021.0163
Ning LIU, Shou-Zhang PENG, Yun-Ming CHEN. Temporal effects of climate factors on vegetation growth on the Qingzang Plateau, China. Chinese Journal of Plant Ecology, 2022, 46(1): 18-26. DOI: 10.17521/cjpe.2021.0163
土地覆盖类型 Land cover type | R2_No | R2_Lag | R2_Acc | R2_Lagacc |
---|---|---|---|---|
常绿针叶林 Evergreen needleleaf forests | 0.45 | 0.46 | 0.47 | 0.50 |
常绿阔叶林 Evergreen broadleaf forests | 0.39 | 0.42 | 0.43 | 0.47 |
落叶阔叶林 Deciduous broadleaf forests | 0.41 | 0.41 | 0.43 | 0.46 |
混交林 Mixed forests | 0.45 | 0.45 | 0.45 | 0.49 |
稀疏灌丛 Sparse shrublands | 0.37 | 0.40 | 0.41 | 0.44 |
木本稀树草原 Woody savannas | 0.42 | 0.43 | 0.44 | 0.47 |
稀树草原 Savannas | 0.42 | 0.41 | 0.43 | 0.47 |
草地 Grasslands | 0.40 | 0.41 | 0.44 | 0.47 |
永久性湿地 Permanent wetlands | 0.49 | 0.48 | 0.48 | 0.51 |
耕地 Croplands | 0.40 | 0.42 | 0.43 | 0.47 |
表1 青藏高原不同植被类型在4种时间效应下的平均决定系数
Table 1 Average determination coefficients of different vegetation types under assumptions of four time lag accumulation effects on the Qingzang Plateau
土地覆盖类型 Land cover type | R2_No | R2_Lag | R2_Acc | R2_Lagacc |
---|---|---|---|---|
常绿针叶林 Evergreen needleleaf forests | 0.45 | 0.46 | 0.47 | 0.50 |
常绿阔叶林 Evergreen broadleaf forests | 0.39 | 0.42 | 0.43 | 0.47 |
落叶阔叶林 Deciduous broadleaf forests | 0.41 | 0.41 | 0.43 | 0.46 |
混交林 Mixed forests | 0.45 | 0.45 | 0.45 | 0.49 |
稀疏灌丛 Sparse shrublands | 0.37 | 0.40 | 0.41 | 0.44 |
木本稀树草原 Woody savannas | 0.42 | 0.43 | 0.44 | 0.47 |
稀树草原 Savannas | 0.42 | 0.41 | 0.43 | 0.47 |
草地 Grasslands | 0.40 | 0.41 | 0.44 | 0.47 |
永久性湿地 Permanent wetlands | 0.49 | 0.48 | 0.48 | 0.51 |
耕地 Croplands | 0.40 | 0.42 | 0.43 | 0.47 |
图2 青藏高原不同植被类型在同时考虑时间滞后与累积效应(Lagacc)下多元线性回归模型决定系数的空间格局(A)以及在Lagacc与不考虑时间效应(No)下决定系数的空间差异(B)。
Fig. 2 Spatial pattern of determination coefficients (R2) evaluated by models considering both time lag and accumulation effects (Lagacc)(A), and spatial difference of R2 values between Lagacc model and that without considering the time effect (No)(B) of different vegetation types on the Qingzang Plateau.
