植物生态学报 ›› 2022, Vol. 46 ›› Issue (1): 40-50.DOI: 10.17521/cjpe.2021.0241
收稿日期:
2021-06-29
接受日期:
2021-09-07
出版日期:
2022-01-20
发布日期:
2022-04-13
通讯作者:
安明态
作者简介:
*(gdanmingtai@126.com)基金资助:
Yang ZHANG1, Ming-Tai AN1,*(), Jian-Yong WU2, Feng LIU1, Wei WANG1
Received:
2021-06-29
Accepted:
2021-09-07
Online:
2022-01-20
Published:
2022-04-13
Contact:
Ming-Tai AN
Supported by:
摘要:
为明确兜兰属宽瓣亚属(Paphiopedilum Subgen. Brachypetalum)植物在中国的自然地理分布格局及其主导气候因子,该研究以7种宽瓣亚属植物为研究对象并利用ArcGIS技术提取其在中国194个地理分布点的气候数据, 采用描述性统计分析宽瓣亚属植物在中国分布区的气候特点, 采用逐步回归拟合各气候因子与其经纬度分布的线性关系, 最后通过冗余分析(RDA)和蒙特卡洛(Monte-Carlo)检验量化各气候因子对宽瓣亚属植物地理分布的贡献率。结果表明: (1)宽瓣亚属植物在中国主要分布于滇东南、黔西南、黔南、黔东北、滇西北、桂北与黔南交界处以及桂西北至桂西南地区。(2)该亚属植物在中国分布区的昼夜温差月均值、年平均气温变化范围、最暖季度平均气温、最冷季度平均气温4项热量因子的平均值分别为8.13、23.70、23.62和9.23 ℃, 降水量变异系数、最湿季度降水量、最干季度降水量、干旱指数4项水分因子平均值分别为75.66%、673.10 mm、73.97 mm和26.12%, 整体上具有湿热的气候特点; 各物种间, 狭域分布的物种与广布种间的气候因子存在显著差异。(3)逐步回归分析表明, 各拟合方程均达到极显著水平, 昼夜温差月均值、最暖季度平均气温、最冷季度平均气温、降水量变异系数、最干季度降水量、干旱指数是影响中国宽瓣亚属植物沿经度分布的主要因子; 最冷季度平均气温、最湿季度降水量、年平均气温变化范围、最干季度降水量、降水量变异系数是影响中国宽瓣亚属植物沿纬度分布的主要因子。(4) RDA结果显示, 气候因子在第1轴的解释率为73.32%, 在第2轴的解释率为21.29%, 累计解释率为94.61%, 各气候因子的解释率大小排序为: 昼夜温差月均值(57.8%) >最暖季度平均气温(41.5%) >年平均气温变化范围(38.3%) >最干季度降水量(23.1%) >最冷季度平均气温(16.9%) >降水量变异系数(13.7%) =最湿季度降水量(13.7%) >干旱指数(3.0%)。因此, 昼夜温差月均值、最暖季度平均气温、年平均气温变化范围3个气候因子是影响中国宽瓣亚属植物分布的主导气候因子。
张央, 安明态, 武建勇, 刘锋, 汪伟. 中国兜兰属宽瓣亚属植物地理分布格局及其主导气候因子. 植物生态学报, 2022, 46(1): 40-50. DOI: 10.17521/cjpe.2021.0241
Yang ZHANG, Ming-Tai AN, Jian-Yong WU, Feng LIU, Wei WANG. Geographical distribution pattern and dominant climatic factors of the Paphiopedilum Subgen. Brachypetalum in China. Chinese Journal of Plant Ecology, 2022, 46(1): 40-50. DOI: 10.17521/cjpe.2021.0241
气候因子 Climatic factor | 气候因子 Climatic factor |
---|---|
bio1 年平均气温 Annual mean temperature | bio12 年降水量 Annual precipitation |
bio2 昼夜温差月均值 Monthly mean diurnal temperature range | bio13 最湿月降水量 Precipitation of the wettest month |
bio3 等温性 Isothermality | bio14 最干月降水量 Precipitation of the driest month |
bio4 温度季节性变化标准差 Standard deviation of temperature seasonal change | bio15 降水量变异系数 Precipitation variation coefficient |
bio5 最暖月最高气温 Maximum temperature of the warmest month | bio16 最湿季度降水量 Precipitation of the wettest quarter |
bio6 最冷月最低气温 Minimum temperature of the coldest month | bio17 最干季度降水量 Precipitation of the driest quarter |
bio7 年平均气温变化范围 Range of annual temperature | bio18 最暖季度降水量 Precipitation of the warmest quarter |
bio8 最湿季度平均气温 Mean temperature of the wettest quarter | bio19 最冷季度降水量 Precipitation of the coldest quarter |
bio9 最干季度平均气温 Mean temperature of the driest quarter | AET 实际蒸散量 Actual evapotranspiration |
bio10 最暖季度平均气温 Mean temperature of the warmest quarter | PET 潜在蒸散量 Potential evapotranspiration |
bio11 最冷季度平均气温 Mean temperature of the coldest quarter |
表1 中国兜兰属宽瓣亚属植物分布区气候因子一览表
Table 1 List of climatic factors in the distribution regions of Paphiopedilum Subgen. Brachypetalum in China
气候因子 Climatic factor | 气候因子 Climatic factor |
---|---|
bio1 年平均气温 Annual mean temperature | bio12 年降水量 Annual precipitation |
