植物生态学报 ›› 2021, Vol. 45 ›› Issue (12): 1341-1349.DOI: 10.17521/cjpe.2021.0147
左永令1, 杨小波1,*(), 李东海1, 吴二焕2, 杨宁3, 李龙1, 张培春1, 陈琳1, 李晨笛1
收稿日期:
2021-04-19
接受日期:
2021-08-26
出版日期:
2021-12-20
发布日期:
2021-10-15
通讯作者:
杨小波
作者简介:
*(yanfengxb@163.com)基金资助:
ZUO Yong-Ling1, YANG Xiao-Bo1,*(), LI Dong-Hai1, WU Er-Huan2, YANG Ning3, LI Long1, ZHANG Pei-Chun1, CHEN Lin1, LI Chen-Di1
Received:
2021-04-19
Accepted:
2021-08-26
Online:
2021-12-20
Published:
2021-10-15
Contact:
YANG Xiao-Bo
Supported by:
摘要:
海南岛是中国兰科植物物种丰富度较高的地区, 了解环境因子对海南岛野生兰科植物物种组成和分布格局的影响, 对于该地区野生兰科植物的保护管理和相关研究具有重要指导意义。基于海南岛野生兰科植物调查分布样方的植被类型、海拔、坡向、坡度、年平均气温、年降水量的数据, 采用典范相关分析探索了环境因子对物种组成的影响, 并计算各个环境因子对物种组成的总效应与净效应, 同时分析了6个环境因子对野生兰科植物分布格局的影响。结果表明, 所选的6个环境因子共解释了海南岛野生兰科植物组成变异的3.7%; 植被类型、海拔、年平均气温、年降水量、坡向、坡度这6个环境因子的总效应与净效应均达显著水平, 但其解释率依次减小。所选的6个环境因子对海南岛野生兰科植物的分布均有影响, 野生兰科植物在海南岛主要分布在中海拔段、5°-35°的坡度范围、阴坡与半阴坡、年平均气温较低且年降水量较高的环境, 并且于原生植被中分布最多。
左永令, 杨小波, 李东海, 吴二焕, 杨宁, 李龙, 张培春, 陈琳, 李晨笛. 环境因子对海南岛野生兰科植物物种组成与分布格局的影响. 植物生态学报, 2021, 45(12): 1341-1349. DOI: 10.17521/cjpe.2021.0147
ZUO Yong-Ling, YANG Xiao-Bo, LI Dong-Hai, WU Er-Huan, YANG Ning, LI Long, ZHANG Pei-Chun, CHEN Lin, LI Chen-Di. Effects of environmental variables on the species composition and distribution patterns of wild orchids in Hainan Island. Chinese Journal of Plant Ecology, 2021, 45(12): 1341-1349. DOI: 10.17521/cjpe.2021.0147
环境因子及排序概要 Environmental variable and summary of ordination | 第1轴 Axis 1 | 第2轴 Axis 2 | 第3轴 Axis 3 | 第4轴 Axis 4 |
---|---|---|---|---|
环境因子 Environmental variable | ||||
坡度 Slope gradient | 0.109 7 | 0.014 3 | 0.220 5 | -0.246 4 |
坡向 Slope aspect | -0.209 3 | 0.155 1 | -0.275 1 | 0.234 9 |
年平均气温 Mean annual air temperature | -0.579 0 | 0.437 5 | -0.185 7 | -0.078 9 |
年降水量 Mean annual precipitation | 0.546 6 | -0.361 4 | -0.001 5 | -0.366 1 |
海拔 Altitude | 0.848 1 | 0.036 1 | 0.126 9 | -0.020 5 |
山地雨林 Mountain rainforest | 0.747 2 | -0.044 2 | -0.296 5 | -0.179 7 |
低地雨林 Tropical lowland rainforest | -0.301 3 | -0.133 1 | 0.503 9 | -0.019 5 |
低地雨林次生林 Tropical lowland rainforest secondary forest | -0.360 0 | 0.217 2 | -0.307 3 | 0.069 8 |
针叶林 Coniferous forest | -0.036 6 | -0.092 7 | 0.145 0 | 0.309 1 |
旱地农业生产植被 Dryland agricultural production vegetation | -0.240 9 | 0.159 5 | -0.222 1 | -0.051 8 |
CCA排序概要 Summary of CCA ordination | ||||
特征值 Eigenvalues | 0.652 6 | 0.400 8 | 0.369 6 | 0.297 2 |
物种组成变异累积解释率 Explained variation (cumulative) of species composition | 0.95 | 1.53 | 2.06 | 2.49 |
典范轴的相关性 Pseudo-canonical correlation | 0.871 3 | 0.725 4 | 0.727 4 | 0.670 7 |
