植物生态学报 ›› 2022, Vol. 46 ›› Issue (11): 1388-1399.DOI: 10.17521/cjpe.2021.0396
所属专题: 植物功能性状
祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁(), 郭卫华()
收稿日期:
2021-11-04
接受日期:
2022-02-10
出版日期:
2022-11-20
发布日期:
2022-06-09
通讯作者:
*(杜宁, ndu@sdu.edu.cn; 郭卫华, whguo@sdu.edu.cn)
基金资助:
QI Lu-Yu, CHEN Hao-Nan, Kulihong SAIREBIELI, JI Tian-Yu, MENG Gao-De, QIN Hui-Ying, WANG Ning, SONG Yi-Xin, LIU Chun-Yu, DU Ning(), GUO Wei-Hua()
Received:
2021-11-04
Accepted:
2022-02-10
Online:
2022-11-20
Published:
2022-06-09
Contact:
*(DU Ning, ndu@sdu.edu.cn; GUO Wei-Hua, whguo@sdu.edu.cn)
Supported by:
摘要:
为了理解中国暖温带常见本地灌木和外来灌木的生长策略和生态位分化机制, 并为植被恢复和重建、区域生态环境可持续发展提供理论依据, 该研究选取3种中国暖温带常见本地灌木——荆条(Vitex negundo var. heterophylla)、酸枣(Ziziphus jujuba var. spinosa)、小花扁担杆(Grewia biloba var. parviflora)和2种外来灌木——紫穗槐(Amorpha fruticosa)和火炬树(Rhus typhina), 通过对植物功能性状的测量, 分析了不同物种幼苗生长策略的差异。该研究在山东大学莱芜房干生态实验站进行, 利用盆栽实验种植5种灌木的当年实生苗, 每个物种20个重复, 测量了叶结构性状、叶营养元素含量、叶绿素含量、叶气体交换参数、叶绿素荧光、生物量产量等性状指标。结果表明: 5种灌木在相同的生长环境下表现出了不同的生理生态特性。外来种火炬树和紫穗槐表现出较高的光合速率, 这对于两者充分利用林下光斑环境非常有利。紫穗槐支撑结构比例高达0.434, 有利于其叶片运动, 进而适应多变的光照环境, 较强的光合适应能力是2个外来种能够定居下来的重要原因。本地种荆条和酸枣对资源的利用比较保守, 两者气体交换值均较低, 充分地利用正午的光照是荆条叶片生理的一大特点。小花扁担杆的叶片有较强的气体交换能力, 但是通过叶绿素荧光分析发现, 其正午过后的实际量子产量恢复比较慢, 另外, 小花扁担杆叶片的比叶质量和叶绿素a/b都最小, 分别为44.539 g·m-2和2.215, 说明小花扁担杆具有一定的阴生性。良好的种子扩散能力(百粒质量小, 0.947 g)和叶散热能力(周长2/面积(γ′)值最高, 48.389)、保守的光能利用策略、较强的干扰后恢复能力(根冠比高, 5.051)使得荆条成为中国暖温带地区的广布优势种。
祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略. 植物生态学报, 2022, 46(11): 1388-1399. DOI: 10.17521/cjpe.2021.0396
QI Lu-Yu, CHEN Hao-Nan, Kulihong SAIREBIELI, JI Tian-Yu, MENG Gao-De, QIN Hui-Ying, WANG Ning, SONG Yi-Xin, LIU Chun-Yu, DU Ning, GUO Wei-Hua. Growth strategies of five shrub seedlings in warm temperate zone based on plant functional traits. Chinese Journal of Plant Ecology, 2022, 46(11): 1388-1399. DOI: 10.17521/cjpe.2021.0396
图1 暖温带5种灌木的叶形状实物图。A, 火炬树小叶。B, 火炬树羽状复叶。C, 紫穗槐小叶。D, 紫穗槐羽状复叶。E, 酸枣叶片。F, 小花扁担杆叶片。G, 荆条叶片。
Fig. 1 Pictures of five shrub leaves in warm temperate zone. A, Leaflet of Rhus typhina. B, Pinnately compound leaf of Rhus typhina. C, Leaflet of Amorpha fruticosa. D, Pinnately compound leaf of Amorpha fruticosa. E, Leaf of Ziziphus jujuba var. spinosa. F, Leaf of Grewia biloba var. parviflora. G, Palmately compound leaf of Vitex negundo var. heterophylla.
