植物生态学报 ›› 2023, Vol. 47 ›› Issue (11): 1551-1560.DOI: 10.17521/cjpe.2022.0414
赵镇贤1, 陈银萍1,*(), 王立龙2, 王彤彤1, 李玉强2
收稿日期:
2022-10-18
接受日期:
2023-04-06
出版日期:
2023-11-20
发布日期:
2023-04-20
通讯作者:
陈银萍(基金资助:
ZHAO Zhen-Xian1, CHEN Yin-Ping1,*(), WANG Li-Long2, WANG Tong-Tong1, LI Yu-Qiang2
Received:
2022-10-18
Accepted:
2023-04-06
Online:
2023-11-20
Published:
2023-04-20
Contact:
CHEN Yin-Ping(Supported by:
摘要:
叶片建成成本(LCC)是构建单位质量或面积叶片投入能量成本的衡量指标, 其差异与变化能够反映植物的能量利用策略和环境适应特征。该研究假设: 不同功能类群的荒漠植物具有不同的叶片能量利用策略, 从而有利于其适应干旱环境。为验证这一假设, 该研究以河西走廊荒漠区主要荒漠植物为研究对象, 比较了LCC在不同生态系统和不同植物功能类群之间的差异, 分析了LCC和其他叶片性状之间的关系, 以及LCC随环境因子的变化规律。结果表明: 荒漠生态系统中植物单位质量的LCC显著低于森林、苔原和草地生态系统; 在荒漠生态系统中, 肉质植物单位质量LCC显著低于非肉质植物, 而单位面积LCC在两种植物类群间无显著差异; 叶片碳、氮含量, 热值以及灰分含量与LCC之间的相关关系说明灰分含量是影响肉质植物和非肉质植物之间LCC差异的内在决定因素; 环境因子对单位质量LCC空间变异的贡献非常有限(肉质植物: 11.22%, 非肉质植物: 25.30%, 所有植物: 24.99%), 并且6个环境因子中只有土壤电导率、年平均气温和年降水量表现出显著的独立贡献; 肉质植物单位质量LCC随年平均气温的降低而减小, 非肉质植物单位质量LCC随年降水量和年平均气温的降低而减小。该研究的结果表明, 降低单位质量而非单位面积的LCC更加有利于植物适应干旱、高盐的荒漠生境。
赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较. 植物生态学报, 2023, 47(11): 1551-1560. DOI: 10.17521/cjpe.2022.0414
ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor. Chinese Journal of Plant Ecology, 2023, 47(11): 1551-1560. DOI: 10.17521/cjpe.2022.0414
图1 荒漠生态系统与草地、森林、苔原生态系统间叶片单位质量建成成本的比较(平均值±标准差)。 **, 与荒漠生态系统差异极显著(p < 0.01)。
Fig. 1 Comparison of the mass-based leaf construction cost between desert ecosystems and grassland, forest and tundra ecosystems (mean ± SD). **, there is a very significant difference with the desert ecosystem (p < 0.01).