bio2 昼夜温差月均值 Monthly mean diurnal temperature range | bio13 最湿月降水量 Precipitation of the wettest month |
bio3 等温性 Isothermality | bio14 最干月降水量 Precipitation of the driest month |
bio4 温度季节性变化标准差 Standard deviation of temperature seasonal change | bio15 降水量变异系数 Precipitation variation coefficient |
bio5 最暖月最高气温 Maximum temperature of the warmest month | bio16 最湿季度降水量 Precipitation of the wettest quarter |
bio6 最冷月最低气温 Minimum temperature of the coldest month | bio17 最干季度降水量 Precipitation of the driest quarter |
bio7 年平均气温变化范围 Range of annual temperature | bio18 最暖季度降水量 Precipitation of the warmest quarter |
bio8 最湿季度平均气温 Mean temperature of the wettest quarter | bio19 最冷季度降水量 Precipitation of the coldest quarter |
bio9 最干季度平均气温 Mean temperature of the driest quarter | AET 实际蒸散量 Actual evapotranspiration |
bio10 最暖季度平均气温 Mean temperature of the warmest quarter | PET 潜在蒸散量 Potential evapotranspiration |
bio11 最冷季度平均气温 Mean temperature of the coldest quarter |
图1 气候因子间的自相关性检验。气候因子含义见表1。 AI, 干旱指数; MI, 湿润指数; WD, 水分亏缺。
Fig. 1 Auto-correlation test of climate factors. See Table 1 for meaning of climatic factors. AI, aridity index; MI, humid index; WD, water deficit.
气候因子 Climatic factor | 平均值 Mean | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 95%置信区间 95% confidence interval | 最小值 Minimum | 最大值 Maximum | |
---|---|---|---|---|---|---|---|
下限 Lowerbound | 上限 Upperbound | ||||||
bio2 | 8.13 | 0.92 | 11.35 | 8.00 | 8.26 | 6.89 | 12.81 |
bio7 | 23.70 | 2.23 | 9.43 | 23.38 | 24.01 | 19.13 | 28.81 |
bio10 | 23.62 | 2.33 | 9.88 | 23.29 | 23.95 | 12.67 | 28.25 |
bio11 | 9.23 | 2.46 | 26.69 | 8.88 | 9.58 | 1.27 | 15.78 |
bio15 | 75.66 | 8.38 | 11.07 | 74.48 | 76.85 | 58.24 | 95.15 |
bio16 | 673.10 | 95.06 | 14.12 | 659.64 | 686.57 | 464.63 | 1 008.09 |
bio17 | 73.97 | 19.94 | 26.95 | 71.15 | 76.80 | 37.35 | 166.35 |
AI | 26.12 | 2.39 | 9.16 | 25.78 | 26.46 | 18.40 | 36.29 |
表2 中国兜兰属宽瓣亚属植物分布区气候因子描述性统计
Table 2 Descriptive statistics of climatic factors in the distribution regions of Paphiopedilum Subgen. Brachypetalum in China
气候因子 Climatic factor | 平均值 Mean | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 95%置信区间 95% confidence interval | 最小值 Minimum | 最大值 Maximum | |
---|---|---|---|---|---|---|---|
下限 Lowerbound | 上限 Upperbound | ||||||
bio2 | 8.13 | 0.92 | 11.35 | 8.00 | 8.26 | 6.89 | 12.81 |
bio7 | 23.70 | 2.23 | 9.43 | 23.38 | 24.01 | 19.13 | 28.81 |
bio10 | 23.62 | 2.33 | 9.88 | 23.29 | 23.95 | 12.67 | 28.25 |
bio11 | 9.23 | 2.46 | 26.69 | 8.88 | 9.58 | 1.27 | 15.78 |
bio15 | 75.66 | 8.38 | 11.07 | 74.48 | 76.85 | 58.24 | 95.15 |
bio16 | 673.10 | 95.06 | 14.12 | 659.64 | 686.57 | 464.63 | 1 008.09 |
bio17 | 73.97 | 19.94 | 26.95 | 71.15 | 76.80 | 37.35 | 166.35 |
AI | 26.12 | 2.39 | 9.16 | 25.78 | 26.46 | 18.40 | 36.29 |
物种 Species | 分布区 Distribution | 海拔范围 Altitude range (m) | 分布点个数 Number of distribution points |
---|---|---|---|
硬叶兜兰 Paphiopedilum micranthum | 黔西南至黔南、黔中、黔东北、桂北、滇东南 Southwestern Guizhou to southern Guizhou, central Guizhou, northeastern Guizhou, northern Guangxi and southeastern Yunnan | 333-1 648 | 77 |