性状 Trait | 荆条 Vitex negundo var. heterophylla | 酸枣 Ziziphus jujuba var. spinosa | 小花扁担杆 Grewia biloba var. parviflora | 紫穗槐 Amorpha fruticosa | 火炬树 Rhus typhina |
---|---|---|---|---|---|
Area (cm2) | 9.261 ± 1.045c | 4.652 ± 0.410c | 54.529 ± 3.560a | 4.509 ± 0.314c | 22.574 ± 0.817b |
L/W | 2.380 ± 0.126b | 2.142 ± 0.052b | 1.476 ± 0.053c | 3.157 ± 0.165a | 3.296 ± 0.117a |
L/PL | 6.088 ± 0.555c | 27.319 ± 2.846a | 8.940 ± 0.215c | 19.041 ± 0.811b | - |
γ′ | 48.389 ± 5.577a | 21.526 ± 0.981c | 20.755 ± 0.430c | 20.438 ± 0.708c | 36.152 ± 1.332b |
LMA (g·m-2) | 48.094 ± 0.611bc | 49.303 ± 1.698ab | 44.539 ± 1.513c | 53.040 ± 1.342a | 46.389 ± 1.397bc |
x(c) (cm·cm-1) | 0.417 ± 0.006c | 0.447 ± 0.006b | 0.402 ± 0.004d | 0.483 ± 0.004a | 0.392 ± 0.003d |
N (g·kg-1) | 32.825 ± 0.581c | 42.105 ± 0.768a | 37.878 ± 1.221b | 36.800 ± 1.158b | 27.073 ± 1.103d |
P (g·kg-1) | 3.540 ± 0.186b | 5.968 ± 0.111a | 5.593 ± 0.462a | 5.208 ± 0.548a | 5.793 ± 0.284a |
K (g·kg-1) | 12.015 ± 0.889b | 15.040 ± 0.142a | 12.478 ± 0.514b | 9.895 ± 0.368c | 10.073 ± 0.540c |
N:P | 9.371 ± 0.632a | 7.068 ± 0.236b | 6.908 ± 0.586b | 7.274 ± 0.689b | 4.710 ± 0.309c |
Chl a (mg·g-1) | 1.565 ± 0.060c | 2.316 ± 0.112a | 2.055 ± 0.085b | 2.013 ± 0.040b | 1.771 ± 0.064c |
Chl b (mg·g-1) | 0.667 ± 0.043c | 0.878 ± 0.057ab | 0.938 ± 0.064a | 0.812 ± 0.027abc | 0.726 ± 0.037bc |
Chl a/b | 2.384 ± 0.156 | 2.658 ± 0.076 | 2.215 ± 0.081 | 2.494 ± 0.096 | 2.446 ± 0.035 |
LBP | 0.878 ± 0.004b | - | 0.965 ± 0.001a | 0.790 ± 0.006c | 0.764 ± 0.007d |
表1 5个暖温带灌木物种叶特征、结构和物质组成性状的比较(平均值±标准误)
Table 1 Compare of leaf features, structure and compositional traits among five shrub species in warm temperate zone (mean ± SE)
性状 Trait | 荆条 Vitex negundo var. heterophylla | 酸枣 Ziziphus jujuba var. spinosa | 小花扁担杆 Grewia biloba var. parviflora | 紫穗槐 Amorpha fruticosa | 火炬树 Rhus typhina |
---|---|---|---|---|---|
Area (cm2) | 9.261 ± 1.045c | 4.652 ± 0.410c | 54.529 ± 3.560a | 4.509 ± 0.314c | 22.574 ± 0.817b |
L/W | 2.380 ± 0.126b | 2.142 ± 0.052b | 1.476 ± 0.053c | 3.157 ± 0.165a | 3.296 ± 0.117a |
L/PL | 6.088 ± 0.555c | 27.319 ± 2.846a | 8.940 ± 0.215c | 19.041 ± 0.811b | - |
γ′ | 48.389 ± 5.577a | 21.526 ± 0.981c | 20.755 ± 0.430c | 20.438 ± 0.708c | 36.152 ± 1.332b |
LMA (g·m-2) | 48.094 ± 0.611bc | 49.303 ± 1.698ab | 44.539 ± 1.513c | 53.040 ± 1.342a | 46.389 ± 1.397bc |
x(c) (cm·cm-1) | 0.417 ± 0.006c | 0.447 ± 0.006b | 0.402 ± 0.004d | 0.483 ± 0.004a | 0.392 ± 0.003d |