LCCm (g·g-1) | LCCa (g·m-2) | |||||
---|---|---|---|---|---|---|
平均值 Mean | 最大值 Max | 最小值 Min | 平均值 Mean | 最大值 Max | 最小值 Min | |
总体 Total | 1.25 ± 0.03 | 1.57 | 0.69 | 192.84 ± 14.34 | 763.32 | 82.68 |
肉质植物 Succulent plant | 1.10 ± 0.04 | 1.47 | 0.69 | 199.92 ± 15.79 | 374.79 | 110.21 |
非肉质植物 Non-succulent plant | 1.40 ± 0.03 | 1.57 | 0.93 | 185.75 ± 24.21 | 763.32 | 82.68 |
t检验 t test | p = 0.000 | p = 0.626 | ||||
草本 Herb | 1.29 ± 0.04 | 1.57 | 0.73 | 172.44 ± 12.68 | 361.16 | 82.68 |
灌木 Shrub | 1.22 ± 0.05 | 1.53 | 0.69 | 213.23 ± 25.41 | 763.32 | 110.21 |
t检验 t test | p = 0.259 | p = 0.157 |
表1 河西走廊荒漠区52种植物叶片建成成本特征(平均值±标准误)
Table 1 Leaf construction cost characteristics of 52 plant species in desert area of the Hexi Corridor (mean ± SE)
LCCm (g·g-1) | LCCa (g·m-2) | |||||
---|---|---|---|---|---|---|
平均值 Mean | 最大值 Max | 最小值 Min | 平均值 Mean | 最大值 Max | 最小值 Min | |
总体 Total | 1.25 ± 0.03 | 1.57 | 0.69 | 192.84 ± 14.34 | 763.32 | 82.68 |
肉质植物 Succulent plant | 1.10 ± 0.04 | 1.47 | 0.69 | 199.92 ± 15.79 | 374.79 | 110.21 |
非肉质植物 Non-succulent plant | 1.40 ± 0.03 | 1.57 | 0.93 | 185.75 ± 24.21 | 763.32 | 82.68 |
t检验 t test | p = 0.000 | p = 0.626 | ||||
草本 Herb | 1.29 ± 0.04 | 1.57 | 0.73 | 172.44 ± 12.68 | 361.16 | 82.68 |
灌木 Shrub | 1.22 ± 0.05 | 1.53 | 0.69 | 213.23 ± 25.41 | 763.32 | 110.21 |
t检验 t test | p = 0.259 | p = 0.157 |
图2 不同功能类群荒漠植物单位质量叶片建成成本之间的差异以及与叶片的总热值(GCV) (A)、去灰分热值(AFCV) (B)、灰分含量(AC) (C)、碳含量(LTC) (D)、氮含量(LTN) (E)、比叶面积(SLA) (F)的关系。**, 肉质(S)与非肉质(NS)植物差异极显著(p < 0.01)。
Fig. 2 Differences in the desert plant mass-based leaf construction cost of different functional groups and their relationships with the gross calorific value (GCV) (A), the ash free caloric values (AFCV) (B), the ash content (AC) (C), the carbon content (LTC) (D), the nitrogen content (LTN) (E), and the specific leaf area (SLA) (F). **, there is a very significant difference between succulent (S) and non succulent (NS) plants (p < 0.01).
图3 不同功能类群荒漠植物单位面积叶片建成成本之间的差异以及与叶片的单位面积总热值(GCV) (A)、去灰分热值(AFCV) (B)、灰分含量(AC) (C)、碳含量(LTC) (D)、氮含量(LTN) (E)、比叶面积(SLA) (F)的关系。**, 肉质(S)与非肉质(NS)植物差异极显著(p < 0.01)。
Fig. 3 Differences in the desert plant area-based leaf construction cost of different functional groups and their relationships with the area-based leaf gross calorific value (GCV) (A), the ash free caloric values (AFCV) (B), the ash content (AC) (C), the carbon content (LTC) (D), the nitrogen content (LTN) (E), and the specific leaf area (SLA) (F). **, there is a very significant difference between succulent (S) and non succulent (NS) plants (p < 0.01).
植物类群 Plant group | 全模型 Full model | 环境因子 Environmental factor | |||||
---|---|---|---|---|---|---|---|
pH | EC | STN | MAT | MAP | ATSR | ||
肉质叶植物 S | 11.22 | 6.39 | 20.66 | 13.49 | 35.33* | 9.26 | 14.87 |
非肉质叶植物 NS | 25.30 | 18.45 | 15.11 | 7.32 | 23.94* | 32.43* | 2.75 |
所有植物 All | 24.99 | 8.55 | 50.60* | 9.20 | 26.30* | 2.92 | 2.43 |
表2 环境因子对位点水平单位质量叶片建成成本方差变异的贡献率(%)
Table 2 Fraction of variance (%) accounted for environmental factors in site-level leaf construction cost
植物类群 Plant group | 全模型 Full model | 环境因子 Environmental factor | |||||
---|---|---|---|---|---|---|---|
pH | EC | STN | MAT | MAP | ATSR | ||
肉质叶植物 S | 11.22 | 6.39 | 20.66 | 13.49 | 35.33* | 9.26 | 14.87 |
非肉质叶植物 NS | 25.30 | 18.45 | 15.11 | 7.32 | 23.94* | 32.43* | 2.75 |
所有植物 All | 24.99 | 8.55 | 50.60* | 9.20 | 26.30* | 2.92 | 2.43 |
图4 荒漠植物单位质量叶片建成成本与土壤电导率(A)、年平均气温(B)之间的关系。数据进行lg转换以改善其正态性。
Fig. 4 Relationships between the the mass-based leaf construction cost (LCCm) of desert plants and soil electrical conductivity (EC) (A), mean annual air temperature (MAT) (B). Data were lg-transformed to improve their normality.