同色兜兰 P. concolor | 广西西南地区一带 Southwestern Guangxi | 155-1 286 | 23 |
麻栗坡兜兰 P. malipoense | 滇东南、黔南、黔西南、桂北 Southeastern Yunnan, southern Guizhou, Southwestern Guizhou and northern Guangxi | 361-1 267 | 20 |
巨瓣兜兰 P. bellatulum | 北盘江流域、黔西南 Beipanjiang River Basin, southwestern Guizhou | 560-1 442 | 39 |
白花兜兰 P. emersonii | 贵州黔南与广西北部地区 Southern Guizhou and northern Guangxi | 259-811 | 14 |
文山兜兰 P. wenshanense | 滇东南 Southeastern Yunnan | 780-1 641 | 8 |
杏黄兜兰 P. armeniacum | 云南怒江流域 Nujiang River Basin in Yunnan | 1 696-2 024 | 13 |
表3 中国兜兰属宽瓣亚属植物在我国的自然地理分布统计表
Table 3 Statistical table of natural geographical distribution of Paphiopedilum Subgen. Brachypetalum in China
物种 Species | 分布区 Distribution | 海拔范围 Altitude range (m) | 分布点个数 Number of distribution points |
---|---|---|---|
硬叶兜兰 Paphiopedilum micranthum | 黔西南至黔南、黔中、黔东北、桂北、滇东南 Southwestern Guizhou to southern Guizhou, central Guizhou, northeastern Guizhou, northern Guangxi and southeastern Yunnan | 333-1 648 | 77 |
同色兜兰 P. concolor | 广西西南地区一带 Southwestern Guangxi | 155-1 286 | 23 |
麻栗坡兜兰 P. malipoense | 滇东南、黔南、黔西南、桂北 Southeastern Yunnan, southern Guizhou, Southwestern Guizhou and northern Guangxi | 361-1 267 | 20 |
巨瓣兜兰 P. bellatulum | 北盘江流域、黔西南 Beipanjiang River Basin, southwestern Guizhou | 560-1 442 | 39 |
白花兜兰 P. emersonii | 贵州黔南与广西北部地区 Southern Guizhou and northern Guangxi | 259-811 | 14 |
文山兜兰 P. wenshanense | 滇东南 Southeastern Yunnan | 780-1 641 | 8 |
杏黄兜兰 P. armeniacum | 云南怒江流域 Nujiang River Basin in Yunnan | 1 696-2 024 | 13 |
物种 Species | bio2 | bio7 | bio 10 | bio 11 | bio 15 | bio 16 | bio 17 | AI |
---|---|---|---|---|---|---|---|---|
白花兜兰 Paphiopedilum emersonii | 7.55 ± 0.24a | 25.51 ± 1.53e | 25.50 ± 1.13de | 9.03 ± 1.99b | 69.07 ± 3.97b | 678.94 ± 66.59b | 103.15 ± 11.03d | 27.44 ± 1.39d |
巨瓣兜兰 P. bellatulum | 8.39 ± 0.81b | 23.32 ± 0.74cd | 23.26 ± 1.08c | 9.34 ± 1.05b | 79.86 ± 1.93c | 664.68 ± 29.74b | 62.76 ± 4.37b | 24.97 ± 0.71b |
麻栗坡兜兰 P. malipoense | 7.81 ± 0.35a | 24.64 ± 2.10e | 24.90 ± 1.06d | 9.39 ± 1.57b | 74.90 ± 8.71c | 694.30 ± 90.58bc | 81.42 ± 21.34c | 26.74 ± 1.77cd |
同色兜兰 P. concolor | 7.85 ± 1.14a | 21.36 ± 1.00ab | 26.31 ± 2.30e | 13.83 ± 1.64d | 78.80 ± 5.40c | 742.76 ± 78.63c | 81.92 ± 20.49c | 26.00 ± 2.85bcd |
文山兜兰 P. wenshanense | 9.76 ± 0.33c | 20.77 ± 0.48a | 21.71 ± 1.35b | 11.33 ± 1.78c | 86.51 ± 1.76d | 650.71 ± 40.76b | 46.37 ± 4.16a | 22.63 ± 2.03a |
杏黄兜兰 P. armeniacum | 10.17 ± 0.34d | 22.37 ± 0.28bc | 19.37 ± 0.60a | 7.71 ± 1.97a | 63.18 ± 0.78a | 564.99 ± 44.68a | 71.92 ± 2.66bc | 25.80 ± 1.58bc |
硬叶兜兰 P. micranthum | 7.76 ± 0.34a | 24.53 ± 2.47de | 23.31 ± 1.68c | 7.84 ± 1.62a | 74.97 ± 9.28c | 670.58 ± 117.27b | 73.26 ± 20.11bc | 26.75 ± 2.69cd |
表4 中国兜兰属宽瓣亚属各物种间气候因子方差分析(平均值±标准差)
Table 4 Variance analysis of climatic factors among species of Paphiopedilum Subgen. Brachypetalum in China (mean ± SD)
物种 Species | bio2 | bio7 | bio 10 | bio 11 | bio 15 | bio 16 | bio 17 | AI |
---|---|---|---|---|---|---|---|---|
白花兜兰 Paphiopedilum emersonii | 7.55 ± 0.24a | 25.51 ± 1.53e | 25.50 ± 1.13de | 9.03 ± 1.99b | 69.07 ± 3.97b | 678.94 ± 66.59b | 103.15 ± 11.03d | 27.44 ± 1.39d |