N (g·kg-1) | 32.825 ± 0.581c | 42.105 ± 0.768a | 37.878 ± 1.221b | 36.800 ± 1.158b | 27.073 ± 1.103d |
P (g·kg-1) | 3.540 ± 0.186b | 5.968 ± 0.111a | 5.593 ± 0.462a | 5.208 ± 0.548a | 5.793 ± 0.284a |
K (g·kg-1) | 12.015 ± 0.889b | 15.040 ± 0.142a | 12.478 ± 0.514b | 9.895 ± 0.368c | 10.073 ± 0.540c |
N:P | 9.371 ± 0.632a | 7.068 ± 0.236b | 6.908 ± 0.586b | 7.274 ± 0.689b | 4.710 ± 0.309c |
Chl a (mg·g-1) | 1.565 ± 0.060c | 2.316 ± 0.112a | 2.055 ± 0.085b | 2.013 ± 0.040b | 1.771 ± 0.064c |
Chl b (mg·g-1) | 0.667 ± 0.043c | 0.878 ± 0.057ab | 0.938 ± 0.064a | 0.812 ± 0.027abc | 0.726 ± 0.037bc |
Chl a/b | 2.384 ± 0.156 | 2.658 ± 0.076 | 2.215 ± 0.081 | 2.494 ± 0.096 | 2.446 ± 0.035 |
LBP | 0.878 ± 0.004b | - | 0.965 ± 0.001a | 0.790 ± 0.006c | 0.764 ± 0.007d |
LMA | γ′ | L/W | L/PL | LBP | N | P | K | N:P | Chl a | Chl b | Chl a/b | Chl t | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area | -0.048 | 0.168 | 0.525** | -0.027 | -0.700** | -0.600** | 0.096 | -0.814** | -0.573** | -0.172 | -0.089 | -0.134 | -0.146 |
LMA | 0.071 | 0.425** | 0.281 | -0.243 | 0.269 | 0.116 | 0.098 | 0.170 | -0.083 | -0.210 | 0.232 | -0.078 | |
γ′ | 0.386** | -0.486** | -0.199 | -0.635** | -0.400 | -0.140 | 0.081 | -0.650** | -0.575** | -0.035 | -0.671** | ||
L/W | 0.293 | -0.787** | -0.367 | -0.050 | -0.490* | -0.155 | -0.263 | -0.414* | 0.340 | -0.305 | |||
L/PL | -0.446* | 0.579* | 0.424 | 0.135 | -0.262 | 0.557** | 0.425* | 0.302 | 0.564** | ||||
LBP | 0.582* | -0.131 | 0.715** | 0.491 | 0.142 | 0.361 | -0.473* | 0.199 | |||||
N | 0.387 | 0.638** | 0.280 | 0.722** | 0.418 | 0.325 | 0.689** | ||||||
P | 0.118 | -0.704** | 0.480* | 0.316 | 0.097 | 0.423 | |||||||
K | 0.281 | 0.242 | 0.189 | 0.203 | 0.236 | ||||||||
N:P | -0.078 | -0.156 | 0.156 | -0.051 | |||||||||
Chl a | 0.796** | 0.166 | 0.970** | ||||||||||
Chl b | -0.378* | 0.895** | |||||||||||
Chl a/b | -0.013 |
表2 5个暖温带灌木物种叶性状的Spearman相关性分析
Table 2 Spearman correlation analysis of leaf traits among five shrub species in warm temperate zone
LMA | γ′ | L/W | L/PL | LBP | N | P | K | N:P | Chl a | Chl b | Chl a/b | Chl t | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area | -0.048 | 0.168 | 0.525** | -0.027 | -0.700** | -0.600** | 0.096 | -0.814** | -0.573** | -0.172 | -0.089 | -0.134 | -0.146 |
LMA | 0.071 | 0.425** | 0.281 | -0.243 | 0.269 | 0.116 | 0.098 | 0.170 | -0.083 | -0.210 | 0.232 | -0.078 | |
γ′ | 0.386** | -0.486** | -0.199 | -0.635** | -0.400 | -0.140 | 0.081 | -0.650** | -0.575** | -0.035 | -0.671** | ||
