植物生态学报 ›› 2023, Vol. 47 ›› Issue (4): 515-529.DOI: 10.17521/cjpe.2022.0089
石荡1, 郭传超1, 蒋南林1, 唐莹莹1, 郑凤1, 王瑾2, 廖康1, 刘立强1,*()
收稿日期:
2022-03-08
接受日期:
2022-09-24
出版日期:
2023-04-20
发布日期:
2022-10-21
通讯作者:
*(llq9989@126.com )
基金资助:
SHI Dang1, GUO Chuan-Chao1, JIANG Nan-Lin1, TANG Ying-Ying1, ZHENG Feng1, WANG Jin2, LIAO Kang1, LIU Li-Qiang1,*()
Received:
2022-03-08
Accepted:
2022-09-24
Online:
2023-04-20
Published:
2022-10-21
Contact:
*(llq9989@126.com )
Supported by:
摘要:
为探究新疆野杏(Prunus armeniaca)种群天然更新幼株个体的生长现状与空间分布格局, 该研究选择野杏集中分布的霍城县大西沟、新源县杏花沟和巩留县小莫乎儿沟为研究地, 分别在3处研究地设置林下、林窗以及空地样地, 观测幼株的分布密度、基径、高度以及冠幅,并采用5 m × 5 m相邻格子样方法(7个聚集度指数)判定分布类型, 点分布格局法计算聚集强度。新疆野杏天然更新幼株特征如下: (1)分布密度由大到小依次为杏花沟、大西沟、小莫乎儿沟, 林窗显著大于空地和林下, 种群天然更新强度为325株·hm-2。(2)基径为小莫乎儿沟、大西沟显著大于杏花沟, 空地显著大于林下和林窗, 种群天然更新基径约1.7 cm。(3)高度为大西沟、小莫乎儿沟显著高于杏花沟, 空地显著高于林下和林窗, 种群自然更新高度为77.0 cm。(4)冠幅为大西沟显著大于小莫乎儿沟和杏花沟, 空地显著大于林窗和林下, 种群天然更新冠幅为38.7 cm。(5)有幼株的样地共22块, 在5 m × 5 m样方中, 呈聚集、均匀与随机分布样地的比例分别为63.6%、27.3%和9.1%。(6)点分布格局中更新幼株在林下、空地多呈聚集分布, 尺度为5-8 m时聚集强度最大; 在林窗主要呈随机分布, 尺度为1 m时聚集强度最大; 其在不同生境的空间格局均为聚集分布到随机分布。研究结果表明, 分布区域与生境类型均会显著影响野杏更新幼株的个体特征, 表现为大西沟、小莫乎儿沟混交的林分类型更有利于幼株生长。林下严重抑制了更新幼株的分布数量, 林窗利于种子的萌发定植, 但幼株生长受阻, 空地窗口条件利于更新幼株的生长发育。整体上种群更新障碍显著, 现有更新幼株的空间分布格局是其对生境变化、生存胁迫以及放牧干扰等因素作出的自然选择, 是种群寻找可以延续发展的策略。在此背景下, 应加强保护干预, 以促进新疆野杏种群更新。
石荡, 郭传超, 蒋南林, 唐莹莹, 郑凤, 王瑾, 廖康, 刘立强. 新疆野杏天然更新幼株的个体特征及空间分布格局. 植物生态学报, 2023, 47(4): 515-529. DOI: 10.17521/cjpe.2022.0089
SHI Dang, GUO Chuan-Chao, JIANG Nan-Lin, TANG Ying-Ying, ZHENG Feng, WANG Jin, LIAO Kang, LIU Li-Qiang. Characteristics and spatial distribution pattern of natural regeneration young plants of Prunus armeniaca in Xinjiang, China. Chinese Journal of Plant Ecology, 2023, 47(4): 515-529. DOI: 10.17521/cjpe.2022.0089
分布区域 Distribution area | 样地 Sample plot | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) | 坡向 Slope aspect (°) | 坡位 Slope position | 坡度 Slope gradient (°) | 样地面积 Plot area (m2) | 样方(5 m × 5 m)数量 Quadrat (5 m × 5 m) number |
---|---|---|---|---|---|---|---|---|---|
DXG | A1 | 80.78 | 44.44 | 1 216.9 | 178.3 | 下 Down | 21.0 | 400.0 | 16 |
A2 | 80.77 | 44.43 | 1 290.0 | 197.7 | 中 Middle | 35.3 | 400.0 | 16 | |
A3 | 80.79 | 44.43 | 1 219.2 | 247.3 | 下 Down | 11.7 | 400.0 | 16 | |
B1 | 80.78 | 44.44 | 1 228.0 | 177.6 | 下 Down | 21.0 | 130.0 | 5 | |
B2 | 80.77 | 44.43 | 1 323.6 | 203.3 | 中 Middle | 31.7 | 256.2 | 10 | |
B3 | 80.79 | 44.43 | 1 222.2 | 251.0 | 下 Down | 10.7 | 144.5 | 5 | |
C1 | 80.78 | 44.44 | 1 242.5 | 180.7 | 中 Middle | 25.7 | 896.2 | 35 | |
C2 | 80.77 | 44.43 | 1 324.2 | 167.3 | 中 Middle | 25.7 | 1 011.0 | 40 | |
C3 | 80.79 | 44.43 | 1 240.1 | 225.0 | 中 Middle | 23.7 | 1 058.0 | 42 | |
XHG | A4 | 83.44 | 43.55 | 1 231.8 | 182.5 | 中 Middle | 23.9 | 400.0 | 16 |
A5 | 83.43 | 43.55 | 1 340.4 | 136.3 | 中 Middle | 23.9 | 400.0 | 16 | |
A6 | 83.43 | 43.55 | 1 566.5 | 120.0 | 上 Up | 27.5 | 400.0 | 16 | |
B4 | 83.44 | 43.54 | 1 205.2 | 151.3 | 下 Down | 33.7 | 192.9 | 7 | |
B5 | 83.43 | 43.55 | 1 341.4 | 97.6 | 中 Middle | 38.0 | 110.0 | 4 | |
B6 | 83.43 | 43.55 | 1 563.4 | 89.6 | 上 Up | 41.7 | 143.1 | 5 | |
C4 | 83.44 | 43.55 | 1 291.0 | 163.7 | 中 Middle | 24.3 | 911.0 | 36 | |
C5 | 83.43 | 43.55 | 1 459.3 | 191.3 | 上 Up | 38.7 | 975.6 | 39 | |
C6 | 83.43 | 43.55 | 1 555.8 | 138.3 | 上 Up | 37.0 | 1 065.0 | 42 | |
XMHE | A7 | 82.73 | 43.19 | 1 360.8 | 232.3 | 中 Middle | 28.0 | 400.0 | 16 |
A8 | 82.72 | 43.21 | 1 293.9 | 81.3 | 下 Down | 26.7 | 400.0 | 16 | |
A9 | 82.71 | 43.22 | 1 297.0 | 90.3 | 下 Down | 34.7 | 400.0 | 16 | |
B7 | 82.73 | 43.19 | 1 360.8 | 234.6 | 中 Middle | 18.3 | 207.5 | 8 | |
B8 | 82.72 | 43.21 | 1 289.5 | 161.7 | 下 Down | 22.7 | 207.4 | 8 | |
B9 | 82.72 | 43.22 | 1 315.6 | 59.6 | 下 Down | 35.0 | 179.8 | 7 | |
C7 | 82.73 | 43.19 | 1 345.8 | 231.3 | 中 Middle | 22.0 | 889.2 | 35 | |
C8 | 82.72 | 43.21 | 1 326.0 | 92.0 | 下 Down | 32.3 | 946.6 | 37 | |
C9 | 82.72 | 43.22 | 1 324.4 | 54.3 | 下 Down | 37.3 | 1 115.0 | 44 |
表1 新疆野杏种群样地基本情况
Table 1 Basic information of Prunus armeniaca populations plots in Xinjiang
分布区域 Distribution area | 样地 Sample plot | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) | 坡向 Slope aspect (°) | 坡位 Slope position | 坡度 Slope gradient (°) | 样地面积 Plot area (m2) | 样方(5 m × 5 m)数量 Quadrat (5 m × 5 m) number |