图5 不同功能类群荒漠植物单位质量叶片建成成本与年平均气温(A)、年降水量(B)之间的关系。数据进行lg转换以改善其正态性。
Fig. 5 Relationships between the mass-based leaf construction cost (LCCm) of desert plants of different functional groups and mean annual air temperature (MAT) (A), mean annual precipitation (MAP) (B). Data were lg-transformed to improve their normality.
[1] | Bao YJ, Li ZH, Han XG, Song GB, Yang XH, Lü HY (2006). Plant caloric value and its bio-ecological attributes. Chinese Journal of Ecology, 25, 1095-1103. |
[鲍雅静, 李政海, 韩兴国, 宋国宝, 杨晓慧, 吕海燕 (2006). 植物热值及其生物生态学属性. 生态学杂志, 25, 1095-1103.] | |
[2] |
Baruch Z, Bilbao B (1999). Effects of fire and defoliation on the life history of native and invader C4 grasses in a neotropical savanna. Oecologia, 119, 510-520.
DOI URL |
[3] |
Borcard D, Legendre P, Drapeau P (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045-1055.
DOI URL |
[4] |
Cavatte PC, Rodríguez-López NF, Martins SCV, Mattos MS, Sanglard LMVP, Damatta FM (2012). Functional analysis of the relative growth rate, chemical composition, construction and maintenance costs, and the payback time of Coffea arabica L. leaves in response to light and water availability. Journal of Experimental Botany, 63, 3071-3082.
DOI PMID |
[5] | Chen FY, Luo TX, Zhang L, Deng KM, Tian XY (2006). Comparison of leaf construction cost in dominant tree species of the evergreen broad-leaved forest in Jiulian Mountain, Jiangxi Province. Acta Ecologica Sinica, 26, 2485-2493. |
[陈飞宇, 罗天祥, 张林, 邓坤枚, 田晓娅 (2006). 江西九连山常绿阔叶林主要树种叶建成消耗的比较. 生态学报, 26, 2485-2493.] | |
[6] | Chen L, Yang XG, Song NP, Yang MX, Xiao XP, Wang X (2014). Study on the variation characteristics of leaf traits of main plants in the arid zone of central Ningxia. Acta Prataculturae Sinica, 23(1), 41-49. |
[陈林, 杨新国, 宋乃平, 杨明秀, 肖绪培, 王兴 (2014). 宁夏中部干旱带主要植物叶性状变异特征研究. 草业学报, 23(1), 41-49.]
DOI |
|
[7] |
Eamus D, Myers B, Duff G, Williams R (2000). A cost-benefit analysis of leaves of eight australian savanna tree species of differing leaf life-span. Photosynthetica, 36, 575-586.
DOI URL |
[8] | Eller BM, Ferrari S (1997). Water use efficiency of two succulents with contrasting CO2 fixation pathways. Plant, Cell & Environment, 20, 93-100. |
[9] |
Falcão HM, Medeiros CD, Almeida-Cortez J, Santos MG (2017). Leaf construction cost is related to water availability in three species of different growth forms in a Brazilian tropical dry forest. Theoretical and Experimental Plant Physiology, 29(2), 95-108.
DOI URL |
[10] |
Feng YL, Fu GL, Zheng YL (2008). Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta, 228, 383-390.
DOI URL |
[11] |
Flowers TJ, Colmer TD (2008). Salinity tolerance in halophytes. New Phytologist, 179, 945-963.