L/W | 0.293 | -0.787** | -0.367 | -0.050 | -0.490* | -0.155 | -0.263 | -0.414* | 0.340 | -0.305 | |||
L/PL | -0.446* | 0.579* | 0.424 | 0.135 | -0.262 | 0.557** | 0.425* | 0.302 | 0.564** | ||||
LBP | 0.582* | -0.131 | 0.715** | 0.491 | 0.142 | 0.361 | -0.473* | 0.199 | |||||
N | 0.387 | 0.638** | 0.280 | 0.722** | 0.418 | 0.325 | 0.689** | ||||||
P | 0.118 | -0.704** | 0.480* | 0.316 | 0.097 | 0.423 | |||||||
K | 0.281 | 0.242 | 0.189 | 0.203 | 0.236 | ||||||||
N:P | -0.078 | -0.156 | 0.156 | -0.051 | |||||||||
Chl a | 0.796** | 0.166 | 0.970** | ||||||||||
Chl b | -0.378* | 0.895** | |||||||||||
Chl a/b | -0.013 |
图2 5种暖温带灌木叶气体交换参数比较(平均值±标准误)。n = 4-8, 不同小写字母表示差异显著(p < 0.05)。
Fig. 2 Gas exchange parameters of the five shrub species in warm temperate zone (mean ± SE). n = 4-8, different lowercase letters indicate significant differences (p < 0.05). Ci, substomatal CO2 concentration; Gs, stomatal conductance; LUE, apparent light use efficiency; Pn, net photosynthesis rate; Tr, transpiration rate; WUE, water use efficiency.
图3 5种暖温带灌木的叶绿素荧光日变化(平均值±标准误, n = 6)。ETR, 电子传递速率; NPQ, 非光化学淬灭系数; PAR, 光合有效辐射; T, 气温; Yield, 实际量子产量。
Fig. 3 Diurnal courses of chlorophyll fluorescence of the five shrub species in warm temperate zone (mean ± SE, n = 6). ETR, electron transport rate; NPQ, non photochemical quenching; PAR, photosynthetically active radiation; T, air temperature; Yield, actual quantum yield.
性状 Trait | 荆条 Vitex negundo var. heterophylla | 酸枣 Ziziphus jujuba var. spinosa | 小花扁担杆 Grewia biloba var. parviflora | 紫穗槐 Amorpha fruticosa | 火炬树 Rhus typhina |
---|---|---|---|---|---|
HSM (g) | 0.947 ± 0.013c | 17.095 ± 0.119a | 4.605 ± 0.025b | 0.833 ± 0.007c | 0.919 ± 0.010c |
RMR | 0.295 ± 0.015a | 0.187 ± 0.014bc | 0.162 ± 0.020c | 0.218 ± 0.017b | 0.181 ± 0.018bc |
SMR | 0.284 ± 0.014b | 0.328 ± 0.020 a | 0.328 ± 0.012a | 0.340 ± 0.005a | 0.179 ± 0.005c |
LMR | 0.420 ± 0.008c | 0.485 ± 0.012b | 0.510 ± 0.009b | 0.442 ± 0.021c | 0.639 ± 0.019a |
R/S | 0.422 ± 0.031a | 0.231 ± 0.020b | 0.196 ± 0.030b | 0.281 ± 0.027b | 0.224 ± 0.027b |
BR/AR | 5.051 ± 0.209a | 1.184 ± 0.121b | 1.629 ± 0.329b | 1.842 ± 0.248b | 5.485 ± 0.596a |
B/MS | 0.266 ± 0.053c | 0.772 ± 0.080b | 1.109 ± 0.103a | 0d | 0d |
P/L | 0.094 ± 0.006c | - | 0.038 ± 0.003d | 0.271 ± 0.013b | 0.308 ± 0.016a |
STMR | 0.320 ± 0.016b | 0.328 ± 0.020b | 0.346 ± 0.012b | 0.434 ± 0.004a | 0.329 ± 0.010b |
表3 暖温带5个灌木物种的各器官生物量分配(平均值±标准误)