物种-环境关系累积解释率 Explained fitted variation (cumulative) of species-environment | 25.59 | 41.30 | 55.80 | 67.45 |
表1 环境因子与典范对应分析(CCA)前4排序轴的相关系数及排序概要
Table 1 Correlation coefficients between environmental variables and the first four canonical correspondence analysis (CCA) ordination axes and ordination summary
环境因子及排序概要 Environmental variable and summary of ordination | 第1轴 Axis 1 | 第2轴 Axis 2 | 第3轴 Axis 3 | 第4轴 Axis 4 |
---|---|---|---|---|
环境因子 Environmental variable | ||||
坡度 Slope gradient | 0.109 7 | 0.014 3 | 0.220 5 | -0.246 4 |
坡向 Slope aspect | -0.209 3 | 0.155 1 | -0.275 1 | 0.234 9 |
年平均气温 Mean annual air temperature | -0.579 0 | 0.437 5 | -0.185 7 | -0.078 9 |
年降水量 Mean annual precipitation | 0.546 6 | -0.361 4 | -0.001 5 | -0.366 1 |
海拔 Altitude | 0.848 1 | 0.036 1 | 0.126 9 | -0.020 5 |
山地雨林 Mountain rainforest | 0.747 2 | -0.044 2 | -0.296 5 | -0.179 7 |
低地雨林 Tropical lowland rainforest | -0.301 3 | -0.133 1 | 0.503 9 | -0.019 5 |
低地雨林次生林 Tropical lowland rainforest secondary forest | -0.360 0 | 0.217 2 | -0.307 3 | 0.069 8 |
针叶林 Coniferous forest | -0.036 6 | -0.092 7 | 0.145 0 | 0.309 1 |
旱地农业生产植被 Dryland agricultural production vegetation | -0.240 9 | 0.159 5 | -0.222 1 | -0.051 8 |
CCA排序概要 Summary of CCA ordination | ||||
特征值 Eigenvalues | 0.652 6 | 0.400 8 | 0.369 6 | 0.297 2 |
物种组成变异累积解释率 Explained variation (cumulative) of species composition | 0.95 | 1.53 | 2.06 | 2.49 |
典范轴的相关性 Pseudo-canonical correlation | 0.871 3 | 0.725 4 | 0.727 4 | 0.670 7 |
物种-环境关系累积解释率 Explained fitted variation (cumulative) of species-environment | 25.59 | 41.30 | 55.80 | 67.45 |
图2 物种与环境因子的典范对应分析(CCA)双序图。E1, 坡度; E2, 坡向; E3, 年平均气温; E4, 年降水量; E5, 海拔; V1, 山地雨林; V2, 低地雨林; V3, 低地雨林次生林; V4, 旱地农业生产植被; V5, 针叶林。1, 斑叶兰; 2, 绿花斑叶兰; 3, 伏生石豆兰; 4, 全唇盂兰; 5, 美丽云叶兰; 6, 吻兰; 7, 无耳沼兰; 8, 钗子股; 9, 火焰兰; 10, 大尖囊蝴蝶兰; 11, 石仙桃; 12, 牛角兰; 13, 流苏贝母兰; 14, 粗茎苹兰; 15, 黑毛石斛; 16, 芳香石豆兰; 17, 钟兰; 18, 指叶拟毛兰; 19, 石斛; 20, 多花兰; 21, 窄唇蜘蛛兰; 22, 多花脆兰; 23, 竹枝石斛; 24, 橙黄玉凤花; 25, 红花隔距兰; 26, 戟唇石豆兰; 27, 长苞苹兰; 28, 长距虾脊兰; 29, 美花隔距兰; 30, 云叶兰。
Fig. 2 Canonical correspondence analysis (CCA) biplot of species and environmental variables. E1, slope gradient; E2, slope aspect; E3, mean annual air temperature; E4, mean annual precipitation; E5, altitude; V1, mountain rainforest; V2, tropical lowland rainforest; V3, tropical lowland rainforest secondary forest; V4, dryland agricultural production vegetation; V5, coniferous forest. 