巨瓣兜兰 P. bellatulum | 8.39 ± 0.81b | 23.32 ± 0.74cd | 23.26 ± 1.08c | 9.34 ± 1.05b | 79.86 ± 1.93c | 664.68 ± 29.74b | 62.76 ± 4.37b | 24.97 ± 0.71b |
麻栗坡兜兰 P. malipoense | 7.81 ± 0.35a | 24.64 ± 2.10e | 24.90 ± 1.06d | 9.39 ± 1.57b | 74.90 ± 8.71c | 694.30 ± 90.58bc | 81.42 ± 21.34c | 26.74 ± 1.77cd |
同色兜兰 P. concolor | 7.85 ± 1.14a | 21.36 ± 1.00ab | 26.31 ± 2.30e | 13.83 ± 1.64d | 78.80 ± 5.40c | 742.76 ± 78.63c | 81.92 ± 20.49c | 26.00 ± 2.85bcd |
文山兜兰 P. wenshanense | 9.76 ± 0.33c | 20.77 ± 0.48a | 21.71 ± 1.35b | 11.33 ± 1.78c | 86.51 ± 1.76d | 650.71 ± 40.76b | 46.37 ± 4.16a | 22.63 ± 2.03a |
杏黄兜兰 P. armeniacum | 10.17 ± 0.34d | 22.37 ± 0.28bc | 19.37 ± 0.60a | 7.71 ± 1.97a | 63.18 ± 0.78a | 564.99 ± 44.68a | 71.92 ± 2.66bc | 25.80 ± 1.58bc |
硬叶兜兰 P. micranthum | 7.76 ± 0.34a | 24.53 ± 2.47de | 23.31 ± 1.68c | 7.84 ± 1.62a | 74.97 ± 9.28c | 670.58 ± 117.27b | 73.26 ± 20.11bc | 26.75 ± 2.69cd |
地理分布格局 Geographical distribution pattern | 逐步线性回归模型 Stepwise linear regression model | R2 | F | p |
---|---|---|---|---|
经度 Longitude | X = -2.25bio2 + 124.02 | 0.758 | 600.285 | <0.001 |
X = -1.74bio2 + 0.35bio10 + 111.54 | 0.838 | 94.726 | <0.001 | |
X = -1.21bio2 + 0.65bio10 - 0.32bio11 + 103.26 | 0.891 | 91.150 | <0.001 | |
X = -0.82bio2 + 0.95bio10 - 0.63bio11 + 0.09bio15 + 89.06 | 0.935 | 130.311 | <0.001 | |
X = -0.69bio2 + 0.9bio10 - 0.68bio11 + 0.13bio15 + 0.03bio17 + 84.75 | 0.951 | 62.588 | <0.001 | |
X = -0.77bio2 + 0.79bio10 - 0.69bio11 + 0.17bio15 + 0.05bio17 - 0.15AI + 87.53 | 0.960 | 38.160 | <0.001 | |
纬度 Latitude | Y = -0.451bio11 + 29.15 | 0.692 | 431.026 | <0.001 |
Y = -0.33bio11 - 0.01bio16 + 32.03 | 0.821 | 137.420 | <0.001 | |
Y = -0.27bio11 - 0.01bio16 + 0.16bio7 + 26.82 | 0.860 | 53.763 | <0.001 | |
Y = -0.24bio11 - 0.004bio16 + 0.23bio7 - 0.01bio17 + 25.05 | 0.870 | 13.733 | <0.001 | |
Y = -0.19bio11 + 0.001bio16 + 0.25bio7 - 0.03bio17 - 0.09bio15 + 29.06 | 0.899 | 54.910 | <0.001 |
表5 中国兜兰属宽瓣亚属植物分布与气候因子逐步线性回归分析
Table 5 Stepwise linear regression analysis of distribution and climatic factors of Paphiopedilum Subgen. Brachypetalum in China
地理分布格局 Geographical distribution pattern | 逐步线性回归模型 Stepwise linear regression model | R2 | F | p |
---|---|---|---|---|
经度 Longitude | X = -2.25bio2 + 124.02 | 0.758 | 600.285 | <0.001 |
X = -1.74bio2 + 0.35bio10 + 111.54 | 0.838 | 94.726 | <0.001 | |
X = -1.21bio2 + 0.65bio10 - 0.32bio11 + 103.26 | 0.891 | 91.150 | <0.001 | |
X = -0.82bio2 + 0.95bio10 - 0.63bio11 + 0.09bio15 + 89.06 | 0.935 | 130.311 | <0.001 | |
X = -0.69bio2 + 0.9bio10 - 0.68bio11 + 0.13bio15 + 0.03bio17 + 84.75 | 0.951 | 62.588 | <0.001 | |
X = -0.77bio2 + 0.79bio10 - 0.69bio11 + 0.17bio15 + 0.05bio17 - 0.15AI + 87.53 | 0.960 | 38.160 | <0.001 | |
纬度 Latitude | Y = -0.451bio11 + 29.15 | 0.692 | 431.026 | <0.001 |
Y = -0.33bio11 - 0.01bio16 + 32.03 | 0.821 | 137.420 | <0.001 | |
Y = -0.27bio11 - 0.01bio16 + 0.16bio7 + 26.82 | 0.860 | 53.763 | <0.001 | |
Y = -0.24bio11 - 0.004bio16 + 0.23bio7 - 0.01bio17 + 25.05 | 0.870 | 13.733 | <0.001 | |