---|---|---|---|---|---|---|---|---|---|
DXG | A1 | 80.78 | 44.44 | 1 216.9 | 178.3 | 下 Down | 21.0 | 400.0 | 16 |
A2 | 80.77 | 44.43 | 1 290.0 | 197.7 | 中 Middle | 35.3 | 400.0 | 16 | |
A3 | 80.79 | 44.43 | 1 219.2 | 247.3 | 下 Down | 11.7 | 400.0 | 16 | |
B1 | 80.78 | 44.44 | 1 228.0 | 177.6 | 下 Down | 21.0 | 130.0 | 5 | |
B2 | 80.77 | 44.43 | 1 323.6 | 203.3 | 中 Middle | 31.7 | 256.2 | 10 | |
B3 | 80.79 | 44.43 | 1 222.2 | 251.0 | 下 Down | 10.7 | 144.5 | 5 | |
C1 | 80.78 | 44.44 | 1 242.5 | 180.7 | 中 Middle | 25.7 | 896.2 | 35 | |
C2 | 80.77 | 44.43 | 1 324.2 | 167.3 | 中 Middle | 25.7 | 1 011.0 | 40 | |
C3 | 80.79 | 44.43 | 1 240.1 | 225.0 | 中 Middle | 23.7 | 1 058.0 | 42 | |
XHG | A4 | 83.44 | 43.55 | 1 231.8 | 182.5 | 中 Middle | 23.9 | 400.0 | 16 |
A5 | 83.43 | 43.55 | 1 340.4 | 136.3 | 中 Middle | 23.9 | 400.0 | 16 | |
A6 | 83.43 | 43.55 | 1 566.5 | 120.0 | 上 Up | 27.5 | 400.0 | 16 | |
B4 | 83.44 | 43.54 | 1 205.2 | 151.3 | 下 Down | 33.7 | 192.9 | 7 | |
B5 | 83.43 | 43.55 | 1 341.4 | 97.6 | 中 Middle | 38.0 | 110.0 | 4 | |
B6 | 83.43 | 43.55 | 1 563.4 | 89.6 | 上 Up | 41.7 | 143.1 | 5 | |
C4 | 83.44 | 43.55 | 1 291.0 | 163.7 | 中 Middle | 24.3 | 911.0 | 36 | |
C5 | 83.43 | 43.55 | 1 459.3 | 191.3 | 上 Up | 38.7 | 975.6 | 39 | |
C6 | 83.43 | 43.55 | 1 555.8 | 138.3 | 上 Up | 37.0 | 1 065.0 | 42 | |
XMHE | A7 | 82.73 | 43.19 | 1 360.8 | 232.3 | 中 Middle | 28.0 | 400.0 | 16 |
A8 | 82.72 | 43.21 | 1 293.9 | 81.3 | 下 Down | 26.7 | 400.0 | 16 | |
A9 | 82.71 | 43.22 | 1 297.0 | 90.3 | 下 Down | 34.7 | 400.0 | 16 | |
B7 | 82.73 | 43.19 | 1 360.8 | 234.6 | 中 Middle | 18.3 | 207.5 | 8 | |
B8 | 82.72 | 43.21 | 1 289.5 | 161.7 | 下 Down | 22.7 | 207.4 | 8 | |
B9 | 82.72 | 43.22 | 1 315.6 | 59.6 | 下 Down | 35.0 | 179.8 | 7 | |
C7 | 82.73 | 43.19 | 1 345.8 | 231.3 | 中 Middle | 22.0 | 889.2 | 35 | |
C8 | 82.72 | 43.21 | 1 326.0 | 92.0 | 下 Down | 32.3 | 946.6 | 37 | |
C9 | 82.72 | 43.22 | 1 324.4 | 54.3 | 下 Down | 37.3 | 1 115.0 | 44 |
基本结构 Basic structure | 等级 Grade | ||||
---|---|---|---|---|---|
I | II | III | IV | Ⅴ | |
基径 Basal diameter (cm) | ≤1 | (1, 2] | (2, 3] | (3, 5] | (5, 10] |
高度 Height (cm) | ≤30 | (30, 60] | (60, 100] | (100, 200] | >200 |
冠幅 Canopy (cm) | ≤25 | (25, 50] | (50, 100] | (100, 150] | >150 |
表2 新疆野杏种群更新等级划分标准
Table 2 Differentiating standard of regeneration grades of Prunus armeniaca populations in Xinjiang
基本结构 Basic structure | 等级 Grade | ||||
---|---|---|---|---|---|
I | II | III | IV | Ⅴ | |
基径 Basal diameter (cm) | ≤1 | (1, 2] | (2, 3] | (3, 5] | (5, 10] |
高度 Height (cm) | ≤30 | (30, 60] | (60, 100] | (100, 200] | >200 |
冠幅 Canopy (cm) | ≤25 | (25, 50] | (50, 100] | (100, 150] | >150 |
C | I | m* | PAI | Ca | K | Iδ | ||
---|---|---|---|---|---|---|---|---|
表3 新疆野杏种群各指标计算公式
Table 3 Calculation formula for each index of Prunus armeniaca populations in Xinjiang
C | I | m* | PAI | Ca | K | Iδ | ||
---|---|---|---|---|---|---|---|---|
分布类型 Distribution pattern | 格局指数 Pattern index | ||||||
---|---|---|---|---|---|---|---|
C | I | m* | PAI | Ca | K | Iδ | |
聚集 Cluster | > 1 | > 0 | >$\bar{X}$ | >1 | >0 | >0 | >1 |
随机 Random | 1 | 0 | $\bar{X}$ | 1 | 0 | 0 | 1 |
均匀 Uniform | <1 | <0 | <$\bar{X}$ | <1 | <0 | <0 | <1 |
表4 新疆野杏种群聚集类型判断标准
Table 4 Cluster type judgment criteria of Prunus armeniaca populations in Xinjiang
分布类型 Distribution pattern | 格局指数 Pattern index | ||||||
---|---|---|---|---|---|---|---|
C | I | m* | PAI | Ca | K | Iδ | |
聚集 Cluster | > 1 | > 0 | >$\bar{X}$ | >1 | >0 | >0 | >1 |
随机 Random | 1 | 0 | $\bar{X}$ | 1 | 0 | 0 | 1 |
均匀 Uniform | <1 | <0 | <$\bar{X}$ | <1 | <0 | <0 | <1 |
图1 新疆野杏种群内不同生境更新幼株个体特征。 不同小写字母表示同一种群下不同生境更新幼株特征的差异显著(p < 0.05)。DXG, 大西沟; XHG, 杏花沟; XMHE, 小莫乎儿沟。
Fig. 1 Characteristics of regeneration seedlings of Prunus armeniaca populations in Xinjiang in different habitats. Different lowercase letters indicate significant differences in the characteristics of seedlings in different habitats in the same population (p < 0.05). DXG, Daxigou; XHG, Xinghuagou; XMHE, Xiaomohu’ergou.