1, Goodyera schlechtendaliana; 2, G. viridiflora; 3, Bulbophyllum reptans; 4, Lecanorchis nigricans; 5, Nephelaphyllum pulchrum; 6, Collabium chinense; 7, Dienia ophrydis; 8, Luisia morsei; 9, Renanthera coccinea; 10, Phalaenopsis deliciosa; 11, Pholidota chinensis; 12, Ceratostylis hainanensis; 13, Coelogyne fimbriata; 14, Pinalia amica; 15, Dendrobium williamsonii; 16, Bulbophyllum ambrosia; 17, Campanulorchis thao; 18, Mycaranthes pannea; 19, Dendrobium nobile; 20, Cymbidium floribundum; 21, Arachnis labrosa; 22, Acampe rigida; 23, Dendrobium salaccense; 24, Habenaria rhodocheila; 25, Cleisostoma williamsonii; 26, Bulbophyllum depressum; 27, Pinalia obvia; 28, Calanthe sylvatica; 29, Cleisostoma birmanicum; 30, Nephelaphyllum tenuiflorum.
图3 野生兰科植物物种分布数与6个环境因子的关系。V1, 山地雨林; V2, 低地雨林; V3, 低地雨林次生林; V4, 旱地农业生产植被; V5, 针叶林。
Fig. 3 Relationship between the species richness of wild orchids and six environmental variables. V1, mountain rainforest; V2, tropical lowland rainforest; V3, tropical lowland rainforest secondary forest; V4, dryland agricultural production vegetation; V5, coniferous forest.
环境因子 Environmental variable | 总效应 Gross effect | F | p | 净效应 Net effect | F | p |
---|---|---|---|---|---|---|
植被 Vegetation | 1.8 | 2.6 | 0.001 | 1.2 | 1.8 | 0.001 |
海拔 Altitude | 0.9 | 5.4 | 0.001 | 0.6 | 3.4 | 0.001 |
年平均气温 Mean annual air temperature | 0.7 | 4.1 | 0.001 | 0.4 | 2.4 | 0.001 |
年降水量 Mean annual precipitation | 0.7 | 3.9 | 0.001 | 0.4 | 2.3 | 0.001 |
坡向 Slope aspect | 0.4 | 2.2 | 0.001 | 0.3 | 1.8 | 0.001 |
坡度 Slope gradient | 0.3 | 1.9 | 0.002 | 0.3 | 1.7 | 0.007 |
表2 环境因子对物种组成的总效应与净效应
Table 2 Gross and net effects of environmental variables on species composition
环境因子 Environmental variable | 总效应 Gross effect | F | p | 净效应 Net effect | F | p |
---|---|---|---|---|---|---|
植被 Vegetation | 1.8 | 2.6 | 0.001 | 1.2 | 1.8 | 0.001 |
海拔 Altitude | 0.9 | 5.4 | 0.001 | 0.6 | 3.4 | 0.001 |
年平均气温 Mean annual air temperature | 0.7 | 4.1 | 0.001 | 0.4 | 2.4 | 0.001 |
年降水量 Mean annual precipitation | 0.7 | 3.9 | 0.001 | 0.4 | 2.3 | 0.001 |
坡向 Slope aspect | 0.4 | 2.2 | 0.001 | 0.3 | 1.8 | 0.001 |
坡度 Slope gradient | 0.3 | 1.9 | 0.002 | 0.3 | 1.7 | 0.007 |
[1] | Chen Y, Xu X, Zhang DR, Wei Y (2006). Correlations between vegetation distribution and topographical factors in the northwest of Longmen Mountain, Sichuan Province. Chinese Journal of Ecology, 25, 1052-1055. |
[ 陈瑶, 胥晓, 张德然, 魏勇 (2006). 四川龙门山西北部植被分布与地形因子的相关性. 生态学杂志, 25, 1052-1055.] | |
[2] |
Chen YK, Yang XB, Li DH, Long WX (2016). Status of vascular plant species on Hainan Island. Biodiversity Science, 24, 948-956.