Y = -0.19bio11 + 0.001bio16 + 0.25bio7 - 0.03bio17 - 0.09bio15 + 29.06 | 0.899 | 54.910 | <0.001 |
图2 中国兜兰属宽瓣亚属植物地理分布与气候因子冗余分析(RDA)排序。X, 经度; Y, 纬度。气候因子含义见表1。 AI, 干旱指数。实心箭头表示因变量经纬度, 空心箭头表示自变量气候因子, 夹角大小表示相关性(锐角表示正相关, 钝角表示负相关, 直角表示不相关)。
Fig. 2 Redundancy analysis (RDA) ordination of geographical distribution and climatic factors of Paphiopedilum Subgen. Brachypetalum in China. X, longitude; Y, latitude. See Table 1 for meaning of climatic factors. AI, aridity index. The solid arrow indicates the longitude and latitude of the dependent variable, the hollow arrow indicates the climate factor of the independent variable, and the included angle indicates the correlation (the acute angle indicates the positive correlation, the obtuse angle indicates the negative correlation, and the right angle indicates the uncorrelation).
气候因子 Climatic factor | 重要性 Importance | 解释率 Interpretation ratio (%) | F | p |
---|---|---|---|---|
bio2 | 1 | 57.8 | 263.0 | 0.002 |
bio10 | 2 | 41.5 | 136.0 | 0.002 |
bio7 | 3 | 38.3 | 119.0 | 0.002 |
bio17 | 4 | 23.1 | 57.6 | 0.002 |
bio11 | 5 | 16.9 | 39.0 | 0.002 |
bio15 | 6 | 13.7 | 30.6 | 0.002 |
bio16 | 7 | 13.7 | 30.4 | 0.002 |
AI | 8 | 3.0 | 5.9 | 0.01 |
表6 中国兜兰属宽瓣亚属植物分布与气候因子的蒙特卡洛(Monte- Carlo)检验结果
Table 6 Monte-Carlo test results of geographical distribution and climatic factors of Paphiopedilum Subgen. Brachypetalum in China.
气候因子 Climatic factor | 重要性 Importance | 解释率 Interpretation ratio (%) | F | p |
---|---|---|---|---|
bio2 | 1 | 57.8 | 263.0 | 0.002 |
bio10 | 2 | 41.5 | 136.0 | 0.002 |
bio7 | 3 | 38.3 | 119.0 | 0.002 |
bio17 | 4 | 23.1 | 57.6 | 0.002 |
bio11 | 5 | 16.9 | 39.0 | 0.002 |
bio15 | 6 | 13.7 | 30.6 | 0.002 |
bio16 | 7 | 13.7 | 30.4 | 0.002 |
AI | 8 | 3.0 | 5.9 | 0.01 |
[1] | Barthlott W, Lauer W, Placke A (1996). Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde, 50, 317-327. |
[2] |
Dinç M, Duran A, Pinar M, Öztürk M (2008). Anatomy, palynology and nutlet micromorphology of Turkish endemic Teucrium sandrasicum (Lamiaceae). Biologia, 63, 637-641.
DOI URL |
[3] | Dong YL (2006). Bio-ecological Characters and Ex-situ Convervation of Paphiopedilum armeniacum S.C. Chen et F.Y. Liu. Master degree dissertation, Chinese Academy of Forestry, Beijing. |
[ 董艳莉 (2006). 杏黄兜兰的生物生态学特性及迁地栽培试验研究. 硕士学位论文, 中国林业科学研究院, 北京.] | |
[4] |
Fang JY, Yoda K (1991). Climate and vegetation in China V. Effect of climatic factors on the upper limit of distribution of evergreen broadleaf forest. Ecological Research, 6, 113-125.
DOI URL |
[5] | Gan CY, Wei MQ, Shen LJ, Yang L, Su DH (2019). A brief discussion on the research status of the genus Paphiopedilum in China. Anhui Agricultural Science Bulletin, 25(11), 52-53. |
[ 甘春雁, 韦妙琴, 沈丽娟, 杨蕾, 苏大宏 (2019). 浅析我国兜兰属植物的研究现状. 安徽农学通报, 25(11), 52-53.] | |
[6] |
Cao T, Guo SL, Gao Q (2000). Ordination analysis on relationship between bryophyte distribution and climatic factors. Chinese Journal of Applied Ecology, 11, 680-686.
PMID |
[ 曹同, 郭水良, 高谦 (2000). 应用排序分析藓类植物分类群分布与气候因素的关系. 应用生态学报, 11, 680-686.]