分布区域 Distribution area | 林分密度 Density of forests | 野杏幼株个体特征 Individual characteristics of P. armeniaca seedlings | ||||
---|---|---|---|---|---|---|
密度 Density (plant·hm-2) | 野杏占比 P. armeniaca proportion (%) | 密度 Density (plant·hm-2) | 基径 Basal diameter (cm) | 高度 Height (cm) | 冠幅 Canopy (cm) | |
DXG | 542 ± 95a | 44.0 | 288 ± 202a | 2.0 ± 0.2a | 93.7 ± 7.1a | 53.3 ± 5.5a |
XHG | 583 ± 14a | 100.0 | 554 ± 684a | 1.2 ± 0.1b | 56.5 ± 4.4b | 27.7 ± 3.7b |
XMHE | 283 ± 72b | 55.9 | 132 ± 74a | 2.1 ± 0.2a | 90.2 ± 8.6a | 38.4 ± 6.0b |
表5 不同种群新疆野杏天然更新幼株特征的差异(平均值±标准差)
Table 5 Differences in natural regeneration characteristics of Prunus armeniaca young plants in different populations in Xinjiang (mean ± SD)
分布区域 Distribution area | 林分密度 Density of forests | 野杏幼株个体特征 Individual characteristics of P. armeniaca seedlings | ||||
---|---|---|---|---|---|---|
密度 Density (plant·hm-2) | 野杏占比 P. armeniaca proportion (%) | 密度 Density (plant·hm-2) | 基径 Basal diameter (cm) | 高度 Height (cm) | 冠幅 Canopy (cm) | |
DXG | 542 ± 95a | 44.0 | 288 ± 202a | 2.0 ± 0.2a | 93.7 ± 7.1a | 53.3 ± 5.5a |
XHG | 583 ± 14a | 100.0 | 554 ± 684a | 1.2 ± 0.1b | 56.5 ± 4.4b | 27.7 ± 3.7b |
XMHE | 283 ± 72b | 55.9 | 132 ± 74a | 2.1 ± 0.2a | 90.2 ± 8.6a | 38.4 ± 6.0b |
生境 Habitat | 野杏幼株个体特征 Individual characteristics of P. armeniaca seedlings | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
密度 Density (plant·hm-2) | 基径 Basal diameter (cm) | 高度 Height (cm) | 冠幅 Canopy (cm) | |||||||
最小 Min | 最大 Max | 平均值 Mean | 最小 Min | 最大 Max | 平均值 Mean | 最小 Min | 最大 Max | 平均值 Mean | ||
林下 Forest understory | 86 ± 37b | 0.2 | 3.6 | 1.0 ± 1.0b | 12.0 | 223.0 | 51.8 ± 50.3b | 0 | 107.5 | 11.8 ± 20.8b |
林窗 Forest gap | 678 ± 227a | 0.1 | 3.8 | 0.9 ± 0.8b | 9.0 | 314.0 | 51.3 ± 53.2b | 0 | 99.5 | 19.8 ± 23.2b |
空地 Forest glade | 210 ± 18b | 0.1 | 9.4 | 2.2 ± 1.9a | 12.0 | 315.0 | 93.8 ± 69.3a | 0 | 279.0 | 52.5 ± 58.2a |
总体 Population | 325 ± 89 | 0.1 | 9.4 | 1.7 ± 1.7 | 9.0 | 315.0 | 77.0 ± 66.3 | 0 | 279.0 | 38.7 ± 52.0 |
表6 不同生境新疆野杏天然更新幼株特征的差异(平均值±标准差)
Table 6 Differences in natural regeneration characteristics of Prunus armeniaca young plants in different habitats in Xinjiang (mean ± SD)
生境 Habitat | 野杏幼株个体特征 Individual characteristics of P. armeniaca seedlings | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
密度 Density (plant·hm-2) | 基径 Basal diameter (cm) | 高度 Height (cm) | 冠幅 Canopy (cm) | |||||||
最小 Min | 最大 Max | 平均值 Mean | 最小 Min | 最大 Max | 平均值 Mean | 最小 Min | 最大 Max | 平均值 Mean | ||
林下 Forest understory | 86 ± 37b | 0.2 | 3.6 | 1.0 ± 1.0b | 12.0 | 223.0 | 51.8 ± 50.3b | 0 | 107.5 | 11.8 ± 20.8b |
林窗 Forest gap | 678 ± 227a | 0.1 | 3.8 | 0.9 ± 0.8b | 9.0 | 314.0 | 51.3 ± 53.2b | 0 | 99.5 | 19.8 ± 23.2b |
空地 Forest glade | 210 ± 18b | 0.1 | 9.4 | 2.2 ± 1.9a | 12.0 | 315.0 | 93.8 ± 69.3a | 0 | 279.0 | 52.5 ± 58.2a |
总体 Population | 325 ± 89 | 0.1 | 9.4 | 1.7 ± 1.7 | 9.0 | 315.0 | 77.0 ± 66.3 | 0 | 279.0 | 38.7 ± 52.0 |
图2 新疆野杏种群内不同更新等级幼株分布密度(平均值±1.5倍标准差)。 A, 基径。B, 高度。C, 冠幅。DXG, 大西沟; XHG, 杏花沟; XMHE, 小莫乎儿沟。不同小写字母表示同一种群下不同更新等级幼株密度的差异显著(p < 0.05)。I-V见表2。
Fig. 2 Distribution density of young plants of Prunus armeniaca with different regeneration grade in the same population in Xinjiang (Mean ± 1.5SD). A, Basal diameter. B, Height. C, Canopy. DXG, Daxigou; XHG, Xinghuagou; XMHE, Xiaomohu’ergou. Different lowercase letters indicate significant differences in the density of seedlings of different regeneration grades under the same population (p < 0.05). I-V see Table 2.