Table 3 Different organs biomass partitioning of five shrub species in warm temperate zone (mean ± SE)
性状 Trait | 荆条 Vitex negundo var. heterophylla | 酸枣 Ziziphus jujuba var. spinosa | 小花扁担杆 Grewia biloba var. parviflora | 紫穗槐 Amorpha fruticosa | 火炬树 Rhus typhina |
---|---|---|---|---|---|
HSM (g) | 0.947 ± 0.013c | 17.095 ± 0.119a | 4.605 ± 0.025b | 0.833 ± 0.007c | 0.919 ± 0.010c |
RMR | 0.295 ± 0.015a | 0.187 ± 0.014bc | 0.162 ± 0.020c | 0.218 ± 0.017b | 0.181 ± 0.018bc |
SMR | 0.284 ± 0.014b | 0.328 ± 0.020 a | 0.328 ± 0.012a | 0.340 ± 0.005a | 0.179 ± 0.005c |
LMR | 0.420 ± 0.008c | 0.485 ± 0.012b | 0.510 ± 0.009b | 0.442 ± 0.021c | 0.639 ± 0.019a |
R/S | 0.422 ± 0.031a | 0.231 ± 0.020b | 0.196 ± 0.030b | 0.281 ± 0.027b | 0.224 ± 0.027b |
BR/AR | 5.051 ± 0.209a | 1.184 ± 0.121b | 1.629 ± 0.329b | 1.842 ± 0.248b | 5.485 ± 0.596a |
B/MS | 0.266 ± 0.053c | 0.772 ± 0.080b | 1.109 ± 0.103a | 0d | 0d |
P/L | 0.094 ± 0.006c | - | 0.038 ± 0.003d | 0.271 ± 0.013b | 0.308 ± 0.016a |
STMR | 0.320 ± 0.016b | 0.328 ± 0.020b | 0.346 ± 0.012b | 0.434 ± 0.004a | 0.329 ± 0.010b |
[1] |
Cao JY, Liu JF, Yuan Q, Xu DY, Fan HD, Chen HY, Tan B, Liu LB, Ye D, Ni J (2020). Traits of shrubs in forests and bushes reveal different life strategies. Chinese Journal of Plant Ecology, 44, 715-729.
DOI URL |
[ 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健 (2020). 森林与灌丛的灌木性状揭示不同的生活策略. 植物生态学报, 44, 715-729.] | |
[2] |
Chow WS, Melis A, Anderson JM (1990). Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 87, 7502-7506.
DOI PMID |
[3] | Crow TR (1988). Reproductive mode and mechanisms for self-replacement of northern red oak (Quercus rubra)―A review. Forest Science, 34, 19-40. |
[4] | Dai XB (1989). The seasonal dynamics of the biomass of Vitex shrubland in mountainous area of Huairou County in Beijing. Journal of Integrative Plant Biology, 31, 307-315. |
[ 戴晓兵 (1989). 怀柔山区荆条灌丛生物量的季节动态. 综合植物生理学, 31, 307-315.] | |
[5] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL |
[6] |
Drake JE, Power SA, Duursma RA, Medlyn BE, Aspinwall MJ, Choat B, Creek D, Eamus D, Maier C, Pfautsch S, Smith RA, Tjoelker MG, Tissue DT (2017). Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations. Agricultural and Forest Meteorology, 247, 454-466.
DOI URL |
[7] |
Du N, Tan XF, Li Q, Liu X, Zhang WX, Wang RQ, Liu J, Guo WH (2017). Dominance of an alien shrub Rhus typhina over a native shrub Vitex negundo var. heterophylla under variable water supply patterns. PLOS ONE, 12, e0176491. DOI: 10.1371/journal.pone.0176491.