土地覆盖类型 Land cover type | 样本数 No. of samples | 气温 Air temperature | 降水 Precipitation | ||
---|---|---|---|---|---|
滞后月份 Lag months | 累加月份 Accumulation months | 滞后月份 Lag months | 累加月份 Accumulation months | ||
常绿针叶林 Evergreen needleleaf forests | 48 030 | 1.54 | 4.60 | 1.63 | 4.69 |
常绿阔叶林 Evergreen broadleaf forests | 29 667 | 1.51 | 4.72 | 1.70 | 5.66 |
落叶阔叶林 Deciduous broadleaf forests | 4 519 | 1.66 | 4.81 | 1.68 | 4.91 |
混交林 Mixed forests | 50 746 | 1.56 | 4.72 | 1.69 | 5.20 |
稀疏灌丛 Sparse shrublands | 7 125 | 1.94 | 4.89 | 1.50 | 4.72 |
木本稀树草原 Woody savannas | 60 536 | 1.54 | 4.55 | 1.65 | 4.66 |
热带草原 Savannas | 10 940 | 1.60 | 4.48 | 1.68 | 5.13 |
草地 Grasslands | 1 433 101 | 1.61 | 4.32 | 1.45 | 5.19 |
永久性湿地 Permanent wetlands | 404 | 1.41 | 4.48 | 1.51 | 4.49 |
耕地 Croplands | 5 755 | 1.47 | 3.91 | 1.19 | 4.76 |
表2 同时考虑时间滞后与累积效应下气温与降水在青藏高原各植被类型上的滞后和累加月份
Table 2 Time lag and accumulation months of air temperature and precipitation on each vegetation type on the Qingzang Plateau evaluated by models considering both time lag and accumulation effects
土地覆盖类型 Land cover type | 样本数 No. of samples | 气温 Air temperature | 降水 Precipitation | ||
---|---|---|---|---|---|
滞后月份 Lag months | 累加月份 Accumulation months | 滞后月份 Lag months | 累加月份 Accumulation months | ||
常绿针叶林 Evergreen needleleaf forests | 48 030 | 1.54 | 4.60 | 1.63 | 4.69 |
常绿阔叶林 Evergreen broadleaf forests | 29 667 | 1.51 | 4.72 | 1.70 | 5.66 |
落叶阔叶林 Deciduous broadleaf forests | 4 519 | 1.66 | 4.81 | 1.68 | 4.91 |
混交林 Mixed forests | 50 746 | 1.56 | 4.72 | 1.69 | 5.20 |
稀疏灌丛 Sparse shrublands | 7 125 | 1.94 | 4.89 | 1.50 | 4.72 |
木本稀树草原 Woody savannas | 60 536 | 1.54 | 4.55 | 1.65 | 4.66 |
热带草原 Savannas | 10 940 | 1.60 | 4.48 | 1.68 | 5.13 |
草地 Grasslands | 1 433 101 | 1.61 | 4.32 | 1.45 | 5.19 |
永久性湿地 Permanent wetlands | 404 | 1.41 | 4.48 | 1.51 | 4.49 |
耕地 Croplands | 5 755 | 1.47 | 3.91 | 1.19 | 4.76 |
土地覆盖类型 Land cover type | 气温 Air temperature | 降水 Precipitation | ||||||
---|---|---|---|---|---|---|---|---|
无时间 效应 No | 滞后 效应 Lag | 累加 效应 Acc | 滞后与累加 的联合效应 Combined | 无时间 效应 No | 滞后 效应 Lag | 累加 效应 Acc | 滞后与累加 的联合效应 Combined | |
常绿针叶林 Evergreen needleleaf forests | 12.55 | 13.25 | 19.88 | 54.32 | 6.86 | 17.42 | 18.42 | 57.30 |
常绿阔叶林 Evergreen broadleaf forests | 8.06 | 17.53 | 21.84 | 52.57 | 7.07 | 14.74 | 16.66 | 61.53 |
落叶阔叶林 Deciduous broadleaf forests | 10.87 | 14.25 | 16.33 | 58.55 | 6.40 | 15.71 | 16.33 | 61.56 |
混交林 Mixed forests | 11.30 | 14.64 | 19.19 | 54.86 | 5.92 | 14.45 | 16.59 | 63.04 |
稀疏灌丛 Sparse shrublands | 7.00 | 18.68 | 14.04 | 60.28 | 6.68 | 14.47 | 22.44 | 56.41 |
木本稀树草原 Woody savannas | 12.51 | 14.04 | 19.89 | 53.56 | 7.06 | 16.62 | 17.20 | 59.12 |