图3 新疆野杏种群生境内不同更新等级幼株分布密度(平均值±1.5倍标准差)。 A, 基径。B, 高度。C, 冠幅。不同小写字母表示同一生境下不同等级更新幼株密度的差异显著(p < 0.05). I-V见表2。
Fig. 3 Distribution density of young plants of Prunus armeniaca with different regeneration grade in the same habitat in Xinjiang (Mean ± 1.5SD). A, Basal diameter. B, Height. C, Canopy. Different lowercase letters indicate significant differences in the density of young plants of different regeneration grades under the same habitat (p < 0.05). I-V see Table 2.
自变量 Argument | 因变量 Dependent variable | 均方 Mean square | F | p | 偏Eta平方 Partial Eta square |
---|---|---|---|---|---|
分布区域 Distribution area | 基径 Basal diameter | 17.098 | 7.449** | 0.001 | 0.047 |
高度 Height | 53 578.294 | 14.710** | 0.000 | 0.090 | |
冠幅 Canopy | 44 242.587 | 20.837** | 0.000 | 0.122 | |
生境 Habitat | 基径 Basal diameter | 38.769 | 16.890** | 0.000 | 0.102 |
高度 Height | 43 240.548 | 11.872** | 0.000 | 0.074 | |
冠幅 Canopy | 295.686 | 0.139 | 0.870 | 0.001 | |
分布区域×生境 Distribution area × habitat | 基径 Basal diameter | 2.023 | 0.881 | 0.451 | 0.009 |
高度 Height | 12 459.757 | 3.421** | 0.018 | 0.033 | |
冠幅 Canopy | 16 295.174 | 7.674** | 0.000 | 0.071 |
表7 新疆野杏幼株特征的多变量双因素方差分析
Table 7 Multi-variable two-way ANOVA of characteristics of Prunus armeniaca seedlings in Xinjiang
自变量 Argument | 因变量 Dependent variable | 均方 Mean square | F | p | 偏Eta平方 Partial Eta square |
---|---|---|---|---|---|
分布区域 Distribution area | 基径 Basal diameter | 17.098 | 7.449** | 0.001 | 0.047 |
高度 Height | 53 578.294 | 14.710** | 0.000 | 0.090 | |
冠幅 Canopy | 44 242.587 | 20.837** | 0.000 | 0.122 | |
生境 Habitat | 基径 Basal diameter | 38.769 | 16.890** | 0.000 | 0.102 |
高度 Height | 43 240.548 | 11.872** | 0.000 | 0.074 | |
冠幅 Canopy | 295.686 | 0.139 | 0.870 | 0.001 | |
分布区域×生境 Distribution area × habitat | 基径 Basal diameter | 2.023 | 0.881 | 0.451 | 0.009 |
高度 Height | 12 459.757 | 3.421** | 0.018 | 0.033 | |
冠幅 Canopy | 16 295.174 | 7.674** | 0.000 | 0.071 |
分布区域 Distribution area | 样地 Sample plot | 格局指数 Pattern index | 分布类型 Distribution pattern | ||||||
---|---|---|---|---|---|---|---|---|---|
C | I | m* | PAI | Ca | K | Iδ | |||
DXG | A1 | 3.318 | 2.318 | 3.130 | 3.853 | 2.853 | 0.351 | 3.897 | C |
A2 | 2.089 | 1.089 | 1.464 | 3.904 | 2.904 | 0.344 | 4.267 | C | |
A3 | - | - | - | - | - | - | - | - | |
B1 | 0.167 | -0.833 | 2.167 | 0.722 | -0.278 | -3.600 | 0.762 | U | |
B2 | 2.086 | 1.086 | 1.986 | 2.207 | 1.207 | 0.828 | 2.222 | C | |
B3 | - | - | - | - | - | - | - | - | |
C1 | 1.603 | 0.603 | 1.403 | 1.754 | 0.754 | 1.327 | 1.759 | C | |
C2 | 2.556 | 1.556 | 1.931 | 5.148 | 4.148 | 0.241 | 5.333 | C | |
C3 | 1.787 | 0.787 | 1.168 | 3.065 | 2.065 | 0.484 | 3.150 | C | |
XHG | A4 | - | - | - | - | - | - | - | - |
A5 | - | - | - | - | - | - | - | - | |
A6 | - | - | - | - | - | - | - | - | |
B4 | 0.983 | -0.017 | 2.841 | 0.994 | -0.006 | -171.429 | 0.995 | U | |
B5 | 0.370 | -0.630 | 3.870 | 0.860 | -0.140 | -7.147 | 0.889 | U | |
B6 | 0.391 | -0.609 | 3.991 | 0.868 | -0.132 | -7.557 | 0.889 | U | |
C4 | 2.686 | 1.686 | 2.186 | 4.371 | 3.371 | 0.297 | 4.471 | C | |
C5 | 2.093 | 1.093 | 1.734 | 2.705 | 1.705 | 0.587 | 2.730 | C | |
C6 | 2.035 | 1.035 | 1.678 | 2.610 | 1.610 | 0.621 | 2.632 | C | |
XMHE | A7 | 1.578 | 0.578 | 0.765 | 4.082 | 3.082 | 0.325 | 5.333 | C |
A8 | 2.429 | 1.429 | 1.866 | 4.265 | 3.265 | 0.306 | 4.571 | C | |
A9 | 0.933 | -0.067 | 0.058 | 0.467 | -0.533 | -1.875 | 0.000 | U | |
B7 | 1.000 | - | 0.125 | 1.000 | - | - | - | R | |
B8 | 1.000 | - | 0.125 | 1.000 | - | - | - | R | |
B9 | 0.500 | -0.500 | 0.071 | 0.125 | -0.875 | -1.143 | 1.167 | U | |
C7 | 1.862 | 0.862 | 1.347 | 2.774 | 1.774 | 0.564 | 2.831 | C | |
C8 | 1.644 | 0.644 | 1.103 | 2.401 | 1.401 | 0.714 | 2.449 | C | |
C9 | 1.442 | 0.442 | 0.942 | 1.884 | 0.884 | 1.132 | 1.905 | C |
表8 不同生境5 m × 5 m样方尺度下新疆野杏幼株的分布格局
Table 8 Distribution pattern of Prunus armeniaca young plants at 5 m × 5 m quadrat scale in different habitats in Xinjiang
分布区域 Distribution area | 样地 Sample plot | 格局指数 Pattern index | 分布类型 Distribution pattern | ||||||
---|---|---|---|---|---|---|---|---|---|
C | I | m* | PAI | Ca | K | Iδ | |||
DXG | A1 | 3.318 | 2.318 | 3.130 | 3.853 | 2.853 | 0.351 | 3.897 | C |
A2 | 2.089 | 1.089 | 1.464 | 3.904 | 2.904 | 0.344 | 4.267 | C | |
A3 | - | - | - | - | - | - | - | - | |