DOI URL |
[ 陈玉凯, 杨小波, 李东海, 龙文兴 (2016). 海南岛维管植物物种多样性的现状. 生物多样性, 24, 948-956.]
DOI |
|
[3] |
Chen YK, Yang XB, Yang Q, Li DH, Long WX, Luo WQ (2014). Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China. PLOS ONE, 9, e97751. DOI: 10.1371/journal.pone. 0097751.
DOI URL |
[4] |
Cimalová Š, Lososová Z (2009). Arable weed vegetation of the northeastern part of the Czech Republic: effects of environmental factors on species composition. Plant Ecology, 203, 45-57.
DOI URL |
[5] | Dixon KW, Kell SP, Barrett RL, Cribb PJ (2003). Orchid Conservation. Natural History Publications, Kota Kinabalu, Malaysia. |
[6] | Ferguson DE, Morgan P, Johnson FD (1989). Proceedings- Land Classifications Based on Vegetation: Applications for Resource Management. US Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, US. |
[7] | Gustavo AR (1996). The orchid family//IUCN/SSC Orchid Specialist Group. Orchids-Status Survey and Conservation Action Plan. IUCN, Gland, Switzerland and Cambridge, UK. 3-4. |
[8] |
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
DOI URL |
[9] | Huang FZ, Ding T, Li XK, Guo YL, Wang B, Xiang WS, Wen SJ, Li DX, He YL (2016). Species diversity for various associations along an altitudinal gradient in the karst seasonal rainforest in Nonggang. Acta Ecologica Sinica, 36, 4509-4517. |
[ 黄甫昭, 丁涛, 李先琨, 郭屹立, 王斌, 向悟生, 文淑均, 李冬兴, 何运林 (2016). 弄岗喀斯特季节性雨林不同群丛物种多样性随海拔的变化. 生态学报, 36, 4509-4517.] | |
[10] | Huang MZ, Song XQ, Yin JM, Lan SR (2019). Hainan tropical orchid evolution stage. Forest & Humankind, (12), 90-94. |
[ 黄明忠, 宋希强, 尹俊梅, 兰思仁 (2019). 海南热带兰花演化舞台. 森林与人类, (12), 90-94.] | |
[11] | Jia HK, Liu YH, Xu X, Wang K, Gao Q (2005). Simulation of soil water dynamics in a Caragana intermedia woodland in Huangfuchuan watershed: relationships among slope, aspect, plant density and soil water content. Acta Phytoecologica Sinica, 29, 910-917. |
[ 贾海坤, 刘颖慧, 徐霞, 王昆, 高琼 (2005). 皇甫川流域柠条林地水分动态模拟--坡度、坡向、植被密度与土壤水分的关系. 植物生态学报, 29, 910-917.]
DOI |
|
[12] | Li JJ, Meng QW, Song XQ (2017). Epiphytic characteristics of Oxystophyllum changjiangense (Orchidaceae) in Bawangling National Nature Reserve, Hainan, China. Journal of Tropical Biology, 8, 86-91. |
[ 李静静, 孟千万, 宋希强 (2017). 海南霸王岭国家自然保护区拟石斛的附生特性. 热带生物学报, 8, 86-91.] | |
[13] |
Liu H, Luo YB (2010). Protecting orchids in Nature Reserves: research and restoration needs. Botanical Review, 76, 137-139.