稀树草原 Savannas | 10.55 | 17.88 | 19.18 | 52.39 | 6.72 | 12.49 | 14.95 | 65.84 |
草地 Grasslands | 13.55 | 17.43 | 18.22 | 50.81 | 8.07 | 12.57 | 24.65 | 54.71 |
永久性湿地 Permanent wetlands | 11.88 | 13.86 | 24.75 | 49.50 | 7.67 | 14.11 | 23.51 | 54.70 |
耕地 Croplands | 15.79 | 19.29 | 18.45 | 46.46 | 8.44 | 12.23 | 29.17 | 50.15 |
表3 同时考虑时间滞后与累积效应下气温与降水在青藏高原各植被类型上呈现的时间效应所占面积比例(%)
Table 3 Area proportion (%) of temporal effects of air temperature and precipitation on each vegetation type on the Qingzang Plateau evaluated by models considering both time lag and accumulation effects
土地覆盖类型 Land cover type | 气温 Air temperature | 降水 Precipitation | ||||||
---|---|---|---|---|---|---|---|---|
无时间 效应 No | 滞后 效应 Lag | 累加 效应 Acc | 滞后与累加 的联合效应 Combined | 无时间 效应 No | 滞后 效应 Lag | 累加 效应 Acc | 滞后与累加 的联合效应 Combined | |
常绿针叶林 Evergreen needleleaf forests | 12.55 | 13.25 | 19.88 | 54.32 | 6.86 | 17.42 | 18.42 | 57.30 |
常绿阔叶林 Evergreen broadleaf forests | 8.06 | 17.53 | 21.84 | 52.57 | 7.07 | 14.74 | 16.66 | 61.53 |
落叶阔叶林 Deciduous broadleaf forests | 10.87 | 14.25 | 16.33 | 58.55 | 6.40 | 15.71 | 16.33 | 61.56 |
混交林 Mixed forests | 11.30 | 14.64 | 19.19 | 54.86 | 5.92 | 14.45 | 16.59 | 63.04 |
稀疏灌丛 Sparse shrublands | 7.00 | 18.68 | 14.04 | 60.28 | 6.68 | 14.47 | 22.44 | 56.41 |
木本稀树草原 Woody savannas | 12.51 | 14.04 | 19.89 | 53.56 | 7.06 | 16.62 | 17.20 | 59.12 |
稀树草原 Savannas | 10.55 | 17.88 | 19.18 | 52.39 | 6.72 | 12.49 | 14.95 | 65.84 |
草地 Grasslands | 13.55 | 17.43 | 18.22 | 50.81 | 8.07 | 12.57 | 24.65 | 54.71 |
永久性湿地 Permanent wetlands | 11.88 | 13.86 | 24.75 | 49.50 | 7.67 | 14.11 | 23.51 | 54.70 |
耕地 Croplands | 15.79 | 19.29 | 18.45 | 46.46 | 8.44 | 12.23 | 29.17 | 50.15 |
图3 同时考虑时间滞后与累积效应下气温(A)和降水(B)对青藏高原植被生长的滞后与累加月份。Lag-0、Lag-1、Lag-2、Lag-3分别表示滞后0、1、2、3个月, 0-11表示累加月。
Fig. 3 Time lag and accumulation months of air temperature (A) and precipitation (B) on vegetation growth on the Qingzang Plateau evaluated by models considering both time lag and accumulation effects. Lag-0, Lag-1, Lag-2 and Lag-3 represent the lag of 0, 1, 2 and 3 months, respectively, and 0-11 represent the accumulation months.
图4 同时考虑时间滞后与累积效应下青藏高原归一化植被指数(NDVI)与气温(A)和降水(B)偏相关系数的青藏高原空间分布。
Fig. 4 Spatial distribution of partial correlation coefficients between normalized difference vegetation index (NDVI) and air temperature (A)/precipitation (B) on the Qingzang Plateau evaluated by models considering both time lag and accumulation effects.
图5 同时考虑时间滞后与累积效应下主导青藏高原植被生长的气候因子空间分布。
Fig. 5 Spatial distribution of dominant climate factors on vegetation growth on the Qingzang Plateau evaluated by models considering both time lag and accumulation effects.