B1 | 0.167 | -0.833 | 2.167 | 0.722 | -0.278 | -3.600 | 0.762 | U | |
B2 | 2.086 | 1.086 | 1.986 | 2.207 | 1.207 | 0.828 | 2.222 | C | |
B3 | - | - | - | - | - | - | - | - | |
C1 | 1.603 | 0.603 | 1.403 | 1.754 | 0.754 | 1.327 | 1.759 | C | |
C2 | 2.556 | 1.556 | 1.931 | 5.148 | 4.148 | 0.241 | 5.333 | C | |
C3 | 1.787 | 0.787 | 1.168 | 3.065 | 2.065 | 0.484 | 3.150 | C | |
XHG | A4 | - | - | - | - | - | - | - | - |
A5 | - | - | - | - | - | - | - | - | |
A6 | - | - | - | - | - | - | - | - | |
B4 | 0.983 | -0.017 | 2.841 | 0.994 | -0.006 | -171.429 | 0.995 | U | |
B5 | 0.370 | -0.630 | 3.870 | 0.860 | -0.140 | -7.147 | 0.889 | U | |
B6 | 0.391 | -0.609 | 3.991 | 0.868 | -0.132 | -7.557 | 0.889 | U | |
C4 | 2.686 | 1.686 | 2.186 | 4.371 | 3.371 | 0.297 | 4.471 | C | |
C5 | 2.093 | 1.093 | 1.734 | 2.705 | 1.705 | 0.587 | 2.730 | C | |
C6 | 2.035 | 1.035 | 1.678 | 2.610 | 1.610 | 0.621 | 2.632 | C | |
XMHE | A7 | 1.578 | 0.578 | 0.765 | 4.082 | 3.082 | 0.325 | 5.333 | C |
A8 | 2.429 | 1.429 | 1.866 | 4.265 | 3.265 | 0.306 | 4.571 | C | |
A9 | 0.933 | -0.067 | 0.058 | 0.467 | -0.533 | -1.875 | 0.000 | U | |
B7 | 1.000 | - | 0.125 | 1.000 | - | - | - | R | |
B8 | 1.000 | - | 0.125 | 1.000 | - | - | - | R | |
B9 | 0.500 | -0.500 | 0.071 | 0.125 | -0.875 | -1.143 | 1.167 | U | |
C7 | 1.862 | 0.862 | 1.347 | 2.774 | 1.774 | 0.564 | 2.831 | C | |
C8 | 1.644 | 0.644 | 1.103 | 2.401 | 1.401 | 0.714 | 2.449 | C | |
C9 | 1.442 | 0.442 | 0.942 | 1.884 | 0.884 | 1.132 | 1.905 | C |
图4 新疆野杏种群内不同生境幼株的空间分布点。 DXG, 大西沟; XHG, 杏花沟; XMHE, 小莫乎儿沟。
Fig. 4 Spatial distribution point of young plants of Prunus armeniaca with different habitats in the populations in Xinjiang. DXG, Daxigou; XHG, Xinghuagou; XMHE, Xiaomohu’ergou.
图5 新疆野杏种群内不同生境幼株空间分布格局。 图中曲线为$\hat{L}$(r)值, r为空间尺度, 虚线中间部分为置信区间。DXG, 大西沟; XHG, 杏花沟; XMHE, 小莫乎儿沟。
Fig. 5 Space distribution pattern of Prunus armeniaca young plants with different habitats in the population in Xinjiang. The curve in the figure is the $\hat{L}$(r) value, r is spatial scale, and the middle part of the dashed line is the confidence interval. DXG, Daxigou; XHG, Xinghuagou; XMHE, Xiaomohu’ergou.
[1] |
Arsalan, Siddiqui MF, Ahmed M, Shaukat SS, Hussain A (2020). Population structure, age and growth rates of conifer species and their relation to environmental variables at Malam Jabba, Swat District, Pakistan. Journal of Forestry Research, 31, 429-441.
DOI |
[2] | Cai F (2000). A study on the structure and dynamics of Cyclobalanopsis glauca population at hills around lake in Hangzhou. Scientia Silvae Sinicae, 36(3), 67-72. |
[蔡飞 (2000). 杭州西湖山区青冈种群结构和动态的研究. 林业科学, 36(3), 67-72.] | |
[3] |
Calviño-Cancela M (2007). Seed and microsite limitations of recruitment and the impacts of post-dispersal seed predation at the within population level. Plant Ecology, 192, 35-44.
DOI URL |
[4] | Cao Q, Liao K, Sun Q, Liu J, Yang XF, Si HZ (2016). Morphological diversity of branches and leaves in Armeniaca vulgaris at Daxigou of Huocheng. Nonwood Forest Research, 34(3), 193-198. |
[曹倩, 廖康, 孙琪, 刘娟, 杨新峰, 司洪章 (2016). 霍城县大西沟野杏枝叶形态多样性. 经济林研究, 34(3), 193-198.] | |
[5] | Chang W, Dang KL, Wu PH, Li MY (2016). Spatial pattern of secondary Quercus aliena var. acuteserrata forests in the Qinling Mountains. Acta Ecologica Sinica, 36, 1021-1029. |
[常伟, 党坤良, 武朋辉, 李明雨 (2016). 秦岭林区锐齿栎次生林种群空间分布格局. 生态学报, 36, 1021-1029.] | |
[6] |
Dey DC, Knapp BO, Battaglia MA, Deal RL, Hart JL, O’Hara KL, Schweitzer CJ, Schuler TM (2019). Barriers to natural regeneration in temperate forests across the USA. New Forests, 50, 11-40.
DOI |
[7] | Fan DX, Yu XX (2016). Spatial point pattern analysis of Quercus variabilis and Pinus tabulaeformis populations in a mountainous area of Beijing. Acta Ecologica Sinica, 36, 318-325. |
[樊登星, 余新晓 (2016). 北京山区栓皮栎林优势种群点格局分析. 生态学报, 36, 318-325.] | |
[8] | Fang ZY, Li LY, Ai Kebai Er ML, Zhou L, Lu B (2019). Effects of human disturbance on plant diversity of wild fruit forests in western Tianshan Mountain. Bulletin of Soil and Water Conservation, 39(2), 267-274. |
[方紫妍, 李林瑜, 艾克拜尔·毛拉, 周龙, 陆彪 (2019). 人为干扰对西天山野果林群落结构和物种多样性的影响. 水土保持通报, 39(2), 267-274.] | |
[9] |
Gagnon JL, Jokela EJ, Moser WK, Huber DA (2003). Dynamics of artificial regeneration in gaps within a longleaf pine flatwoods ecosystem. Forest Ecology and Management, 172, 133-144.