DOI URL |
[14] | Liu ZX, Ren GX, Kang B, Wang DX, Qin XW, Ren XM, Kong LT, Wang ZB (2011). The species diversities under secondary forest communities on different slope aspects in Xinjiashan Mountain. Research of Soil and Water Conservation, 18(4), 197-202. |
[ 刘振学, 任广鑫, 康冰, 王得祥, 秦晓威, 任学敏, 孔令童, 王志彬 (2011). 辛家山不同坡向次生林群落物种多样性研究. 水土保持研究, 18(4), 197-202.] | |
[15] |
Lorenzo M, Michele S, Sebastian K, Johannes I, Angelo P (2006). Effects of local factors on plant species richness and composition of alpine meadows. Agriculture, Ecosystems & Environment, 119, 281-288.
DOI URL |
[16] |
Lososová Z, Chytrý M, Cimalová S, Kropáč Z, Otýpková Z, Pyšek P, Tichý L (2004). Weed vegetation of arable land in Central Europe: gradients of diversity and species composition. Journal of Vegetation Science, 15, 415-422.
DOI URL |
[17] |
Luo YB, Jia JS, Wang CL (2003). A general review of the conservation status of Chinese orchids. Biodiversity Science, 11, 70-77.
DOI URL |
[ 罗毅波, 贾建生, 王春玲 (2003). 中国兰科植物保育的现状和展望. 生物多样性, 11, 70-77.]
DOI |
|
[18] |
Økland RH (1999). On the variation explained by ordination and constrained ordination axes. Journal of Vegetation Science, 10, 131-136.
DOI URL |
[19] | Shen ZH, Fang JY (2001). Niche comparison of two Fagus species based on the topographic patterns of their populations. Acta Phytoecologica Sinica, 25, 392-398. |
[ 沈泽昊, 方精云 (2001). 基于种群分布地形格局的两种水青冈生态位比较研究. 植物生态学报, 25, 392-398.] | |
[20] | Shen ZH, Hu ZW, Zhao J, Wang H (2007). Altitudinal patterns of plant diversity on Mt. Guniujiang, Anhui, China-With a discussion on the ecological impacts of hilltop condition. Journal of Mountain Science, 25, 160-168. |
[ 沈泽昊, 胡志伟, 赵俊, 王会 (2007). 安徽牯牛降的植物多样性垂直分布特征--兼论山顶效应的影响. 山地学报, 25, 160-168.] | |
[21] |
Sherman R, Mullen R, Li HM, Fang ZD, Wang Y (2008). Spatial patterns of plant diversity and communities in alpine ecosystems of the Hengduan Mountains, northwest Yunnan, China. Journal of Plant Ecology, 1, 117-136.
DOI URL |
[22] | Wang XL, Tu YL, Wen XM, Zhu RJ, Duan YW (2018). Diversity and altitudinal distribution patterns of orchids in Southeastern of Tibet. Journal of Central South University of Forestry & Technology, 38(12), 45-51. |
[ 王喜龙, 土艳丽, 文雪梅, 朱荣杰, 段元文 (2018). 藏东南兰科植物多样性及其沿海拔梯度的分布格局. 中南林业科技大学学报, 38(12), 45-51.] | |
[23] | Wang XP (1992). Influences of global climate change on ecosystems and biodiversity and main counter measures of precaution (II). Rural Eco-Environment, 8(3), 1-5. |
[ 王献溥 (1992). 全球气候变暖对生态系统和生物多样性的影响和主要对策(二). 农村生态环境, 8(3), 1-5.] | |
[24] |
Wang XP, Tang ZY, Fang JY (2006). Climatic control on forests and tree species distribution in the forest region of Northeast China. Journal of Integrative Plant Biology, 48, 778-789.