[1] |
Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528-532.
DOI PMID |
[2] | Cai J, Xie MS (2011). The relationship between grassland biomass and precipitation, temperature in alpine pastoral area. China Herbivores, 31(1), 44-46. |
[ 才吉, 谢民生 (2011). 高寒牧区草原生物量与降水、温度的关系. 中国草食动物, 31(1), 44-46.] | |
[3] | Chen H, Ju PJ, Zhang J, Wang YY, Zhu QA, Yan L, Kang XM, He YX, Zeng Y, Hao YB, Wang YF (2020). Attribution analyses of changes in alpine grasslands on the Qinghai- Tibetan Plateau. Chinese Science Bulletin, 65, 2406-2418. |
[ 陈槐, 鞠佩君, 张江, 王元云, 朱求安, 颜亮, 康晓明, 何奕忻, 曾源, 郝彦宾, 王艳芬 (2020). 青藏高原高寒草地生态系统变化的归因分析. 科学通报, 65, 2406-2418.] | |
[4] |
Chen T, de Jeu RAM, Liu YY, van der Werf GR, Dolman AJ (2014). Using satellite based soil moisture to quantify the water driven variability in NDVI: a case study over mainland Australia. Remote Sensing of Environment, 140, 330-338.
DOI URL |
[5] |
Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007). Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 22, 357-365.
DOI URL |
[6] | Cui QH, Jiang ZG, Liu JK, Su JP (2007). A review of the cause of rangeland degradation on Qinghai-Tibet Plateau. Pratacultural Science, 24(5), 20-26. |
[ 崔庆虎, 蒋志刚, 刘季科, 苏建平 (2007). 青藏高原草地退化原因述评. 草业科学, 24(5), 20-26.] | |
[7] |
Cui X, Graf HF, Langmann B, Chen W, Huang R (2006). Climate impacts of anthropogenic land use changes on the Tibetan Plateau. Global and Planetary Change, 54, 33-56.
DOI URL |
[8] |
Ding YX, Li Z, Peng SZ (2020). Global analysis of time-lag and -accumulation effects of climate on vegetation growth. International Journal of Applied Earth Observation and Geoinformation, 92, 102179. DOI: 10.1016/j.jag.2020. 102179.
DOI URL |
[9] |
Evans J, Geerken R (2004). Discrimination between climate and human-induced dryland degradation. Journal of Arid Environments, 57, 535-554.
DOI URL |
[10] |
Guo L, Cheng JM, Luedeling E, Koerner SE, He JS, Xu JC, Gang CC, Li W, Luo R, Peng C (2017). Critical climate periods for grassland productivity on China’s Loess Plateau. Agricultural and Forest Meteorology, 233, 101-109.
DOI URL |
[11] |
Guo L, Wang JH, Li MJ, Liu L, Xu JC, Cheng JM, Gang CC, Yu Q, Chen J, Peng CH, Luedeling E (2019). Distribution margins as natural laboratories to infer species’ flowering responses to climate warming and implications for frost risk. Agricultural and Forest Meteorology, 268, 299-307.
DOI URL |
[12] |
Hua T, Wang XM, Zhang CX, Lang LL, Li H (2017). Responses of vegetation activity to drought in Northern China. Land Degradation & Development, 28, 1913-1921.
DOI URL |
[13] |
Ivits E, Horion S, Erhard M, Fensholt R (2016). Assessing European ecosystem stability to drought in the vegetation growing season. Global Ecology and Biogeography, 25, 1131-1143.
DOI URL |
[14] |
Li PL, Zhu D, Wang YL, Liu D (2020). Elevation dependence of drought legacy effects on vegetation greenness over the Tibetan Plateau. Agricultural and Forest Meteorology, 295, 108190. DOI: 10.1016/j.agrformet.2020.108190.