DOI URL |
[10] |
Gómez-Aparicio L (2009). The role of plant interactions in the restoration of degraded ecosystems: a meta-analysis across life-forms and eco-systems. Journal of Ecology, 97, 1202-1214.
DOI URL |
[11] | Gong WY, Chen LH, Yu XX, Zheng XL, Zhang YQ (2018). Spatial structure of natural mixed coniferous-broadleaf secondary forest in Dahuofang Reservoir area, eastern Liaoning. Chinese Journal of Ecology, 37, 3255-3261. |
[弓文艳, 陈丽华, 余新晓, 郑学良, 张雪琪 (2018). 辽东大伙房水库库区天然针阔次生林林分空间结构. 生态学杂志, 37, 3255-3261.] | |
[12] |
Guignabert A, Augusto L, Gonzalez M, Chipeaux C, Delerue F (2020). Complex biotic interactions mediated by shrubs, revisiting the stress-gradient hypothesis and consequences for tree seedling survival. Journal of Applied Ecology, 57, 1341-1350.
DOI URL |
[13] | Han WJ, Yuan XQ, Zhang WH (2012). Effects of gap size on seedling natural regeneration in artificial Pinus tabulaeformis plantation. Chinese Journal of Applied Ecology, 23, 2940-2948. |
[韩文娟, 袁晓青, 张文辉 (2012). 油松人工林林窗对幼苗天然更新的影响. 应用生态学报, 23, 2940-2948.] | |
[14] | He DN, Yang H, Wen J, Xie R (2020). Density and spatial distribution of seedlings and saplings in different gap sizes of a spruce-fir mixed stand in Changbai Mountains, China. Chinese Journal of Applied Ecology, 31, 1916-1922. |
[贺丹妮, 杨华, 温静, 谢榕 (2020). 长白山云冷杉针阔混交林不同林隙下幼苗幼树密度及空间分布. 应用生态学报, 31, 1916-1922.]
DOI |
|
[15] | He ZS, Liu JF, Zheng SQ, Su SJ, Hong W, Wu ZY, Xu DW, Wu CZ (2012). Studies on the seeds dispersal and seedlings regeneration in gaps and understory of Castanopsis kawakamii natural forest. Journal of Tropical and Subtropical Botany, 20, 506-512. |
[何中声, 刘金福, 郑世群, 苏松锦, 洪伟, 吴则焰, 徐道炜, 吴承祯 (2012). 格氏栲天然林林窗和林下种子散布及幼苗更新研究. 热带亚热带植物学报, 20, 506-512.] | |
[16] | Hu XF, Zhang HR, Duan GS, Lu J (2021). Establishment and evaluation of tree competition index based on intersection and crowding. Scientia Silvae Sinicae, 57(4), 182-190. |
[胡雪凡, 张会儒, 段光爽, 卢军 (2021). 基于交角和密集度的竞争指数构建及评价. 林业科学, 57(4), 182-190.] | |
[17] | Huang L, Zhu GY, Kang L, Hu S, Liu Z, Lu K (2019). Regeneration characteristics and related factors affecting saplings in Quercus spp. natural secondary forests in Hunan Province, China. Acta Ecologica Sinica, 39, 4900-4909. |
[黄朗, 朱光玉, 康立, 胡松, 刘卓, 卢侃 (2019). 湖南栎类天然次生林幼树更新特征及影响因子. 生态学报, 39, 4900-4909.] | |
[18] | Jia WW, Xie XT, Jiang SW, Li FR (2017). Spatial distribution pattern of seedlings and saplings of three forest types by natural regeneration in Daxing’an Mountains Xinlin Forestry Bureau, China. Chinese Journal of Applied Ecology, 28, 2813-2822. |
[贾炜玮, 解希涛, 姜生伟, 李凤日 (2017). 大兴安岭新林林业局3种林分类型天然更新幼苗幼树的空间分布格局. 应用生态学报, 28, 2813-2822.]
DOI |
|
[19] | Jiang B, Zhou XR, Shang J, Wang JH, Song H, Qin MY, Liu XN, Wang Q (2018). Population structure and dynamics of Torreya fargesii Franch., a plant endemic to China. Acta Ecologica Sinica, 38, 1016-1027. |
[江波, 周先容, 尚进, 汪建华, 宋航, 秦明一, 刘雪凝, 王庆 (2018). 中国特有植物巴山榧树的种群结构与动态, 生态学报, 38, 1016-1027.] | |
[20] | Kang HJ, Liu P, Chen ZL, Liao CC, Li CH, Chen WX, Lei ZP (2007). Size-class structure and distribution pattern of Emmenopterys henryi in different habitats. Scientia Silvae Sinicae, 43(12), 22-27. |
[康华靖, 刘鹏, 陈子林, 廖承川, 李成惠, 陈卫新, 雷祖培 (2007). 不同生境香果树种群的径级结构与分布格局. 林业科学, 43(12), 22-27.] | |
[21] | Lan GY, Lei RD (2003). Brief introduction of spatial methods to distribution patterns of population. Journal of Northwest Forestry University, 18(2), 17-21. |
[兰国玉, 雷瑞德 (2003). 植物种群空间分布格局研究方法概述. 西北林学院学报, 18(2), 17-21.] | |
[22] |
Li J, Zhao C, Zhu H, Li Y, Wang F (2007). Effect of plant species on shrub fertile island at an oasis-desert ecotone in the South Junggar Basin, China. Journal of Arid Environments, 71, 350-361.
DOI URL |
[23] | Li N, Bai B, Lu CH (2011). Recruitment limitation of plant population, from seed production to sapling establishment. Acta Ecologica Sinica, 31, 6624-6632. |
[李宁, 白冰, 鲁长虎 (2011). 植物种群更新限制——从种子生产到幼树建成. 生态学报, 31, 6624-6632.] | |
[24] |
Li WW, Liu LQ, Wang YN, Fan GQ, Zhang SK, Wang YT, Liao K (2020a). Determination of genome size and chromosome ploidy of selected taxa from Prunus armeniaca by flow cytometry. Scientia Horticulturae, 261, 108987. DOI: 10.1016/j.scienta.2019.108987.
DOI |
[25] |
Li WW, Liu LQ, Wang YN, Zhang QP, Fan GQ, Zhang SK, Wang YT, Liao K (2020b). Genetic diversity, population structure, and relationships of apricot (Prunus) based on restriction site-associated DNA sequencing. Horticulture Research, 7, 69. DOI: 10.1038/s41438-020-0284-6.