DOI PMID |
[12] |
Fortunel C, Fine PVA, Baraloto C (2012). Leaf, stem and root tissue strategies across 758 neotropical tree species. Functional Ecology, 26, 1153-1161.
DOI URL |
[13] |
Funk JL, Vitousek PM (2007). Resource-use efficiency and plant invasion in low-resource systems. Nature, 446, 1079-1081.
DOI |
[14] | Han RL, Li LX, Liang ZS (2003). Seabuckthorn relative membrane conductivity and osmotic adjustment under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 23-27. |
[韩蕊莲, 李丽霞, 梁宗锁 (2003). 干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究. 西北植物学报, 23, 23-27.] | |
[15] |
Kleunen MV, Weber E, Fischer M (2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235-245.
DOI PMID |
[16] | Lambers H, Poorter H (1992). Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research, 34, 283-362. |
[17] |
Li FL (2017). Does energetic cost for leaf construction in Sonneratia change after introduce to another mangrove wetland and differ from native mangrove plants in South China. Marine Pollution Bulletin, 124, 1071-1077.
DOI URL |
[18] | Liu AR, Zhao KF (2005). Osmotica accumulation and its role in osmotic adjustment in Thellungiella halophila under salt stress. Acta Photophysiologica Sinica, 31, 389-395. |
[刘爱荣, 赵可夫 (2005). 盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用. 植物生理与分子生物学学报, 31, 389-395.] | |
[19] | Liu C, Li H (2010). Comparison of caloric values and ash contents in the four Populus L. species. Journal of Central South University of Forestry & Technology, 30(10), 24-28. |
[刘灿, 李宏 (2010). 四种杨属植物的热值及灰分含量的比较. 中南林业科技大学学报, 30(10), 24-28.] | |
[20] |
Nagel JM, Griffin KL (2001). Construction cost and invasive potential: comparing Lythrum salicaria (Lythraceae) with co-occurring native species along pond banks. American Journal of Botany, 88, 2252-2258.
PMID |
[21] |
Nagel JM, Huxman TE, Griffin KL, Smith SD (2004). CO2 enrichment reduces the energetic cost of biomass construction in an invasive desert grass. Ecology, 85, 100-106.
DOI URL |
[22] |
Pinheiro C, Chaves MM (2011). Photosynthesis and drought: Can we make metabolic connections from available data. Journal of Experimental Botany, 62, 869-882.
DOI PMID |
[23] | Poorter H, van Berkel Y, Baxter R, Den Hertog J, Dijkstra P, Gifford RM, Griffin KL, Roumet C, Roy J, Wong SC (1997). The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant, Cell & Environment, 20, 472-482. |
[24] |
P’Yankov VI, Ivanov LA, Lambers H (2001). Plant construction cost in the boreal species differing in their ecological strategies. Russian Journal of Plant Physiology, 48, 67-73.
DOI URL |
[25] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
PMID |
[26] |
Santos MG, Oliveira MT, Figueiredo KV, Falcão HM, Arruda ECP, Almeida-Cortez J, Sampaio EVSB, Ometto JPHB, Menezes RSC, Oliveira AFM, Pompelli MF, Antonino ACD (2014). Caatinga, the Brazilian dry tropical forest: Can it tolerate climate changes. Theoretical and Experimental Plant Physiology, 26, 83-99.
DOI URL |
[27] | Sidhu GPS, Bali AS (2022). Plant responses to drought stress. Brassinosteroids in Plant Developmental Biology and Stress Tolerance. Elsevier, Amsterdam. 201-216. |
[28] |
Somavilla NS, Kolb RM, Rossatto DR (2014). Leaf anatomical traits corroborate the leaf economic spectrum: a case study with deciduous forest tree species. Brazilian Journal of Botany, 37, 69-82.
DOI URL |
[29] |
Song LY, Peng CL, Peng SL (2009). Comparison of leaf construction costs between three invasive species and three native species in South China. Biodiversity Science, 17, 378-384.
DOI |
[宋莉英, 彭长连, 彭少麟 (2009). 华南地区3种入侵植物与本地植物叶片建成成本的比较. 生物多样性, 17, 378-384.]