DOI URL |
[25] | Wang Y (2004). Orchids of Wuzhishan Mountain in Hainan. Journal of Qiongzhou University, 11(2), 55-56. |
[ 王毅 (2004). 海南省五指山兰科植物资源调查. 琼州大学学报, 11(2), 55-56.] | |
[26] | Wei HY (2020). Study on the influence of different environmental factors on the distribution of orchids plants in karst mountain--Take Huajiang Grand Canyon as an example. Rural Economy and Science-Technology, 31(1), 68-70. |
[ 魏海燕 (2020). 喀斯特山区不同环境因子对兰科植物分布的影响研究--以花江大峡谷为例. 农村经济与科技, 31(1), 68-70.] | |
[27] | Wu JS, Li XJ, Shen ZX, Zhang XZ, Shi PL, Yu CQ, Wang JS, Zhou YT (2012). Species diversity distribution pattern of alpine grasslands communities along a precipitation gradient across Northern Tibetan Plateau. Acta Prataculturae Sinica, 21(3), 17-25. |
[ 武建双, 李晓佳, 沈振西, 张宪洲, 石培礼, 余成群, 王景升, 周宇庭 (2012). 藏北高寒草地样带物种多样性沿降水梯度的分布格局. 草业学报, 21(3), 17-25.] | |
[28] | Yang XB (2015). Colored Illustrated Flora of Hainan Province. Science Press, Beijing. |
[ 杨小波 (2015). 海南植物图志. 科学出版社, 北京.] | |
[29] | Yang XB (2019). Flora of Hainan. Science Press, Beijing. |
[ 杨小波 (2019). 海南植被志. 科学出版社, 北京.] | |
[30] | Yang ZB, Yu DL, Liu Q (2014). Altitudinal distribution of orchids in Xishuangbanna. Forest Inventory and Planning, 39(3), 71-75. |
[ 杨正斌, 余东莉, 刘强 (2014). 西双版纳兰科植物海拔分布格局. 林业调查规划, 39(3), 71-75.] | |
[31] | Zhang YB, Du HD, Jin XH, Ma KP (2015). Species diversity and geographic distribution of wild Orchidaceae in China. Chinese Science Bulletin, 60, 179-188. |
[ 张殷波, 杜昊东, 金效华, 马克平 (2015). 中国野生兰科植物物种多样性与地理分布. 科学通报, 60, 179-188.] | |
[32] | Zhang ZL, Yu F, Wang DX (2014). Effects of environmental factors on the species composition of three typical secondary forests in Qinling Mountains. Journal of Northwest A&F University (Natural Science Edition), 42(8), 69-78. |
[ 张子良, 于飞, 王得祥 (2014). 环境因子对秦岭3种典型次生林群落物种组成的影响. 西北农林科技大学学报(自然科学版), 42(8), 69-78.] |
[1] | 樊凡, 赵联军, 马添翼, 熊心雨, 张远彬, 申小莉, 李晟. 川西王朗亚高山暗针叶林25.2 hm2动态监测样地物种组成与群落结构特征[J]. 植物生态学报, 2022, 46(9): 1005-1017. |
[2] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[3] | 王姝文, 李文怀, 李艳龙, 严慧, 李永宏. 放牧家畜类型对内蒙古典型草原植物多样性和群落结构的影响[J]. 植物生态学报, 2022, 46(8): 941-950. |
[4] | 闫涵, 马松梅, 魏博, 张宏祥, 张丹. 孑遗灌木长柄扁桃的历史分布格局及其环境驱动力[J]. 植物生态学报, 2022, 46(7): 766-774. |
[5] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[6] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[7] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
[8] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[9] | 王俐爽 同小娟 孟平 张劲松 刘沛荣 李俊 张静茹 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[10] | 刘秋蓉 李丽 罗垚 陈冬东 黄鑫 胡君 刘庆. 四川巴塘海子山高寒灌丛群落的基本特征[J]. 植物生态学报, 2022, 46(11): 1334-1341. |
[11] | 黄侩侩 胡刚 庞庆玲 张贝 何业涌 胡聪 徐超昊 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[12] | 朱芩, 宁盼, 侯琳, 郝家田, 胡云云. 三江源地区刺柏属植物群落类型特征[J]. 植物生态学报, 2022, 46(1): 114-122. |
[13] | 张央, 安明态, 武建勇, 刘锋, 汪伟. 中国兜兰属宽瓣亚属植物地理分布格局及其主导气候因子[J]. 植物生态学报, 2022, 46(1): 40-50. |
[14] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[15] | 向响, 黄永梅, 杨崇曜, 李泽卿, 陈慧颖, 潘莹萍, 霍佳璇, 任梁. 海拔对青海湖流域群落水平植物功能性状的影响[J]. 植物生态学报, 2021, 45(5): 456-466. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19