DOI |
[26] | Liu SC, Duan WB, Zhong CY, Chen LX, Wang LX (2012). Dynamic changes in soil temperature water content nutrition and microorganisms of different size gaps in the mixed broadleaved Korean pine forest. Journal of Soil and Water Conservation, 33(17), 78-83. |
[刘少冲, 段文标, 钟春艳, 陈立新, 王丽霞 (2012). 阔叶红松林不同大小林隙土壤温度、水分、养分及微生物动态变化. 水土保持学报, 33(17), 78-83.] | |
[27] | Liu Y, Wei CX, Zhou SX, Tang JS, Han CX, Shao H (2019). Identification of pathogenic fungi causing leaf spot of Malus sieversii and Impatiens brachycentra growing in the wild fruit forest of Tianshan Mountain. Journal of Plant Protection, 46, 345-351. |
[刘瑜, 魏彩霞, 周世兴, 汤界世, 韩彩霞, 邵华 (2019). 天山野果林塞威士苹果和短距凤仙花叶斑病病原真菌的鉴定. 植物保护学报, 46, 345-351.] | |
[28] | Liu Z, Li HL, Dong Z, Li GT, Wan LL, Yue YJ (2012). The spatial point pattern of Ulmus pumila population in two habitats in the Otindag sandy land. Scientia Silvae Sinicae, 48(1), 29-34. |
[刘振, 李红丽, 董智, 李钢铁, 万玲玲, 岳永杰 (2012). 浑善达克沙地2种生境下榆树种群空间点格局. 林业科学, 48(1), 29-34.] | |
[29] | Lu NN, Wang XJ, Zhang P, Gao ZX, Guo Q, Chen Y, Li HP (2015). Path analysis between diameter at breast height, height and crown width of Cunninghamia lanceolata in different age. Journal of Northeast Forestry University, 43(4), 12-16. |
[卢妮妮, 王新杰, 张鹏, 高志雄, 郭琦, 陈阳, 李海萍 (2015). 不同林龄杉木胸径树高与冠幅的通径分析. 东北林业大学学报, 43(4), 12-16.] | |
[30] | Lü YJ, Yang H, Zhang Q, Wang QJ, Sun Q (2017). Effects of spatial structure on DBH increment of natural spruce-fir forest. Journal of Beijing Forestry University, 39(9), 41-47. |
[吕延杰, 杨华, 张青, 王全军, 孙权 (2017). 云冷杉天然林林分空间结构对胸径生长量的影响. 北京林业大学学报, 39(9), 41-47.] | |
[31] | Ma C, Yang ML, Zhang YX, Yan GR, Xu Z (2018). Age composition and dynamic characteristics of the main populations of endangered Malus sieversii. Arid Zone Research, 35, 156-164. |
[马闯, 杨美玲, 张云秀, 阎国荣, 许正 (2018). 新疆野苹果(Malus sieversii)种群年龄结构及其动态特征. 干旱区研究, 35, 156-164.] | |
[32] | Ma LW, Zhang WH, Xue YQ, Ma C, Zhou JY (2010). Growth characteristics and influencing factors of Quercus variabilis seedlings on the north slope of Qinling Mountains. Acta Ecologica Sinica, 30, 6512-6520. |
[马莉薇, 张文辉, 薛瑶芹, 马闯, 周建云 (2010). 秦岭北坡不同生境栓皮栎实生苗生长及其影响因素. 生态学报, 30, 6512-6520.] | |
[33] |
Pardos M, del Castillo JR, Cañellas I, Montero G (2005). Ecophysiology of natural regeneration of forest stands in Spain. Investigación Agraria: Sistemas y Recursos Forestales, 14, 434. DOI: 10.5424/srf/2005143-00939.
DOI |
[34] |
Peláez M, Dirzo R, Fernandes GW, Perea R (2019). Nurse plant size and biotic stress determine quantity and quality of plant facilitation in Oak savannas. Forest Ecology and Management, 437, 435-442.
DOI URL |
[35] |
Shen ZQ, Lu J, Hua M, Fang JP (2016). Spatial pattern analysis and associations of different growth stages of populations of Abies georgei var. smithii in Southeast Tibet, China. Journal of Mountain Science, 13, 2170-2181.
DOI URL |
[36] | Song P, Hong W, Wu CZ, Feng L, Fan HL, Zhu H, Lin YM, Zhang Q (2005). Population structure and its dynamics of rare and endangered plant Alsophila spinulosa. Chinese Journal of Applied Ecology, 16, 413-418. |
[宋萍, 洪伟, 吴承祯, 封磊, 范海兰, 朱慧, 林勇明, 张琼 (2005). 珍稀濒危植物桫椤种群结构与动态研究. 应用生态学报, 16, 413-418.] | |
[37] | Wang F, Lu Q (2019). A spatial-explicit seedling recruitment model for scattered individual trees of Pinus sylvestris var. mongolica. Scientia Silvae Sinicae, 55(8), 1-8. |
[王锋, 卢琦 (2019). 沙地樟子松散生单木的天然更新幼苗空间分布模型. 林业科学, 55(8), 1-8.] | |
[38] | Wu JSGL, Wang JF, Zheng XX, Wang YJ, Liu XL (2009). Spatial structure pattern of regeneration seedlings from over- logged forest in Jingouling forest farm. Journal of Central South University of Forestry & Technology, 29(4), 21-25. |
[乌吉斯古楞, 王俊峰, 郑小贤, 王艳洁, 刘小丽 (2009). 金沟岭林场过伐林更新幼苗空间结构分析. 中南林业科技大学学报, 29(4), 21-25.] | |
[39] | Wu LB, Zheng SJ, Zhang S, Deng BW, Zheng DX (2019). Basic characteristics and distribution type of regeneration saplings and seedling under Machilus versicolora stand. Forestry Prospect and Design, 39(1), 11-15. |
[吴联杯, 郑淑娟, 张硕, 邓博文, 郑德祥 (2019). 黄枝润楠林下更新幼树幼苗基本特征及分布类型. 林业勘察设计, 39(1), 11-15.] | |
[40] | Xie CQ, Tian MX, Zhao ZR, Zheng WL, Wang GY (2015). Spatial point pattern analysis of Abies georgei var. smithii in forest of Sygera Mountains in southeast Tibet, China. Chinese Journal of Applied Ecology, 26, 1617-1624. |
[解传奇, 田民霞, 赵忠瑞, 郑维列, 王国严 (2015). 西藏色季拉山急尖长苞冷杉种群点格局分析. 应用生态学报, 26, 1617-1624.] | |
[41] | Yang QX, Liu LQ, Qin W, Diao YQ, Zhao ZJ, Wu R, Zhang B (2022). Population structure characteristics and health evaluation of Armeniaca vulgaris Lam. Chinese Journal of Ecology, 41, 9-17. |
[杨其享, 刘立强, 秦伟, 刁永强, 赵忠晶, 乌仁其米格, 张博 (2022). 新疆野杏种群结构特征与健康评价. 生态学杂志, 41, 9-17.] | |
[42] |
Yang YC, Huang L, Qian SH, Fukuda K (2015). Completing the life history of Castanopsis fargesii: changes in the seed dispersal, seedling and sapling recruitment patterns. European Journal of Forest Research, 134, 1143-1154.