DOI |
|
[30] | Tu CY, Huangfu CH, Jiang N, Gao SB, Yang DL (2013). Comparison of leaf construction cost between invasive plant Flaveria bidentis and its five co-occuring plants. Chinese Journal of Ecology, 32, 2985-2991. |
[屠臣阳, 皇甫超河, 姜娜, 高尚宾, 杨殿林 (2013). 入侵植物黄顶菊与5种共生植物叶片建成成本的比较. 生态学杂志, 32, 2985-2991.] | |
[31] |
Villar R, Merino J (2001). Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytologist, 151, 213-226.
DOI PMID |
[32] |
Vries F, Brunsting AH, Laar HH (1974). Products, requirements and efficiency of biosynthesis: a quantitative approach. Journal of Theoretical Biology, 45, 339-377.
PMID |
[33] |
Wang WB, Wang RF, Lei YB, Liu C, Han LF, Shi XD, Feng YL (2013). High resource capture and use efficiency and prolonged growth season contribute to invasiveness of Eupatorium adenophorum. Plant Ecology, 214, 857-868.
DOI URL |
[34] | Wei HX, Huo YL, Zhou ZK, Zhang ZG (2022). Variations in leaf traits of Nitraria tangutorum along a climatic gradient. Acta Ecologica Sinica, 42, 8343-8351. |
[魏海霞, 霍艳玲, 周忠科, 张治国 (2022). 唐古特白刺叶功能性状沿气候梯度的变异特征. 生态学报, 42, 8343-8351.] | |
[35] |
Wei HX, Luo TX, Wu B (2016). Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in Northern China. Annals of Botany, 118, 541-553.
DOI PMID |
[36] | Williams K, Percival F, Merino J, Mooney HA (1987). Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant, Cell & Environment, 10, 725-734. |
[37] | Xiao Y, Zhang KY, Zhang SB, Zhang JL (2020). Differences in leaf caloric values and construction costs between liana and tree species in Bauhinia. Plant Science Journal, 38, 428-436. |
[肖燕, 张科燕, 张树斌, 张教林 (2020). 羊蹄甲属藤本和树木叶片热值与建成成本的比较研究. 植物科学学报, 38, 428-436.] | |
[38] | Yan XT, Gu XX, Chen LZ (2021). Energy-use strategy of mangrove individuals along the life history. Chinese Journal of Ecology, 40, 245-254. |
[严雪婷, 顾肖璇, 陈鹭真 (2021). 红树植物生活史过程的能量利用策略. 生态学杂志, 40, 245-254.] | |
[39] |
Yao TT, Meng TT, Ni J, Yan S, Feng XH, Wang GH (2010). Leaf functional trait variation and its relationship with plant phylogenic background and the climate in Xinjiang Junggar Basin, NW China. Biodiversity Science, 18, 188-198.
DOI |
[尧婷婷, 孟婷婷, 倪健, 阎顺, 冯晓华, 王国宏 (2010). 新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探. 生物多样性, 18, 188-198.]
DOI |
|
[40] | Zeng FJ, Li XY, Zhang XM, Foetzki A, Arndt SK, Runge M (2010). Variation characteristics of perennial plant species water relation parameters under extreme arid condition. Chinese Journal of Ecology, 29, 207-214. |
[曾凡江, 李向义, 张希明, Foetzki A, Arndt SK, Runge M (2010). 极端干旱条件下多年生植物水分关系参数变化特性. 生态学杂志, 29, 207-214.] | |
[41] |
Zhang L, Luo T, Liu X, Yun W (2012). Altitudinal variation in leaf construction cost and energy content of Bergenia purpurascens. Acta Oecologica, 43, 72-79.
DOI URL |
[42] | Zhu SD, Song JJ, Li RH, Ye Q (2013). Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests. Plant, Cell & Environment, 36, 879-891. |
[1] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[3] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[4] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[5] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[6] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[7] | 张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响[J]. 植物生态学报, 2023, 47(10): 1398-1406. |
[8] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[9] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[10] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[11] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[12] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[13] | 代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[14] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[15] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19