DOI |
[8] | Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, Tomàs M, Niinemets Ü (2016). Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant, Cell & Environment, 39, 965-982. |
[9] |
Funk JL (2013). The physiology of invasive plants in low-resource environments. Conservation Physiology, 1, cot026. DOI: 10.1093/conphys/cot026.
DOI |
[10] | Gong XY, Rao XQ, Zhou LX, Wang XL, Zhu XL, Cai XA (2018). Dynamics of shade tolerance, biomass and individual growth of five understory plant species in Eucalyptus urophylla plantations. Acta Ecologica Sinica, 38, 1124-1133. |
[ 公绪云, 饶兴权, 周丽霞, 王晓玲, 朱小林, 蔡锡安 (2018). 尾叶桉林下5种植物的耐阴性、生物量及其个体消长. 生态学报, 38, 1124-1133.] | |
[11] | Guo ZH, Zhu XW, Chen QW, Yang SN, Gong HD (2021). Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in main shrubs in central Yunnan. Journal of Forest and Environment, 41, 358-365. |
[ 郭子豪, 朱秀雯, 陈钱炜, 杨双娜, 巩合德 (2021). 滇中地区主要灌丛碳氮磷生态化学计量特征. 森林与环境学报, 41, 358-365.] | |
[12] | He NP, Liu CC, Zhang JH, Xu L, Yu GR (2018). Perspectives and challenges in plant traits: from organs to communities. Acta Ecologica Sinica, 38, 6787-6796. |
[ 何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞 (2018). 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 38, 6787-6796.] | |
[13] |
Heilmeier H (2019). Functional traits explaining plant responses to past and future climate changes. Flora, 254, 1-11.
DOI |
[14] | Hu HF, Wang ZH, Liu GH, Fu BJ (2006). Vegetation carbon storage of major shrublands in China. Journal of Plant Ecology, 30, 539-544. |
[ 胡会峰, 王志恒, 刘国华, 傅伯杰 (2006). 中国主要灌丛植被碳储量. 植物生态学报, 30, 539-544.]
DOI |
|
[15] | Jiang GM (2004). Physiological Plant Ecology. Higher Education Press, Beijing. 12. |
[ 蒋高明 (2004). 植物生理生态学. 高等教育出版社, 北京. 12.] | |
[16] |
Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner GDA, Aakala T, Abedi M, Acosta ATR, Adamidis GC, Adamson K, Aiba M, Albert CH, et al. (2020). TRY plant trait database—Enhanced coverage and open access. Global Change Biology, 26, 119-188.
DOI PMID |
[17] |
Kumar M, Garkoti SC (2021). Functional traits, growth patterns, and litter dynamics of invasive alien and co-occurring native shrub species of chir pine forest in the central Himalaya, India. Plant Ecology, 222, 723-735.
DOI URL |
[18] |
Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, et al. (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207.
DOI URL |
[19] | Li XZ, Hao RM, Ren Y (2006). Effects of shading on growth and photosynthetic characteristics of Daphniphyllum macropodum in different ages. Guihaia, 26, 499-502. |
[ 李晓征, 郝日明, 任燕 (2006). 遮荫处理对不同苗龄交让木的生长和光合特性的影响. 广西植物, 26, 499-502.] | |
[20] | Li YQ, Wang ZH (2021). Leaf morphological traits: ecological function, geographic distribution and drivers. Chinese Journal of Plant Ecology, 1154-1172. |
[ 李耀琪, 王志恒 (2021). 植物叶形态的生态功能、地理分布与成因. 植物生态学报, 45, 1154-1172.]
DOI |
|
[21] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[22] |
Lusk CH, Grierson ERP, Laughlin DC (2019). Large leaves in warm, moist environments confer an advantage in seedling light interception efficiency. New Phytologist, 223, 1319-1327.