PMID |
|
[7] |
Guo YY, Luo YB, Liu ZJ, Wang XQ (2012). Evolution and biogeography of the slipper orchids: eocene vicariance of the conduplicate genera in the old and new world tropics. PLOS ONE, 7, e38788. DOI: 10.1371/journal.pone.0038788.
DOI URL |
[8] |
Guo YY, Luo YB, Liu ZJ, Wang XQ (2015). Reticulate evolution and sea-level fluctuations together drove species diversification of slipper orchids (Paphiopedilum) in South-East Asia. Molecular Ecology, 24, 2838-2855.
DOI URL |
[9] | Li DQ, Hu W, Han CX, Chen LD, Zhang ZY, Zhong AW, Wei ZX, Peng YS (2020). Prediction of potential suitable distribution of Fokienia hodginsii (Dunn) Henry et Thomas based on MaxEnt model. Plant Science Journal, 38, 743-750. |
[ 李单琦, 胡菀, 韩彩霞, 陈陆丹, 张志勇, 钟爱文, 魏宗贤, 彭焱松 (2020). 基于MaxEnt模型的濒危观赏植物福建柏潜在适生区预测. 植物科学学报, 38, 743-750.] | |
[10] | Li XM, Zuo YL, Xue ZK, Zhang LL, Zhao LL, He XL (2018). Characteristics of microbial community structure in rhizosphere soil of different desert plants. Acta Ecologica Sinica, 38, 2855-2863. |
[ 李欣玫, 左易灵, 薛子可, 张琳琳, 赵丽莉, 贺学礼 (2018). 不同荒漠植物根际土壤微生物群落结构特征. 生态学报, 38, 2855-2863.] | |
[11] |
Liang DD, Peng J, Gao GL, Hong X, Zhou SB, Chu J, Wang Z (2020). Spatial distribution pattern and interspecific correlation analysis of main species of Rosaceae in a deciduous broad-leaved forest in Yaoluoping. Biodiversity Science, 28, 1008-1017.
DOI URL |
[ 梁栋栋, 彭杰, 高改利, 洪欣, 周守标, 储俊, 王智 (2020). 鹞落坪落叶阔叶林蔷薇科主要树种的空间分布格局及种间关联性. 生物多样性, 28, 1008-1017.] | |
[12] |
Lim SD, Cho HY, Park YC, Ham DJ, Lee JK, Jang CS (2013). The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. Journal of Experimental Botany, 64, 2899-2914.
DOI URL |
[13] |
Liu Q, Wang XL, Finnegan PM, Gao JY (2020). Reproductive ecology of Paphiopedilum spicerianum: implications for conservation of a critically endangered orchid in China. Global Ecology and Conservation, 23, e01063. DOI: 10.1016/j.gecco.2020.e01063.
DOI URL |
[14] | Liu WS, You JL, Zeng WB, Qi DH (2018). Prediction of the geographical distribution of Carex moorcroftii under global climate change based on MaxEnt model. Chinese Journal of Grassland, 40, 43-49. |
[ 刘文胜, 游简舲, 曾文斌, 齐丹卉 (2018). 气候变化下青藏苔草地理分布的预测. 中国草地学报, 40, 43-49.] | |
[15] | Liu XZ, Han WB, Gao RD, Jia JF, Bai JH, Xu JJ, Gao WQ (2021). Potential impacts of environmental types on geographical distribution of Larix principis-rupprechtii. Acta Ecologica Sinica, 41, 1885-1893. |
[ 刘宪钊, 韩文斌, 高瑞东, 贾俊峰, 白晋华, 徐建军, 高文强 (2021). 不同环境类型对华北落叶松分布的潜在影响. 生态学报, 41, 1885-1893.] | |
[16] | Liu YM, Zhou SD, Xie DF, Huang J, He XJ (2018). Potential distribution of Fritillaria unibracteata predicted by the MaxEnt model. Guihaia, 38, 352-360. |
[ 刘艳梅, 周颂东, 谢登峰, 黄娇, 何兴金 (2018). 基于最大熵模型(MaxEnt)预测暗紫贝母的潜在分布. 广西植物, 38, 352-360.] | |
[17] | Liu Z, Chen S, Chen L, Lei S (2009). The Genus Paphiopedilum in China. Science Press, Beijing. |
[ 刘仲健, 陈心启, 陈利君, 雷嗣鹏 (2009). 中国兜兰属植物. 科学出版社, 北京.] | |
[18] | Long B, Long CL (2006). Amazing Paphiopedilum and its research status. Chinese Journal of Nature, 28, 341-344. |
[ 龙波, 龙春林 (2006). 兜兰属植物及其研究现状. 自然杂志, 28, 341-344.] | |
[19] | Ma J, Liu XD, Jin M, Zhao WJ, Cheng CX, Meng HJ, Wu XR (2019). Soil physicochemical properties and enzyme activities along the altitudinal gradients in Picea crassifolia of Qilian Mountains. Journal of Soil and Water Conservation, 33, 207-213. |
[ 马剑, 刘贤德, 金铭, 赵维俊, 成彩霞, 孟好军, 武秀荣 (2019). 祁连山青海云杉林土壤理化性质和酶活性海拔分布特征. 水土保持学报, 33, 207-213.] | |
[20] |
McCormick MK, Jacquemyn H (2014). What constrains the distribution of orchid populations? New Phytologist, 202, 392-400.