DOI URL |
[43] | You LY, Cheng G, Liu LQ, Xie GG, Liao K (2019). Dynamics and correlation analysis of growth and development of root system and above-ground part of Armeniaca vulgaris Lam. in Xinyuan wild fruit forest. Journal of Xinjiang Agricultural University, 42, 9-14. |
[尤璐瑶, 程功, 刘立强, 颉刚刚, 廖康 (2019). 新源野果林野杏根系与地上部生长发育动态及相关性分析. 新疆农业大学学报, 42, 9-14.] | |
[44] | Zhai ZY, Qiu J, Si HZ, Yang XF, Liu LQ (2019). Effects of microtopography on germination layer soil factors in Armeniaca vulgaris Lam. in Daxigou. Acta Ecologica Sinica, 39, 2168-2179. |
[翟朝阳, 邱娟, 司洪章, 杨新峰, 刘立强 (2019). 微地形对大西沟新疆野杏萌发层土壤因子的影响. 生态学报, 39, 2168-2179.] | |
[45] | Zhang W, Li HY, Lai XH, Yang YF (2016). Distribution patterns of Juglans cathayensis populations at different slope aspects in Tianshan valley in Xinjiang, China. Chinese Journal of Applied Ecology, 27, 3105-3113. |
[张维, 李海燕, 赖晓辉, 杨允菲 (2016). 新疆天山峡谷不同坡向野核桃种群分布格局. 应用生态学报, 27, 3105-3113.]
DOI |
|
[46] | Zhang Y, Li J (2018). Spatial patterns of soil seed bank and seedlings in the Gurbantunggut desert, the nurse effect of shrubberies. Arid Zone Research, 35, 1138-1145. |
[张盈, 李君 (2018). 古尔班通古特沙漠土壤种子库和幼苗的空间格局——灌丛的“保护效应”. 干旱区研究, 35, 1138-1145.] | |
[47] | Zhang Y, Liu LQ, Zhai ZY (2016). Study on seed storage and germination characteristics of Armeniaca vulgaris Lam. Journal of Xinjiang Agricultural University, 39, 366-372. |
[张渊, 刘立强, 翟朝阳 (2016). 新疆野杏种子贮藏方式和萌发特性的研究. 新疆农业大学学报, 39, 366-372.] | |
[48] | Zhang ZH, Guo JB, Wang YH, Wang X (2021). Population structure and spatial distribution pattern of Quercus wutaishanica in Liupan Mountains. Journal of Zhejiang A&F University, 38, 1091-1099. |
[张中惠, 郭建斌, 王彦辉, 王晓 (2021). 六盘山辽东栎林种群结构和空间分布格局. 浙江农林大学学报, 38, 1091-1099.] | |
[49] |
Zhu JJ, Zhang GQ, Wang GG, Yan QL, Lu DL, Li XF, Zheng X (2015). On the size of forest gaps: can their lower and upper limits be objectively defined? Agricultural and Forest Meteorology, 213, 64-76.
DOI URL |
[50] | Zhu KY, Wang QC, Wu WJ (2017). Effect of gap size on growth and morphology of transplanted saplings of Quercus mongolica and Fraxinus mandshurica. Scientia Silvae Sinicae, 53(4), 150-157. |
[朱凯月, 王庆成, 吴文娟 (2017). 林隙大小对蒙古栎和水曲柳人工更新幼树生长和形态的影响. 林业科学, 53(4), 150-157.] |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[3] | 李晓田, 王铁娟, 韩文娟, 张丽, 张慧, 刘晓婷, 刘雅洁. 东阿拉善珍稀濒危植物绵刺种群结构与点格局分析[J]. 植物生态学报, 2023, 47(4): 506-514. |
[4] | 张宏祥, 闻志彬, 王茜. 新疆野苹果种群遗传结构及其环境适应性[J]. 植物生态学报, 2022, 46(9): 1098-1108. |
[5] | 闫涵, 马松梅, 魏博, 张宏祥, 张丹. 孑遗灌木长柄扁桃的历史分布格局及其环境驱动力[J]. 植物生态学报, 2022, 46(7): 766-774. |
[6] | 张央, 安明态, 武建勇, 刘锋, 汪伟. 中国兜兰属宽瓣亚属植物地理分布格局及其主导气候因子[J]. 植物生态学报, 2022, 46(1): 40-50. |
[7] | 张欢, 张云玲, 张彦才, 阎平. 新疆奇台荒漠类草地自然保护区主要植物群落及其特征[J]. 植物生态学报, 2021, 45(8): 918-924. |
[8] | 左永令, 杨小波, 李东海, 吴二焕, 杨宁, 李龙, 张培春, 陈琳, 李晨笛. 环境因子对海南岛野生兰科植物物种组成与分布格局的影响[J]. 植物生态学报, 2021, 45(12): 1341-1349. |
[9] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[10] | 唐丽丽, 杨彤, 刘鸿雁, 康慕谊, 王仁卿, 张峰, 高贤明, 岳明, 张梅, 郑璞帆, 石福臣. 华北地区荆条灌丛分布及物种多样性空间分异 规律[J]. 植物生态学报, 2019, 43(9): 825-833. |
[11] | 吴盼, 彭希强, 杨树仁, 高亚男, 白丰桦, 衣世杰, 杜宁, 郭卫华. 山东省滨海湿地柽柳种群的空间分布格局及其关联性[J]. 植物生态学报, 2019, 43(9): 817-824. |
[12] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[13] | 蔡琴, 丁俊祥, 张子良, 胡君, 汪其同, 尹明珍, 刘庆, 尹华军. 青藏高原东缘主要针叶树种叶片碳氮磷化学计量分布格局及其驱动因素[J]. 植物生态学报, 2019, 43(12): 1048-1060. |
[14] | 陈怡超, 赵莹, 宋希强, 任明迅. 海南杜鹃在河岸带弯道两侧的空间分布格局和年龄结构差异[J]. 植物生态学报, 2018, 42(8): 841-849. |
[15] | 张静, 刘耘华, 盛建东, 柴强, 李瑞霞, 赵丹. 新疆北部草地典型灌木的碳氮特征[J]. 植物生态学报, 2018, 42(3): 307-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19