DOI PMID |
[23] | Ma J, Liu XD, He XL, Wang SL, He YY, Wu XR, Zhao JZ, Ma XE (2021). Structural characteristics and diversity of typical shrub communities in Qilian Mountains. Arid Land Geography, 44, 1427-1437. |
[ 马剑, 刘贤德, 何晓玲, 王顺利, 贺永岩, 武秀荣, 赵晶忠, 马雪娥 (2021). 祁连山典型灌丛群落结构特征及其多样性研究. 干旱区地理, 1427-1437.] | |
[24] |
Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M (2005). A brief history of seed size. Science, 307, 576-580.
DOI PMID |
[25] |
Naidu SL, DeLucia EH (1997). Growth, allocation and water relations of shade-grown Quercus rubra L. saplings exposed to a late-season canopy gap. Annals of Botany, 80, 335-344.
DOI URL |
[26] |
Niinemets Ü (1998). Are compound-leaves woody species inherently shade-intolerant? An analysis of species ecological requirements and foliar support costs. Plant Ecology, 134, 1-11.
DOI URL |
[27] | Niinemets Ü, Portsmuth A, Tobias M (2007). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Functional Ecology, 21, 28-40. |
[28] |
Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, et al. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190, 724-739.
DOI PMID |
[29] |
Poorter L (2009). Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist, 181, 890-900.
DOI PMID |
[30] |
Poorter L, Rozendaal DMA (2008). Leaf size and leaf display of thirty-eight tropical tree species. Oecologia, 158, 35-46.
DOI PMID |
[31] |
Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 87, 483-491.
PMID |
[32] |
Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Cochard H, Buckley TN, McElrone AJ, Sack L (2017). Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytologist, 213, 1076-1092.
DOI PMID |
[33] | Shi GR, Tang Y, Zhang Z (2006). Leaf anatomy of dominant plant species in the successional communities of Xiangshan Moutnain, Huaibei, China. Journal of Plant Ecology (Formerly Acta Phyloecologica Sinica), 30, 314-322. |
[ 史刚荣, 汤盈, 张铮 (2006). 淮北相山恢复演替群落优势树种叶片的生态解剖. 植物生态学报, 30, 314-322.]
DOI |
|
[34] | Sun RY, Li B, Zhuge Y, Shang YC (1993). General Ecology. Higher Education Press, Beijing. 10. |
[ 孙儒泳, 李博, 诸葛阳, 尚玉昌 (1993). 普通生态学. 高等教育出版社, 北京. 10.] | |
[35] |
Tan XF, Guo X, Guo WH, Liu SN, Du N (2018). Invasive Rhus typhina invests more in height growth and traits associated with light acquisition than do native and non-invasive alien shrub species. Trees, 32, 1103-1112.
DOI URL |
[36] |
Wang GM, Jiang GM, Yu SL, Li YH, Liu H (2008). Invasion possibility and potential effects of Rhus typhina on Beijing municipality. Journal of Integrative Plant Biology, 50, 522-530.
DOI URL |
[37] | Wang WB, Wang RF, Lei YB, Liu C, Han LH, Shi XD, Feng YL (2013). High resource capture and use efficiency and prolonged growth season contribute to invasiveness of Eupatorium adenophorum. Plant Ecology, 214, 857-868. |
[38] |
Westoby M, Jurado E, Leishman M (1992). Comparative evolutionary ecology of seed size. Trends in Ecology & Evolution, 7, 368-372.
DOI URL |
[39] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[40] | Xu F, Guo WH, Xu WH, Wang RQ (2008). Habitat effects on leaf morphological plasticity in Quercus acutissima. Acta Biologica Cracoviensia Series Botanica, 50, 19-26. |
[41] | Yan YQ, Zhu H, Liu XL, Shi XC, Zu YG (2008). Effect of salt stress on Amorpha fruticosa L. growth and physiological index. Journal of Northeast Agricultural University, 39(12), 31-35. |
[ 闫永庆, 朱虹, 刘兴亮, 石溪婵, 祖元刚 (2008). 盐胁迫对紫穗槐生长发育及生理特性的影响. 东北农业大学学报, 39(12), 31-35.] | |
[42] |
Ye ZP, Yu F, An T, Wang FB, Kang HJ (2021). Investigation on CO2-response model of stomatal conductance for plants. Chinese Journal of Plant Ecology, 45, 420-428.