DOI URL |
[21] |
Piao S, Tan J, Chen A, Fu YH, Ciais P, Liu Q, Janssens IA, Vicca S, Zeng ZZ, Jeong SJ, Li Y, Myneni RB, Peng S, Shen M, Peñuelas J (2015). Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 23, 6911. DOI: 10.1038/ncomms7911.
DOI |
[22] |
Quan C, Han S, Utescher T, Zhang C, Liu Y (2013). Validation of temperature-precipitation based aridity index: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 86-95.
DOI URL |
[23] |
Rasmussen HN (2002). Recent developments in the study of orchid mycorrhiza. Plant and Soil, 244, 149-163.
DOI URL |
[24] | Ren GD, He Y, Yu YZ (1998). Faunistic component and distributional surveying of the known darklin beetles from China (Coleoptera: Tenebrionidae). Entomological Journal of East China, 7(1), 12-20. |
[ 任国栋, 何燕, 于有志 (1998). 中国已知拟步甲的种类组成和分布概貌. 华东昆虫学报, 7(1), 12-20.] | |
[25] |
Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60.
DOI URL |
[26] | Shao YL, Cao W (2017). Prediction of the potential distribution area of invasive alien plant Ambrosia artemisiifolia in Northeast China. Journal of Arid Land Resources and Environment, 31, 172-176. |
[ 邵云玲, 曹伟 (2017). 外来入侵植物豚草在中国东北潜在分布区预测. 干旱区资源与环境, 31, 172-176.] | |
[27] |
Shi JZ, Chen H, An MT, Zhang Y, Ye C, Wu JY (2022). Analyses on distribution characteristics and protection effect of wild Paphiopedilum in Guizhou Province. Guihaia, (inpress). DOI: 10.11931/guihaia.gxzw202009038.
DOI |
[ 施金竹, 陈慧, 安明态, 张央, 叶超, 武建勇 (2022). 贵州省野生兜兰属植物资源现状及保护成效分析. 广西植物, (待发表). DOI: 10.11931/guihaia.gxzw202009038.]
DOI |
|
[28] |
Tsai CC, Liao PC, Ko YZ, Chen CH, Chiang YC (2020). Phylogeny and historical biogeography of Paphiopedilum Pfitzer (Orchidaceae) based on nuclear and plastid DNA. Frontiers in Plant Science, 11, 126. DOI: 10.3389/fpls.2020.00126.
DOI PMID |
[29] |
Wahid A, Gelani S, Ashraf M, Foolad MR (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61, 199-223.
DOI URL |
[30] | Wang YQ (2000). The geography of Chinese species of Paphiopedilum. Guihaia, 20, 289-294. |
[ 王英强 (2000). 中国兜兰属植物生态地理分布. 广西植物, 20, 289-294.] | |
[31] |
Wiens JJ (2004). Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution, 58, 193-197.
PMID |
[32] | Woodward FI (1987). Climate and Plant Distribution. Cambridge University Press, Cambridge, UK. |
[33] | Xie CP, Wu XK, Xue XM, Nan CH, Liu DW (2020). Analysis on relationship between suitable habitat of Phoebe chekiangensis and climatic environmental factors. Journal of Sichuan Agricultural University, 38, 264-271. |
[ 谢春平, 吴显坤, 薛晓明, 南程慧, 刘大伟 (2020). 浙江楠适生区与气候环境关系的分析. 四川农业大学学报, 38, 264-271.] | |
[34] | Xu SX, Zhao XQ, Li YN, Zhao L, Cao GM, Tang YH, Gu S, Wang QX, Du MY (2004). Analysis of CO2 flux of alpine shrub in growing season and non-growing season in Qinghai Tibet Plateau. Science in China Series D: Earth Sciences, 34(Suppl. II), 118-124. |
徐世晓, 赵新全, 李英年, 赵亮, 曹广民, 唐艳鸿, 古松, 王勤学, 杜明远 (2004). 青藏高原高寒灌丛生长季和非生长季CO2通量分析. 中国科学(D辑: 地球科学), 34(增II)124.] | |
[35] |
Yang QS, Chen WY, Xia K, Zhou ZK (2009). Climatic envelope of evergreen sclerophyllous oaks and their present distribution in the eastern Himalaya and Hengduan Mountains. Journal of Systematics and Evolution, 47, 183-190.