DOI URL |
[15] | Li YC, Li Y, Zhu GR (2018). A new definition method of climate- sensitive region and its prediction. Acta Geographica Sinica, 73, 1283-1295. |
[ 李依婵, 李育, 朱耿睿 (2018). 一种新的气候变化敏感区的定义方法与预估. 地理学报, 73, 1283-1295.]
DOI |
|
[16] | Liu B, Sun YL, Wang YC, Zhang Y (2013). Monitoring and assessment of vegetation variation in North China based on SPOT/NDVI. Journal of Arid Land Resources and Environment, 27(9), 98-103. |
[ 刘斌, 孙艳玲, 王永财, 张悦 (2013). 基于SPOT/NDVI华北地区植被变化动态监测与评价. 干旱区资源与环境, 27(9), 98-103.] | |
[17] |
Liu XD, Chen BD (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729-1742.
DOI URL |
[18] | Mishra NB, Mainali KP (2017). Greening and browning of the Himalaya: spatial patterns and the role of climatic change and human drivers. Science of the Total Environment, 587- 588, 326-339. |
[23] |
Shi CG, Sun G, Zhang HX, Xiao BX, Ze B, Zhang NN, Wu N (2014). Effects of warming on chlorophyll degradation and carbohydrate accumulation of alpine herbaceous species during plant senescence on the Tibetan Plateau. PLOS ONE, 9, e107874. DOI: 10.1371/journal.pone.0107874.
DOI URL |
[24] |
Stow D, Daeschner S, Hope A, Douglas D, Petersen A, Myneni R, Zhou L, Oechel W (2003). Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. International Journal of Remote Sensing, 24, 1111-1117.
DOI URL |
[25] | Sun YL, Guo P (2012). Variation of vegetation coverage and its relationship with climate change in north China from 1982 to 2006. Ecology and Environmental Sciences, 21, 7-12. |
[ 孙艳玲, 郭鹏 (2012). 1982-2006年华北植被覆盖变化及其与气候变化的关系. 生态环境学报, 21, 7-12.] | |
[26] |
Sun YL, Shan M, Pei XR, Zhang XK, Yang YL (2020). Assessment of the impacts of climate change and human activities on vegetation cover change in the Haihe River basin, China. Physics and Chemistry of the Earth, 115, 102834. DOI: 10.1016/j.pce.2019.102834.
DOI |
[27] |
Vicente-Serrano SM, Beguería S, López-Moreno JI (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696-1718.
DOI URL |
[28] |
Wang Q, Zhang QP, Zhou W (2012). Grassland coverage changes and analysis of the driving forces in Maqu County. Physics Procedia, 33, 1292-1297.
DOI URL |
[29] | Wang QX, Lv SH, Bao Y, Ma D, Li RQ (2014). Characteristics of vegetation change and its relationship with climate factors in different time-scales on Qinghai-Xizang Plateau. Plateau Meteorology, 33, 301-312. |
[ 王青霞, 吕世华, 鲍艳, 马迪, 李瑞青 (2014). 青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析. 高原气象, 33, 301-312.]
DOI |
|
[30] | Wang ZP, Zhang XZ, He YT, Li M, Shi PL, Zu JX, Niu B (2018). Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015. Chinese Journal of Applied Ecology, 29, 75-83. |
[ 王志鹏, 张宪洲, 何永涛, 李猛, 石培礼, 俎佳星, 牛犇 (2018). 2000-2015年青藏高原草地归一化植被指数对降水变化的响应. 应用生态学报, 29, 75-83.] | |
[31] |
Wen YY, Liu XP, Pei FS, Li X, Du GM (2018). Non-uniform time-lag effects of terrestrial vegetation responses to asymmetric warming. Agricultural and Forest Meteorology, 252, 130-143.
DOI URL |
[36] |
Zhang HC, Liu SG, Regnier P, Yuan WP (2018). New insights on plant phenological response to temperature revealed from long-term widespread observations in China. Global Change Biology, 24, 2066-2078.