DOI URL |
[ 叶子飘, 于冯, 安婷, 王复标, 康华靖 (2021). 植物气孔导度对CO2响应模型的构建. 植物生态学报, 45, 420-428.] | |
[43] |
Yuan YF, Guo WH, Ding WJ, Du N, Luo YJ, Liu J, Xu F, Wang RQ (2013). Competitive interaction between the exotic plant Rhus typhina L. and the native tree Quercus acutissima Carr. in Northern China under different soil N:P ratios. Plant and Soil, 372, 389-400.
DOI URL |
[44] | Zhang CH, Zheng YQ, Li JL, Yan HP, Wang L (2005). Dispersal of staghorn sumac in Beijing areas. Acta Ecologica Sinica, 25, 978-985. |
[ 张川红, 郑勇奇, 李继磊, 阎海平, 王玲 (2005). 北京地区火炬树的萌蘖繁殖扩散. 生态学报, 25, 978-985.] | |
[45] | Zhang MR, Wen GS, Yan WH, Hou P, Zhai MP, Zhang J (2008). Growth strategy of Rhus typhina clonal ramets in the hilly area of the Taihang Mountains. Journal of Zhejiang Forestry College, 25, 282-288. |
[ 张明如, 温国胜, 颜文洪, 侯平, 翟明普, 张瑾 (2008). 太行山低山丘陵区火炬树克隆分株的生长策略. 浙江林学院学报, 25, 282-288.] | |
[46] | Zhang SR (1999). A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chinese Bulletin of Botany, 16, 444-448. |
[ 张守仁 (1999). 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 16, 444-448.] | |
[47] |
Zhang XR, Tan XF, Wang RQ, Xu NN, Guo WH (2013). Effects of soil moisture and light intensity on ecophysiological characteristics of Amorpha fruticosa seedlings. Journal of Forestry Research, 24, 293-300.
DOI URL |
[48] | Zhang YS (2017). Seasonal Variation in Leaf Functional Traits and Its Ecolgocial Significance: a Case Study with Major Woody Species from Tiantong Subtropical Evergreen Forest. PhD dissertation, Nanjing University, Nanjing. 105-157. |
[ 张云舒 (2017). 天童亚热带常绿阔叶林主要物种叶生活史对策研究. 博士学位论文, 南京大学, 南京. 105-157.] | |
[49] | Zhao SJ, Han LB, Song GL, Zhang YX, Zhang CH (2008). Study on Root distribution of four species of shrub in artificial shrub and grass mixture communities. Acta Botanica Boreali-Occidentalia Sinica, 28, 4799-4804. |
[ 赵思金, 韩烈保, 宋桂龙, 张咏新, 张才厚 (2008). 不同人工灌木与草混播群落中4种灌木根系分布的研究. 西北植物学报, 28, 4799-4804.] | |
[50] | Zheng SX, Shangguan ZP (2006). Comparison of leaf gas exchange and chlorophyll fluorescence parameters in eight broad-leaved tree species. Acta Ecologica Sinica, 26, 1080-1087. |
[ 郑淑霞, 上官周平 (2006). 8种阔叶树种叶片气体交换特征和叶绿素荧光特性比较. 生态学报, 26, 1080-1087.] | |
[51] | Zhang ZE, Wu LQ, Sun H, Wen S, Li FR, Liu Q (2021). Canopy weight than leaf weight in young Larix olgensis plantations. Chinese Journal of Applied Ecology, 32, 2729-2736. |
[ 张泽文, 武莉琴, 孙赫, 温烁, 李凤日, 刘强 (2021). 人工长白落叶松幼龄林树冠比叶重. 应用生态学报, 32, 2729-2736.]
DOI |
[1] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[4] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[5] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[6] | 张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响[J]. 植物生态学报, 2023, 47(10): 1398-1406. |
[7] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[8] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[9] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[10] | 代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[11] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[12] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[13] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[14] | 王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242-252. |
[15] | 石娇星, 许洺山, 方晓晨, 郑丽婷, 张宇, 鲍迪峰, 杨安娜, 阎恩荣. 中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J]. 植物生态学报, 2021, 45(2): 163-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19