DOI URL |
[36] | Yi J (2017). Mycorrhizal Fungi and Symbiotic Seed Germination of Four Paphiopedilum Species. Master degree dissertation, Beijing Forestry University, Beijing. |
[ 裔景 (2017). 四种兜兰的菌根真菌及共生萌发研究. 硕士学位论文, 北京林业大学, 北京.] | |
[37] | Zha YQ, Guan P, Chen Y, Lin YG, Kang N, Shi JM (2019). Preliminary study on leaf epidermal micromorphological characteristics of 23 Chinese Paphiopedilum Pfitz. species. Plant Science Journal, 37, 709-718. |
[ 查应琴, 关萍, 陈业, 林耀光, 康念, 石建明 (2019). 中国兜兰属23种植物叶表皮微形态特征初步研究. 植物科学学报, 37, 709-718.] | |
[38] | Zhang J (2020). Study on the Changes of Remote Sensing Evapotranspiration in Karst Regions of Southwest China. Master degree dissertation, Guizhou Normal University, Guiyang. |
[ 张继 (2020). 中国西南喀斯特地区遥感蒸散发变化研究. 硕士学位论文, 贵州师范大学, 贵阳.] | |
[39] | Zhang XL (2014). Study on Geographic Distribution Pattern of the Wild Orchidaceae Plants in China. Master degree dissertation, Shanxi University, Taiyuan. |
[ 张晓龙 (2014). 中国野生兰科植物地理分布格局研究. 硕士学位论文, 山西大学, 太原.] | |
[40] | Zhang YB, Du HD, Jin XH, Ma KP (2015). Species diversity and geographic distribution of wild Orchidaceae in China. Chinese Science Bulletin, 60, 179-188. |
[ 张殷波, 杜昊东, 金效华, 马克平 (2015). 中国野生兰科植物物种多样性与地理分布. 科学通报, 60, 179-188.] | |
[41] | Zhang YJ, Liu XQ, Zhang JW, Guo WJ, Liu SH, Chu MJ, Sun JX (2017). Drought resistance and leaf anatomical structure of Paphiopedilum. Journal of Anhui Agricultural University, 44, 1104-1111. |
[ 张英杰, 刘学庆, 张京伟, 郭文姣, 刘述河, 初美静, 孙纪霞 (2017). 兜兰叶片结构与抗旱性关联的研究. 安徽农业大学学报, 44, 1104-1111.] | |
[42] | Zheng SW, Li YQ, Luo YS, Mu CL, Peng PH, Li YQ (2020). Response of woody plant diversity in Linpan of Chengdu plain to human interference. Southwest China Journal of Agricultural Sciences, 33, 1075-1080. |
[ 郑绍伟, 黎燕琼, 罗奕爽, 慕长龙, 彭培好, 李宇奇 (2020). 川西林盘木本植物多样性对人为干扰的响应. 西南农业学报, 33, 1075-1080.] |
[1] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[2] | 闫涵, 马松梅, 魏博, 张宏祥, 张丹. 孑遗灌木长柄扁桃的历史分布格局及其环境驱动力[J]. 植物生态学报, 2022, 46(7): 766-774. |
[3] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[4] | 牟文博 徐当会 王谢军 张瑞英 顾玉玲 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[5] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[6] | 陈海燕, 徐德宇, 廖梦娜, 李凯, 倪健, 曹现勇, 程波, 郝秀东, 孔昭宸, 李升峰, 李小强, 刘光琇, 刘平妹, 刘兴起, 孙湘君, 唐领余, 魏海成, 许清海, 阎顺, 羊向东, 杨振京, 于革, 张芸, 张志勇, 赵克良, 郑卓, Ulrike HERZSCHUH. 中国现代花粉数据集[J]. 植物生态学报, 2021, 45(7): 799-808. |
[7] | 倪铭, 张曦月, 姜超, 王鹤松. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021, 45(6): 626-640. |
[8] | 徐光来, 李爱娟, 徐晓华, 杨先成, 杨强强. 中国生态功能保护区归一化植被指数动态及气候因子驱动[J]. 植物生态学报, 2021, 45(3): 213-223. |
[9] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[10] | 王兆鹏, 张同文, 袁玉江, 张瑞波, 喻树龙, 刘蕊, 石仁娜•加汗, 郭冬, 王勇辉. 罗霄山南部4个针叶树种生长特征及其气候响应对比分析[J]. 植物生态学报, 2021, 45(12): 1303-1313. |
[11] | 左永令, 杨小波, 李东海, 吴二焕, 杨宁, 李龙, 张培春, 陈琳, 李晨笛. 环境因子对海南岛野生兰科植物物种组成与分布格局的影响[J]. 植物生态学报, 2021, 45(12): 1341-1349. |
[12] | 林秦文, 于胜祥, 唐赛春, 崔夏, 高信芬, 王焕冲, 刘全儒, 马金双. 中国外来归化植物的编目现状及有关问题[J]. 植物生态学报, 2021, 45(11): 1275-1280. |
[13] | 方精云, 郭柯, 王国宏, 唐志尧, 谢宗强, 沈泽昊, 王仁卿, 强胜, 梁存柱, 达良俊, 于丹. 《中国植被志》的植被分类系统、植被类型划分及编排体系[J]. 植物生态学报, 2020, 44(2): 96-110. |
[14] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其 关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[15] | 车俭, 郑洁, 蒋娅, 金毅, 乙引. 中国亚热带森林动态监测样地常绿和落叶木本被子植物谱系结构及生态习性差异[J]. 植物生态学报, 2020, 44(10): 1007-1014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19