DOI URL |
[37] | Zhang YL, Li BY, Zheng D (2002). A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 21(1), 1-8. |
[ 张镱锂, 李炳元, 郑度 (2002). 论青藏高原范围与面积. 地理研究, 21(1), 1-8.] | |
[38] | Zhang YL, Liu LS, Wang ZF, Bai WQ, Ding MJ, Wang XH, Yan JZ, Xu EQ, Wu X, Zhang BH, Liu QH, Zhao ZL, Liu FG, Zheng D (2019). Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chinese Science Bulletin, 64, 2865-2875. |
[ 张镱锂, 刘林山, 王兆锋, 摆万奇, 丁明军, 王秀红, 阎建忠, 许尔琪, 吴雪, 张炳华, 刘琼欢, 赵志龙, 刘峰贵, 郑度 (2019). 青藏高原土地利用与覆被变化的时空特征. 科学通报, 64, 2865-2875.] | |
[39] | Zhao QQ, Zhang JP, Zhao TB, Li JH (2021). Vegetation changes and its response to climate change in China since 2000. Plateau Meteorology, 40, 292-301. |
[ 赵倩倩, 张京朋, 赵天保, 李建华 (2021). 2000年以来中国区域植被变化及其对气候变化的响应. 高原气象, 40, 292-301.]
DOI |
|
[40] | Zheng D (1996). Research on the natural territory system of the Qinghai-Tibet Plateau. Science in China (Series D), 26, 336-341. |
[35] | [ 张戈丽, 徐兴良, 周才平, 张宏斌, 欧阳华 (2011). 近30年来呼伦贝尔地区草地植被变化对气候变化的响应. 地理学报, 66, 47-58.] |
Zhang GL, Xu XL, Zhou CP, Zhang HB, Ouyang H (2011). Responses of vegetation changes to climatic variations in Hulun Buir Grassland in past 30 years. Acta Geographica Sinica, 66, 47-58. | |
[34] |
Yang W, Yang L, Merchant JW (1997). An assessment of AVHRR/NDVI-ecoclimatological relations in Nebraska, USA. International Journal of Remote Sensing, 18, 2161-2180.
DOI URL |
[33] | [ 薛宇轩, 卢宏玮 (2020). 青藏高原植被覆盖变化及气候驱动因子分析. 湖北农业科学, 59(15), 44-48.] |
Xue YX, Lu HW (2020). Analysis of vegetation cover change and climate driving factors on the Qinghai-Tibet Plateau. Hubei Agricultural Sciences, 59(15), 44-48. | |
[32] |
Wu DH, Zhao X, Liang SL, Zhou T, Huang KC, Tang BJ, Zhao WQ (2015). Time-lag effects of global vegetation responses to climate change. Global Change Biology, 21, 3520-3531.
DOI URL |
[22] |
Schwalm CR, Anderegg WRL, Michalak AM, Fisher JB, Biondi F, Koch G, Litvak M, Ogle K, Shaw JD, Wolf A, Huntzinger DN, Schaefer K, Cook R, Wei YX, Fang YY, Hayes D, Huang MY, Jain A, Tian HQ (2017). Global patterns of drought recovery. Nature, 548, 202-205.
DOI URL |
[21] |
Rees M, Condit R, Crawley M, Pacala S, Tilman D (2001). Long-term studies of vegetation dynamics. Science, 293, 650-655.
DOI PMID |
[20] |
Peng SZ, Ding YX, Liu WZ, Li Z (2019b). 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 11, 1931-1946.
DOI URL |
[19] |
Peng J, Wu CY, Zhang XY, Wang XY, Gonsamo A (2019a). Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Global Change Biology, 25, 2174-2188.
DOI URL |
[40] | [ 郑度 (1996). 青藏高原自然地域系统研究. 中国科学(D辑), 26, 336-341.] |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[3] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[4] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[5] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[6] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[7] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[8] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[9] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[10] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[11] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[12] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[13] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[14] | 张央, 安明态, 武建勇, 刘锋, 汪伟. 中国兜兰属宽瓣亚属植物地理分布格局及其主导气候因子[J]. 植物生态学报, 2022, 46(1): 40-50. |
[15] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19